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There is emerging evidence that circadian misalignment may alter energy expenditure, leading to 

obesity risk among those with irregular schedules[1–5]. It has been reported that energy 

expenditure is affected by the timing of sleep, exercise, and meals[6]. However, it is unclear 

whether the circadian system also modulates energy expenditure, independent of behavioral state 

and food intake. Here, we used a forced desynchrony protocol to examine whether fasted resting 

energy expenditure (REE) varies with circadian phase in 7 participants. This protocol allowed us 

to uncouple sleep-wake and activity-related effects from the endogenous circadian rhythm, 

demonstrating that REE varies by circadian phase. REE is lowest at circadian phase ~0°, 

corresponding to the endogenous core body temperature (CBT) nadir in the late biological night, 

and highest at circadian phase ~180° in the biological afternoon/evening. Furthermore, we found 

that respiratory quotient (RQ), reflecting macronutrient utilization, also varies by circadian phase. 

RQ is lowest at circadian phase ~240° and highest at circadian phase ~60°, which corresponds to 

biological morning. This is the first characterization of a circadian profile in fasted resting energy 

expenditure and fasted respiratory quotient (with rhythmic profiles in both carbohydrate and lipid 

oxidation), decoupled from effects of activity, sleep-wake cycle, and diet in humans. The rhythm 

in energy expenditure and macronutrient metabolism may contribute to greater weight gain in shift 

workers and others with irregular schedules.

Summary

Zitting et al. demonstrate that resting energy expenditure varies with circadian phase and is lowest 

in the late biological night. This may contribute to weight gain in people with irregular sleep 

schedules, and highlights the importance of controlling for circadian phase and sleep-wake 

behavior when assessing energy expenditure.

Keywords

circadian phase; resting energy expenditure; respiratory quotient; carbohydrate oxidation; lipid 
oxidation

RESULTS AND DISCUSSION

The potential influence of circadian timing on energy expenditure and macronutrient 

metabolism/utilization independent of behavioral state and food intake has not been 

investigated in humans. Here, we investigated the influence of circadian timing on resting 

energy expenditure (REE) and respiratory quotient (RQ) across three weeks of controlled 

diet and activity within a 37-day inpatient research protocol. Participants experienced either 

three weeks of recurrent circadian disruption (RCD) on a 28-hour rest-activity schedule (see 

Figure 1; circadian disruption group; n=7) or three weeks on a regular 24-hour schedule 

(Figure 1; control group; n=6).

Circadian Variation of Fasting Resting Energy Expenditure

There is now emerging evidence that an irregular sleep-wake and fasting-feeding cycle, 

common in people working night or rotating shifts, can lead to disrupted circadian timing, 

which in turn may alter energy balance and lead to increased obesity risk[2, 4, 5, 7]. The 

positive energy balance associated with night work (which leads to weight gain and obesity 
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over time) may be cause by increased energy intake (Bonham et al. 2016), changes in the 

timing/frequency of food intake[8–11], or decreased energy expenditure[1, 12].

Resting energy expenditure (REE), also known as resting metabolic rate (RMR), is the 

largest component of daily energy expenditure and a major determinant of changes in 

weight[13]. REE accounts for 60–70% of all calories burned at rest each day to support 

basic physiological functions such as ventilation, circulation, temperature regulation, and 

brain activity. We show that fasted REE, decoupled from behavioral state and food intake, 

varies with circadian phase (Figure 2., Linear Mixed Model: n=7, F=10.76, p<0.0001), in a 

protocol that kept caloric intake, time-in-bed sleep opportunity, and exercise levels 

consistent across all phases, and over the duration of the study. REE is lowest at what we 

have defined as circadian phase 0°, corresponding to the nadir of the endogenous circadian 

rhythm of core body temperature in the late biological night, and is highest about 12 hours 

later at circadian phase ~180°, corresponding to the biological afternoon/evening (Cosinor 

Model: amplitude=55.2 kcal/day; acrophase=160.8°; H0: p<0.001). Thus, while awake and 

resting, the human body burns the fewest calories during the late biological night and the 

most calories during the biological afternoon/evening.

Previous studies exploring diurnal changes in energy expenditure in humans[14–20] and 

animals[21–27] have reported mixed results. However, in attempting to evaluate the diurnal/

circadian variation of REE, previous studies likely encountered confounding meal effects 

(e.g., breakfast measurement obtained after an overnight fast, whereas lunch and dinner 

measurements were obtained after prior meals). In the current study, each fasted recording 

during the three-week forced desynchrony protocol was performed shortly after a scheduled 

wake time, following an overnight fast of at least 12 hours. The caloric and macronutrient 

content of the meals consumed throughout the day after the fasted recording were similar, 

with calories varying by <5% from day-to-day within each participant.

We found no significant difference in REE values between the first and third weeks in the 

RCD group (Supplemental Information; Figure S1), suggesting that three weeks of recurrent 

circadian disruption does not change the overall REE or affect the circadian modulation of 

REE. There was also no significant difference in REE values between the first and third 

weeks in the control group (Supplemental Information; Figure S3), in which participants 

lived on a regular 24-hour schedule. These findings are in contrast to the results from our 

previous study, when we found that three weeks of sleep restriction combined with recurrent 

circadian disruption led to an 8% drop in RMR[28]. Sleep restriction alone either decreases 

fasting energy expenditure[28–30] or leads to no change, when measured at a consistent 

time of day[31–33]. Because we observed no change with circadian disruption alone (while 

minimizing sleep restriction) in the current study, the 8% reduction observed in our previous 

study[28] was likely due to sleep restriction or the combined effects of sleep restriction and 

circadian disruption.

Interestingly, while there was a significant effect on REE of day-to-day variability in body 

weight in both groups when tested independently (RCD: n=7, p=0.004; control group: n=6, 

p=0.009), this effect disappeared in the final statistical model for the RCD group (but not for 

the control group), suggesting that circadian timing is a stronger determinant of REE than 
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small changes in weight. In our previous study, which included a recent history of sleep 

restriction combined with circadian disruption, changes in bodyweight were unrelated to 

changes in RMR[28]. This difference may be due to fewer RMR recordings (3 vs. >10) over 

the course of the previous study compared to the current study. In the present study baseline 

REE value predicted the REE during the three weeks of circadian disruption in the RCD 

group only (n=7; F=36.16, p<0.0001).

Circadian Variation of Fasting Respiratory Quotient, Carbohydrate, and Lipid Oxidation

The mean respiratory quotient (RQ), which is the ratio between carbon dioxide production 

and oxygen consumption, reflects the amount of energy derived from carbohydrates as 

opposed to lipids, and tends to be higher in individuals who are obese or who have Type 2 

diabetes[13, 34–36] [37]. RQ is around 0.8 for a mixed diet, and typically varies between 0.7 

(100% fatty acid oxidation, LO) and 1 (100% carbohydrate oxidation, CHO), depending on 

the proportion of substrates being metabolized.

We show that, similar to REE, fasted RQ also varies by circadian phase (Figure 3, Linear 

Mixed Model: n=7, p=0.036). While mean RQ measured in the biological morning at 

baseline was 0.84 in both the RCD and control groups (Supplemental Information; Table 

S1), it varied by circadian phase, and was 2.5% lower in the biological evening compared to 

the biological morning in the RCD group (Cosinor Model: amplitude=0.012; 

acrophase=80.4°; H0: p=0.019). Fasting carbohydrate oxidation (CHO) and lipid oxidation 

(LO) also varied by circadian phase; CHO was highest during the biological morning and 

lowest during the biological evening (Cosinor Model: amplitude=0.012; acrophase=99.6°; 

H0: p=0.012), whereas LO was highest during the biological evening and lowest during the 

biological morning (Cosinor Model: amplitude=0.004; acrophase=226.2°; H0: p=0.019). 

There was also a significant effect of sex on RQ in the RCD group (n=7; F=14.31, p<0.001).

Duration of exposure to recurrent circadian disruption had no significant influence on the 

effect of circadian phase on RQ (Supplemental Information; Figure S2). This circadian 

variation in RQ and macronutrient utilization suggests that the body favors carbohydrate 

oxidation in the biological morning and lipid oxidation in the biological evening. We did not 

observe a significant difference in RQ between the first and third weeks in the RCD group 

(Supplemental Information; Figure S2) or in the control group (Supplemental Information; 

Figure S3), nor did we observe a sex difference in RQ in the control group. However, given 

that our power was limited due to small sample size, further studies will be needed to 

investigate variables that did not show significant differences. Our observations of circadian 

rhythms in fasting RQ, CHO, and LO are similar to those reported by Morris et al.[38]. 

While they did not find an overall effect of circadian phase on fasted RQ, when their 

analysis was confined to the acute effect of circadian misalignment Morris et al. observed a 

4% decrease in fasted RQ in the biological evening compared to the morning (p=0.006) and 

a 26% increase in fasted LO in the biological evening compared to the morning (p=0.006), 

both of which are consistent with our current findings.

REE had a robust circadian rhythm with little variability in the timing of the peak between 

individuals (Circular Variance=0.264), suggesting that it parallels changes in core body 

temperature[39, 40]. In contrast, the circadian pattern in RQ was less consistent, showing a 

Zitting et al. Page 4

Curr Biol. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



larger spread in the timing of the peak between individuals (Circular Variance=0.461). The 

circadian pattern of CHO was robust (Circular Variance=0.282) and tended to follow the 

pattern in RQ, whereas the pattern for LO showed larger inter-individual variability in the 

timing of peaks (Circular Variance=0.750). In summary, we found that REE varies with 

circadian phase and is highest during the biological day and lowest during the late biological 

night. This rhythm was robust; three weeks of circadian disruption had no measurable 

influence on the circadian variation of REE. Furthermore, we found that RQ, CHO, and LO 

also vary with circadian phase, with inter-individual variability in circadian patterns. These 

results may have important implications for understanding weight gain and obesity among 

night shift workers. They may also have relevance to non-shift workers; there is evidence 

that many individuals keep irregular schedules, including a large portion who have social jet 

lag. When taken together with evidence that many US adults eat throughout their entire 

wake episodes[41], the circadian variation in metabolic functions we have observed may 

impact weight gain more broadly. Future studies are required to investigate the contribution 

of circadian misalignment-induced changes in energy expenditure to weight gain and 

adverse metabolic consequences in night shift workers and in the general public.

Our observations also highlight the importance of controlling for the effect of circadian 

phase (misalignment) when carrying out recordings of energy expenditure in clinical and 

research settings. Per clinical guidelines and recommendations, REE should be measured in 

controlled conditions, including resting posture, after an 8-hour sleep, post-12-hour fast, in a 

thermo-neutral room, with dimmed lighting and quiet ambient conditions (e.g.[42–44]). 

However, those guidelines do not consider the biological time at which REE should be 

assessed. The difference of ~129 kcal/day (amplitude of the fitted curve 110 kcal/day) we 

found between the circadian peak and trough in REE is similar to or greater in magnitude to 

that caused by acute sleep deprivation [one night of sleep deprivation lowered REE by 103 

kcal/day[29], and chronic sleep restriction (five nights of 4 hours time-in-bed lowered REE 

by 31–42 kcals/day[30, 33]]. Given the magnitude of REE change due to circadian phase 

alone, it is of utmost importance for research studies using calorimetry as a key outcome to 

assess energy expenditure to control for the circadian time at which calorimetry recordings 

are made. Circadian phase timing is influenced by many factors, including recent sleep-wake 

schedule (e.g. timing and duration of sleep as well as regularity of schedule), light exposure 

history, travel across time zones, history of night work or rotating shift work, age, sex, and 

diurnal preference of the participant. At present, there are no reliable methods to 

approximate circadian phase in individuals whose schedules are irregular, and no single 

point biomarkers of circadian timing. Researchers can minimize differences in circadian 

timing by ensuring all participants are on very regular sleep-wake schedules with the same 

amount of adequate sleep each night for a week prior to assessment, and carrying out 

calorimetry relative to the individual’s habitual schedule, or to assess circadian time using 

24-hour melatonin profiles. Alternatively, researchers should consider using methods such as 

doubly labelled water, which provide an integrated measure of energy expenditure around 

the clock, rather than at one discrete phase, when phase cannot be estimated.

Limitations: In addition to the small number of participants, a potential limitation of our 

study is that the identity of the clocks driving circadian changes in energy expenditure and 
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macronutrient metabolisms is not known, although evidence suggests that they are driven by 

the hypothalamic master circadian pacemaker.[21]

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jeanne Duffy (jduffy@research.bwh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

10 participants completed the study protocol, 7 in the Recurrent Circadian Disruption (RCD) 

group and 6 in the Control group. One female participant completed the study three times 

and one male participant completed the study twice. No participant completed the study 

more than once in the same condition. Thus, we have data from 13 separate trials (mean ± 

sd, 57.6 + 7.24 years, range 38–69 yrs; 5 female, all post-menopausal). There is evidence 

that high-fat diet disrupts circadian rhythms and exacerbates the adverse effects of circadian 

disruption on metabolism [22, 45]. To study the interaction between circadian disruption and 

macronutrient composition on metabolism, we gave a subset of participants in each 

experimental condition a high-fat diet during the study (RCD group n=3, Control group 

n=2). However, there was no significant effect of diet on REE or RQ in the circadian 

disruption group or in the control group so we combined the diet groups for our analyses. 

See Supplemental Information Table S1 for details.

Ethical Approval—The Partners Health Care Institutional Review Board reviewed and 

approved this study (#2014P000243). The study conduct adhered to the ethical principles 

outlined in the Declaration of Helsinki and each participant provided written informed 

consent.

METHOD DETAILS

Recruitment and Screening—Healthy adult participants were recruited using online and 

newspaper advertisements, recruitment letters, and flyers. Participants completed a screening 

consisting of medical history evaluation, physical examination, electrocardiogram, clinical 

blood tests, and urinalysis to rule out medical disorders; an all-night at-home 

polysomnogram to rule out sleep disorders; psychological questionnaires (MMPI, Beck 

Depression Inventory) and a semi-structured clinical psychological interview to rule out 

psychological disorders. Exclusion criteria included current or chronic medical conditions, 

regular use of prescription or over-the-counter medication, BMI>32; current or past 

psychiatric or psychological disorders; smoking, excessive caffeine consumption; regular 

night shift work within the last 3 years, travel across more than one time zone within 3 

months, significant sleep complaints, and habitual sleep duration shorter than 6.5 hours or 

longer than 9 hours.

Pre-Study Conditions—Participants maintained a self-selected regular sleep-wake 

schedule with a 10-hour nighttime sleep opportunity for at least 21 days prior to the inpatient 

study to ensure they were well-rested before the study began. Compliance was verified by 
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wrist actigraphy, sleep diaries, and time-stamped voicemails at bed time and wake time. 

Participants were instructed not to use drugs (prescription, over-the-counter, recreational), 

alcohol, nicotine, or caffeine during this pre-study segment, and had a urine toxicology 

screen upon study admission to verify their compliance.

Inpatient Study Conditions—Participants were admitted to the Intensive Physiological 

Monitoring Unit of the Center for Clinical Investigation at Brigham & Women’s Hospital for 

the 37-day inpatient portion of the study, during which time they lived in an individual study 

room free of time cues. Light levels were maintained at ~90 lux during scheduled wake 

episodes and all lights were turned off throughout scheduled sleep opportunities. On three 

occasions during the study, the participant had a constant posture (CP) procedure, during 

which they were restricted to bed for the entire wake episode and the room lighting was 

maintained at a dim (~4 lux) level. To ensure all participants were well-rested before the 

intervention segment of the study began, the first three inpatient days included a 12-hour 

nighttime sleep opportunity as well as a 4-hour daytime nap opportunity (sleep extension 

segment of the study). Days five through seven (referred to as baseline) included an 8- or 10-

hour nighttime sleep opportunity (see Figure 1 for details). For participants in the Control 

group, these baseline conditions were maintained for the remainder of the study (days 8–37). 

In the RCD group, the next 21 days were under forced desynchrony (FD) conditions 

consisting of eighteen, 28-hour “days” with 16.33-hour wake episodes and 11.67-hour sleep 

opportunities, corresponding to 10 hours sleep opportunity / 24 hours. Core body 

temperature (CBT) was recorded continuously throughout the RCD segment of the study 

with a rectal thermistor (Measurement Specialties, Inc., Dayton, OH) and was used to 

estimate circadian phase.

Study Diet—Participants were provided controlled meals throughout the inpatient study 

consisting of 5860% carbohydrates, 15–17% protein, and 25–27 % fat, with 800–1000 mg 

of calcium, 100 mEq (+/− 20%) of potassium, and 150 mEq (+/− 20%) of sodium. The 24-

hour kilocalorie (kcal) target for each participant was calculated using the Mifflin-St. Joer 

equation with an activity factor 1.3, and was distributed evenly across breakfast, lunch, and 

dinner (33% ±30 kcals/meal). During the forced desynchrony segment in the RCD group, 

participants were given a snack after dinner which contained an additional 16.7% of the 24-

hour kcal target to account for the 28-hour day. Participants who received a high-fat diet 

were provided meals containing 30–40% carbohydrates, 15–20% protein, and 45–50% fat, 

with 800–1250mg of calcium, 100 mEq (+/− 30%) of potassium, and 150 mEq (+/− 30%) of 

sodium. The Mifflin-St. Joer equation with an activity factor of 1.6 was used to calculate the 

24-hour kcal target for these participants, and kcals were distributed across breakfast, lunch, 

dinner (25% +/− 5% daily target per meal) and 2 separate snacks (after lunch and after 

dinner, 12.5% +/− 5% daily kcal target per snack). If a participant’s REE measurements on 

the baseline days varied by more than 100 kcals from expected values, the kcal target per 24 

hours was adjusted to match the measured REE value (See Supplemental Table S1 for 

individuals with adjusted intervention kcal targets).

Indirect Calorimetry measurements—Fasting indirect calorimetry measurements were 

performed within ~2 hours of scheduled wake times (VMAX Encore Metabolic Cart, 
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CareFusion, CA). Baseline recordings were taken on study days 5 and 6 across all groups. 

Additional recordings were taken on most wake episodes during weeks 1 and 3 of the 

intervention phase. See Figure 1 for details. All participants were in bed and resting for at 

least 20 minutes before the start of each recording. REE was calculated on a minute-by-

minute basis in kcals/day from gas expiration. Measurements from each recording were 

averaged to estimate REE in kilocalories per day (kcals/day) and RQ (dimensionless 

number), which is the amount of expired carbon dioxide (VCO2) per the amount of oxygen 

consumed (VO2). Carbohydrate oxidation and lipid oxidation rates were calculated as grams 

per minute (g/min) according to the formulae of Frayn[46], assuming negligible protein 

oxidation. Recordings lasted between 14 and 25 minutes. The first five minutes and the last 

minute of each recording were excluded from analysis[47]. Only data points with an 

associated fraction of exhaled carbon dioxide (FECO2) between 0.6–0.9% were included in 

the analysis[48]. Weight was measured each study day except on the constant posture days 

and the most recent weight was used for each recording.

Circadian Phase—Core body temperature (CBT) data were edited to remove sensor slips 

and removals. Intrinsic circadian period of the CBT data from the FD segment of the 

protocol was estimated for each participant in the RCD group using non-orthogonal spectral 

analysis (NOSA) [49]. NOSA takes into account the 28-hour periodicity in the data resulting 

from the imposed rest-activity schedule and searches for an unknown periodicity in the 

circadian range (search period 20–30 hours). From this estimate, a circadian phase (from 0 

to 359°) was assigned to each minute of the study, with 0° corresponding to the minimum of 

the waveform fit to the entire temperature data series (endogenous circadian temperature 

nadir). For visualization purposes and to assess the effect of circadian phase on REE, RQ, 

CHO, and LO, data were averaged within each participant and across participants and 

binned into six 60-degree (~4-hour) circadian phase bins (0°, 60°, 120°, 180°, 240°, and 

300°).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out using SAS version 9.4 (SAS Institute, Cary, NC). The 

primary outcome variables REE and RQ were analyzed using Linear Mixed Models. Model 

diagnostics did not show a significant violation of the model assumptions for either outcome 

variable. Variables including age (young vs. older), gender (male vs. female), diet (regular 

diet vs. high-fat diet), weight (lbs), week (week 1 vs. week 3), baseline REE/RQ value, and 

circadian phase (RCD group only; 0°, 60°, 120°, 180°, 240°, and 300°) were treated as fixed 

effects, with a random intercept statement incorporated into the models to allow for means to 

vary between participants. We first tested each fixed effect independently and only included 

significant variables in the final multivariable model for each data set. Finally, a cosinor 

model (period of 24 h) was fitted to the REE and RQ data and to the data from the two 

secondary outcome variables CHO and LO, averaged across weeks 1 and 3, to estimate 

amplitude (one-half peak-to-trough variation) and acrophase (peak time) and to test the null 

hypothesis that the amplitude of the fitted curve is zero, i.e. no rhythm detected[50]. To 

quantify the spread in the distribution of peak values, a cosinor model was fitted to each 

individual’s data and the peak values were used to calculate circular variance [51]. Circular 

variance ranges from 0 to 1, with higher values indicating a larger spread of the data. All 

Zitting et al. Page 8

Curr Biol. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results are reported as mean ± SEM and expressed as percentage of the baseline value in the 

figures. The critical significance level was set to α=0.05 for all tests and only significant 

results are reported.

DATA AND SOFTWARE AVAILABILITY

Execution of a materials transfer agreement is required by our institution for transfer of data.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

NOSA (non-orthogonal spectral analysis) [49] N/A

Vmax Encore 29N CareFusion http://www.carefusion.com/

Other

Rectal thermistor Measurement Specialties, Inc. Dayton OH Product# 861526TP

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Resting energy expenditure varies with circadian phase in humans.

• Respiratory quotient varies with circadian phase in humans.

• Resting energy expenditure is lowest in the late biological night.

• Circadian variation in energy expenditure exceeds that caused by sleep 

deprivation.

Zitting et al. Page 13

Curr Biol. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Experimental Protocol.
Participants completed a 37-day laboratory protocol, beginning with 3 days of sleep 

extension with 16 hours/day time in bed, then a baseline segment of 3 days with 8–10 

hours/day time in bed. In the Circadian Disruption group (left panel), sleep opportunities 

(dark bars) were then spread across the circadian cycle on a 28-hour forced desynchrony 

protocol, with 11.67 hours time in bed and 16.33 hours of wake for 3 weeks. Open boxes 

indicate when RMR was measured via calorimetry. In both groups days 28–37 consisted of a 

recovery/realignment segment (not depicted). Participants in the control group (right panel) 

had identical sleep extension and baseline segments, but underwent 3 weeks of sleep/wake 

identical to the baseline schedule with 8–10 hours time in bed each day. See also Table S1.
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Figure 2. Circadian Variation of Fasting Resting Energy Expenditure.
Fasting levels of Resting Energy Expenditure (REE) are plotted with respect to the circadian 

phase at which they were recorded. Fasting REE is lowest at circadian phase 0, which 

corresponds to the endogenous core body temperature nadir (late biological night), and 

highest approximately 12 hours later at circadian phase 180 corresponding to biological 

afternoon/evening. Data are double-plotted and represented as mean ± SEM. For reference, a 

relative clock hour time scale illustrating the approximate time of day is shown across the 

upper axis, with 05:00 referenced to the endogenous circadian temperature nadir in this 

group of older individuals. See also Figure S1 and Figure S3.
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Figure 3. Circadian Variation of Fasting Respiratory Quotient, Carbohydrate, and Lipid 
Oxidation.
Top panel. Fasting Respiratory Quotient (RQ), the ratio of oxygen consumption and carbon 

dioxide production, is plotted with respect to the circadian phase at which it was measured. 

RQ is lowest at circadian phase 240° (corresponding to late biological evening) and highest 

at circadian phase 60°, which corresponds to biological morning. Changes in RQ level 

reflect macronutrient metabolism; higher RQ favors carbohydrate oxidation whereas lower 

RQ favors lipid oxidation. Middle panel. Fasting Carbohydrate oxidation (CHO) is plotted 

with respect to the circadian phase at which it was assessed. CHO is highest at circadian 
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phase 60° (corresponding to biological morning) and lowest at circadian phase 240° 

(corresponding to late biological evening. Bottom panel. Lipid Oxidation (LO) is plotted 

with respect to the circadian phase at which it was measured. LO is highest at circadian 

phase 180°, and lowest at circadian phase 60°. Data in all three panels are double-plotted 

and represented as mean ± SEM. For reference, a relative clock hour time scale illustrating 

the approximate time of day is shown on the upper axis, with 05:00 referenced to the 

endogenous circadian temperature nadir in this group of older individuals. See also Figure 

S2 and Figure S3.
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