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Abstract

To date, few optical imaging systems are available in clinical practice to perform noninvasive

measurements transcutaneously. Instead, functional imaging is performed using ionizing

radiation or intense magnetic fields in most cases. The applicability of fluorescence imaging

(e.g., for the detection of fluorescently labeled objects, such as tumors) is limited due to the

restricted tissue penetration of light and the required long exposure time. Thus, the develop-

ment of highly sensitive and easily manageable instruments is necessary to broaden the util-

ity of optical imaging. To advance these developments, an improved fluorescence imaging

system was designed in this study that operates on the principle of noncontact laser-induced

fluorescence and enables the detection of fluorescence from deeper tissue layers as well as

real-time imaging. The high performance of the developed optical laser scanner results from

the combination of specific point illumination, an intensified charge-coupled device (ICCD)

detector with a novel light trap, and a filtering strategy. The suitability of the laser scanner

was demonstrated in two representative applications and an in vivo evaluation. In addition,

a comparison with a planar imaging system was performed. The results show that the expo-

sure time with the developed laser scanner can be reduced to a few milliseconds during

measurements with a penetration depth of up to 32 mm. Due to these short exposure times,

real-time fluorescence imaging can be easily achieved. The ability to measure fluorescence

from deep tissue layers enables clinically relevant applications, such as the detection of fluo-

rescently labeled malignant tumors.
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Introduction

The International Cancer Research Agency has estimated that more than 8.2 million people

died of cancer in 2012 [1]. Cancer is therefore the second leading cause of death [2]. Bray et al.

predicted from demographic trends based on United Nations estimations that 22.2 million

new cancer cases will occur by 2030 [3]. Early detection of malignant tumors is important as it

improves the chance of recovery from the disease [4]. Tissue changes due to cancer can be

identified noninvasively by imaging techniques such as computed tomography (CT), positron

emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging. This

work focuses on optical imaging, which is important for detection of, e.g., breast cancer, mela-

noma and near-surface lesions and for optical guidance in tumor therapy. The advantage of

optical imaging is that it does not use ionizing radiation or expensive equipment and does not

entail high operating and maintenance costs, unlike CT, PET or MRI [5–7]. Optical imaging

provides a highly sensitive and cost-effective imaging technique for use with tissues and dis-

eases and is therefore worth exploring further [4,7–11]. In particular, fluorescence imaging is a

highly sensitive and functional imaging process that enables high contrast enhancement

between tumors and the surrounding healthy tissue [8–12]. The principle is based on laser-

induced fluorescence [13–16]. However, when using optical methods, the depth of light pene-

tration into the skin or tissue is limited [8,17,18]. At present, only near-surface lesions can be

detected by such methods unless they are imaged intraoperatively [19]. In fluorescence imag-

ing, a common problem is that light from the secondary light path is multiply scattered due to

the tissue properties, and therefore, the objects cannot be sharply imaged. This reduces the res-

olution of the imaging system. Detected fluorescent objects are difficult to resolve in detail.

Therefore, few applications in clinical imaging currently rely on fluorescence measurement

techniques [20–24]. Consequently, whole-body optical imaging to date is only suitable in pre-

clinical settings [25–27]. In currently available optical imaging systems, high fluorescent dye

concentrations and/or a high laser power combined with a sensitive low-noise charge-coupled

device (CCD) or complementary metal-oxide-semiconductor (CMOS) detectors are required

for the imaging of deep tissue layers [10,25,28]. However, the required high excitation intensity

can cause tissue overheating, leading to serious damage [29]. Thus, light in the infrared range

is preferable because it is less scattered and absorbed by tissue than light in the visible spec-

trum, while simultaneously providing sufficient emission signals. In particular, three areas

called optical windows, which are located in areas of 850 nm, 1300 nm and 1550 nm, provide

favorable conditions for deep penetration into tissue [1, 2]. Nevertheless, the penetration

depth of continuous-wave (CW) optical imaging systems is often less than 1.5 cm [30–34]. An

additional disadvantage of the present noncontact CW in vivo optical imaging systems is that

their low signal intensities require the use of long integration times to produce acceptable

images with sufficient signal-to-noise ratios (SNRs) [33].

Various other microscopic and macroscopic methods involve the use of time-domain tech-

niques, such as time-domain photon migration (TDPM), frequency-domain photon migration

(FDPM) or multiphoton microscopy [18,34–39,40]. The fields of application of these tech-

niques can be found, for example, in the 3D representation of tumors or the representation of

high-resolution depth-localized tissue images [41]. These techniques are based on a knowledge

of the excited electronic and vibrational states of the fluorescent molecules. In these methods,

the lasers must be pulsed at frequencies on the order of pico- or femtoseconds, and the elasti-

cally scattered light can be separated from the fluorescent emission [38,42]. Using these tech-

niques, a higher penetration depth can be achieved than that obtained using CW methods.

However, numerous pulses are required due to the necessary exposure time of approximately

5–30 s [18,37,38]. Furthermore, the camera electronic components are disturbed not only by
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thermal noise but also by readout noise because many values must be measured; this causes

additional uncertainty that impedes the acquisition of clear signals. Neither normal CCD cam-

eras nor continuous line lasers can be used in TDPM and FDPM methods [37,39]. Thus, laser

modulation techniques based on pulsed lasers and fast triggered detectors are mandatory.

However, these require substantial engineering efforts to be applicable for TDPM and FDPM

[35–39]. To date, no simple, cost-effective combination of lasers and synchronization detectors

comparable to CW systems is available on the market [7].

In contrast to TDPM and FDPM techniques, the design developed in this work does not

require the electronics needed to pulse the laser and the fast gating function of the image inten-

sifier. In addition, the electronic components necessary for the synchronization of the laser

and image intensifier in other methods are not necessary with the laser scanner used in this

system. This study presents an approach that utilizes the simplest technology in the field of

fluorescence research and investigates the combination of a noncontact CW fluorescence

imaging system with a novel optical light path structure in a detection system that significantly

increases the SNR and detection frequency. An optical structure with an optimized optical

arrangement was thus developed and evaluated.

Materials and methods

The fluorescence imaging configuration shown in Fig 1 was employed in this study. For the

fluorescence imaging system, a stabilized single-mode laser diode (RLT785-100MGS, Roithner

Laser Technik GmbH, Austria) with a CW output of 785 nm and 100 mW was chosen for

fluorescence excitation. The fiber-coupled light was collimated using a plano-convex lens

(LA1540-B, Thorlabs GmbH, Germany) and was then passed through a 785-nm laser cleaning

filter (68–947, Edmund Optics GmbH, Germany). The narrowband filter improves the emis-

sion wavelength by blocking the side-by-side emissions of the laser diode. Subsequently, a

plano-convex lens (LA1464-B, Thorlabs GmbH, Germany) was utilized to focus the excitation

laser light with a spot size of 1 mm and an optical output power of approximately 17 mW

directly onto the sample. A black charcoal-based coating was applied to the imager housing

walls to minimize stray light and to suppress direct reflections from the samples. The primary

components of the detection unit were a 12-bit CCD camera (Manta G-145, Allied Vision

Technologies GmbH, Germany) and an image intensifier with a resolution of 30 μm (BV-

1882-NZ, ProxiVision GmbH, Germany). The photocathode of the image intensifier was cou-

pled to an f/1.65, 35-mm fixed-focal-length lens (35 mm C Series, Edmund Optics GmbH,

Germany) to focus the detected images from the samples onto the photocathode. Image ampli-

fication was achieved using a microchannel plate. The images were projected onto a phosphor

screen, and the output from the screen was coupled to the CCD sensor using a fiber optical

taper (ProxiKit, ProxiVision GmbH, Germany). The image sensor of the CCD camera was

used to perform vertical and horizontal binning, thereby enabling a high SNR and improving

signal processing speed. To extract the desired weak fluorescence signals on the detection side,

a solid blocking filter stack comprising three 810 nm long-pass filters was used (F76-787, Sem-

rock Inc., USA). The arrangement of this filter combination, as illustrated in Fig 1, helped to

minimize the detection of reflections, background light and other fluorescent substances that

naturally occur in the body, such as porphyrins. An artificial iris was used to hide the surface

of the elastic remission spot of the laser on the labeled sample. For this purpose, a miniaturized

but efficient light trap was developed and integrated directly into the light path near the center

in front of the focal plane of the amplifier. This light trap prevents overexposure of the image

intensifier. For the experiments with the tumor-bearing mice, the diameter of the light trap

was about 3 mm. For the pilot measurements, a larger diameter of the light trap was chosen to
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test the functionality of the system. This is clearly shown by S3 File in the supporting material

in which the light path structure of the detection path is shown. Thereby, it was possible to

focus the excitation laser light directly on the sample, as shown in Fig 1. The light trap was con-

structed of a polymer material with a mat surface and a high absorption coefficient to avoid

light reflections.

Detection of fluorescence from deep tissue layers

Rice grains were used as tumor phantoms in experiments involving the detection of fluores-

cence originating from deep tissue layers because their autofluorescence is negligible. The

phantoms had a size of 7 × 2 mm and were stained [26] by immersion in an indocyanine green

(ICG) solution (PULSION Medical Systems SE, Germany) [absorbance: 785 nm/emission: 830

nm] with a concentration of 3.125 μg ICG/1 mL H2O for 24 h in a dark and cool environment.

Because the absorption coefficients of hemoglobin, lipids, and water are low at approximately

700–900 nm [9,43,44], this optical window is clearly advantageous for in vivo imaging [35,36].

To determine the maximum penetration depth, the phantoms were implanted into porcine

muscle at defined intervals. The corresponding reduced scattering coefficient at 785 nm was

7.92 cm-1. The reduced scattering coefficient at 500 nm was 7.18 cm-1. The reduced scattering

Fig 1. Schematic diagram of the developed fluorescence imaging system.

https://doi.org/10.1371/journal.pone.0208236.g001
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coefficients of muscle tissue published by Jacques et al. are between 9.8 cm-1 and 13.0 cm-1 at

500 nm [42, 45]. The excitation optic was focused on the surface of each sample at an angle of

35˚ relative to the detection optic, and the fluorescence was detected at a distance of 210 mm

from the sample. The exposure time was set to 100 ms, binning was set to 2 × 2 pixels, and the

gain of the CCD camera was set to zero. The CMOS camera (Orca Flash 4.0 Hamamatsu,

Japan) used for the reference measurements was set to the same parameters as those used by

the developed laser scanner.

Fast fluorescence imaging

Experiment 2.1 fundamentally investigated whether the detection system is suitable for the

detection of fluorophores in deeper tissue layers. Experiment 2.2 investigated how rapidly

fluorophores can be detected in deeper tissue layers. To investigate fast fluorescence imaging

at a frequency of 20 Hz, the fluorescence of tumor phantoms in animal tissue was measured

using a 50-ms exposure time at a penetration depth of up to 32 mm, corresponding to real-

time imaging conditions. The phantoms were prepared with ICG as described in the previous

paragraph. The mechanical properties and the phantom size were also the same as those

described in the previous penetration depth experiment. The camera settings differed only

with respect to the exposure time. The field of view was approximately 30 mm x 20 mm. For

comparison with planar imaging systems, which usually detect a large field of view, a surface

scan of an sample was performed to illustrate the benefits and scope of the design developed in

this project. Due to the short exposure times of the individual images with small image fields,

which are fused to form an overall image, it is possible to perform tissue scanning of large sam-

ples. For the experiment, as shown in Fig 1, the sample was translated with a xy-stage. The

detection system was mounted over the sample for this purpose. Homogeneous illumination

of the sample is necessary to make a quantitative statement about the presence of fluorophore

enrichments. This was studied by surveying blind tissue samples.

In vivo evaluation of the developed laser scanner and comparison with a

planar imaging system in a prostate-tumor-bearing animal model

One great advantage of the newly developed optical laser scanner is its mobility compared

with existing systems. Therefore, the developed system could be easily transported to the Bru-

ker preclinical imaging reference center site in Mannheim to compare its potential under in

vivo conditions with a preclinical fluorescence imaging system, the In-Vivo Xtreme (Bruker,

Ettlingen, Germany). In the in vivo experiments, two tumor-specific fluorescently labeled con-

trast agents bearing different tumor-targeting molecules were used. These molecules were

bombesin7-14 (BBN7-14), which binds to the gastrin-releasing peptide receptor (GRPR), and

Lys-urea-Glu (LUG), which addresses the prostate-specific membrane antigen (PSMA). The

molecules were assembled on the surface of gold nanoparticles (AuNPs) [46] together with

SIDAG dye [absorbance: 600–800 nm/emission: 750–820 nm] to visualize GRPR- and PSMA-

positive tumors. The in vivo experiments were performed using seven male SHO mice (Crl:

SHO-PrkdcscidHrhr) obtained from Charles River Laboratories (Sulzfeld, Germany) [47,48]. All

experiments were performed according to the local regulations concerning the care and use of

laboratory animals (approval number 35–9185.81/G-206/15, Regional Board Karlsruhe, Ger-

many). During the experiments, every effort was made to minimize suffering of the animals.

In a pilot study, three healthy mice were examined in both scanner systems. For tumor induc-

tion, approximately 5 × 106 cells (GRPR-positive PC3 or PSMA-positive LNCaP cells) in sterile

PBS (100 μL) were injected into the left thigh when the mice were 6–8 weeks old. Mouse health

and tumor growth were checked daily until the tumors reached a diameter of 4–5 mm (2–3
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weeks for PC3, up to 8–12 weeks for LNCaP). GRPR- or PSMA-specific AuNPs were then

injected intravenously into the tail vein, and the in vivo distribution was confirmed after 1, 3,

6, 24 and 48 h via optical imaging with both scanner systems. The in vivo detection was not

disturbed by background fluorescence. The observed tumor to muscle ratio of 2.5 : 1 was suffi-

cient to reliably differentiate the tumor from surrounding tissue [46]. All injections and mea-

surements of mice were performed under anesthesia (1.5–3% isoflurane/O2, 2–3 L/min). For

this purpose, the developed optical measurement system was equipped with an additional

anesthesia system and a warming pad for in vivo animal optical imaging.

Results

Experiments to detect fluorescence originating from deep tissue layers were performed to

determine the maximum penetration depth in tissue achievable using the developed laser scan-

ner. Fig 2 shows the fluorescence SNR as a function of the penetration depth obtained using

the previously described experimental conditions and the developed imaging setup as well as

data obtained using the CMOS camera for direct comparison of the imaging systems under

the same experimental conditions. The average SNR of the phantoms at different depths under

the surface are plotted. The SNR was calculated as the ratio of signal levelto noise level. The

detection limit is reported as a signal level that exceeds three times the standard deviation of

the noise level. The detection limit of the reference 16-bit camera system was 16 mm. Detec-

tion at a tissue depth of up to 30 mm was possible using the intensified CCD (ICCD) camera.

Fig 3 shows the results of the second experiment, in which fast fluorescence detection was

performed under real-time conditions. For these experiments, the previously described ICG-

labeled tumor phantoms were measured in animal tissue at an exposure time of 50 ms with a

penetration depth of up to 32 mm. The fluorescence excitation laser was focused on an area

adjacent to the measured tumor phantoms. Within the tissue, the excitation light exhibits a

spatial distribution due to multiple scattering effects. The scattered excitation light causes fluo-

rescence emission. The fluorescence emission of the labeled tumor phantom is shown in Fig 3.

The black area in the center of the image is created by the light trap located immediately in

front of the detector, which suppresses the detection of the focused excitation light spot on the

sample surface. However, these black spots do not affect the image quality when the sample is

scanned several times from different perspectives. Although this requires more time, the device

is still much faster than the comparison device (In-Vivo Xtreme). This is clearly demonstrated

in the following section, in which a surface scan of a tissue sample was performed. Since every

point of the sample is measured several times from different positions, sufficient image infor-

mation is available at each location. With an increase in the number of individual recordings,

the information content can be further increased.

As expected, a decrease in the detected fluorescence was observed with increasing penetra-

tion depth. Detection was possible up to a penetration depth of 32 mm. This is a significant

increase in the penetration depth compared with that achieved by noncontact real-time laser-

induced fluorescence imaging using low-power CW lasers, which only allow a penetration

depth of 5–10 mm in real-time measurements [49,50].

The following figure (Fig 4A) is a tissue scan of an area of 10 cm × 6.6 cm including four

differently sized tumor phantoms (phantom sizes: Position 1, 7 × 2 mm; Position 2, 7 × 4 mm;

Position 3, 7 × 6 mm; Position 4, 7 × 8 mm) with an exposure time of 100 ms at a depth of 22

mm. The SNRs in each area are as follows: Position 1, 82; Position 2, 100.5; Position 3. 178.2;

and Position 4, 202.2. The tissue scan comprised of a large number of individual images, each

with an area of 3 cm × 2 cm, obtained by a lateral offset of each image between the sample sur-

face and the detection area. These images have been linked to a large overlapping image area
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that can be individually customized to form a fused image. Due to the large overlap and the

resulting image information of the overlapping images, which were computed with each other,

the black spots resulting from the light trap are not visible in the image. The image stitching

and programmatic removal of the light trap spots in Fig 4A were performed with the aid of a

software plug-in based on an algorithm by Preibisch et al. [51] using ImageJ v1.51r. The false

color image (Fig 4B) illustrates the location of the detected tumor phantoms. The three-

Fig 2. Depiction of obtained signal-to-noise ratios (SNR) imaging tumor phantoms at different depths under the tissue surface.

https://doi.org/10.1371/journal.pone.0208236.g002

Fig 3. Depiction of the results obtained for ICG-labeled tumor phantoms measured in animal tissue.

https://doi.org/10.1371/journal.pone.0208236.g003
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dimensional surface plot (Fig 4C) clearly shows the expected fluorescence light emission at the

expected points in the image. The collection time was approximately 50 s. The results for the

study of the illumination homogeneity (Figs A and B in S2 File) show that homogeneous illu-

mination occurs with a standard deviation of 7.7% relative to the mean illumination average of

the sample.

For the in vivo evaluation and optical setup validation, a comparison was made with a pre-

clinical fluorescence imaging system (In-Vivo Xtreme, Bruker, Ettlingen). First, a pilot mea-

surement was performed in healthy mice using the aforementioned tumor-specific AuNP

contrast agents. Rapid renal clearance of the substances was observed, and this is shown in the

image in Fig 5A, which was obtained using the In-Vivo Xtreme system, and in Fig 5C, which

Fig 4. Results of the tissue area scan. (Fig 4A) Tissue scan of an area of 10 cm × 6.6 cm with four differently sized tumor phantoms (phantom sizes: Position 1, 7 × 2

mm; Position 2, 7 × 4 mm; Position 3, 7 × 6 mm; Position 4, 7 × 8 mm) with an exposure time of 100 ms at a depth of 22 mm. (Fig 4B) False-colored image of the

scanned tissue sample recorded using the developed laser scanner. (Fig 4C) Three-dimensional surface plot of the detected tumor phantoms.

https://doi.org/10.1371/journal.pone.0208236.g004
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was obtained with the developed optical setup. Most of the injected fluorescently labeled com-

pounds are located in the bladder (Fig 5A (left mouse)) or were previously secreted Fig 5A

(right mouse) at 1 h p.i. Fig 5B shows X-ray images of the same animals also obtained using

the In-Vivo Xtreme system. To obtain suitable images using the In-Vivo Xtreme system, an

exposure time of 60 s and 2 × 2 binning were necessary. The measurement with the developed

laser scanner (Fig 5C) shows the expected results, indicating an accumulation of the fluoro-

phores in the bladder. An exposure time of 50 ms was set without binning. During animal

scanning, the structure of the anesthetic system was adjusted. A heat pad was used to stabilize

the animals’ body temperature during the scans to ensure their welfare.

The first evaluations of fluorescent AuNPs in tumor-bearing mice indicated that an accu-

mulation of fluorescence within the tumor occurred at 3 h p.i. at the earliest. Therefore, com-

parisons of fluorescence imaging of the LNCaP-tumor-bearing mice were performed at 3 h, 6

h, 24 h and 48 h p.i. by measuring the mice first with the In-Vivo Xtreme system and subse-

quently with the developed laser scanner. The corresponding images were compared on the

basis of the signal-to-noise ratios of the fluorescence images. The signal-to-noise ratio of the

tumor after 48 h p.i. with the developed scanner was SNR = 56. In contrast, the SNRs were at a

fluorescence excitation of 750–790 at SNR = 5.8 and at an excitation of 690–759 at SNR = 9.3.

Fig 6A shows a bright-field image, Fig 6B the corresponding fluorescence image and (Fig 6C)

an overlay of the bright-field and fluorescence images of AuNP-SIDAG-LUG at the tumor site

in the newly developed laser scanner. The field of view was approximately 120 mm x 93 mm.

In image II) at 3 h p.i., most of the fluorescence is observed in the bladder. Until that time, no

accumulation is found in the tumor; the same observation is shown in Fig 7A–7F, which

depicts the corresponding images obtained using the In-Vivo Xtreme system at 750 nm to 790

nm (Fig 7A), X-ray imaging (Fig 7B), bright-field imaging (Fig 7C), fluorescence image at the

excitation wavelength of 750 nm to 790 nm from the left side of the mouse (Fig 7D), and X-ray

imaging from the left side of the mouse (Fig 7E) and bright-field image from the left side of the

mouse (Fig 7F). Fig 6 III) (6 h p.i.) and IV) (24 h p.i.) show a decrease in the fluorescence sig-

nal. At 48 h p.i., a significant accumulation of fluorescent particles can be detected at the

tumor site (Fig 6V). Fig 8 shows the corresponding images obtained using the In-Vivo Xtreme

System at 750 nm to 790 nm (Fig 8A and 8D) and 690 nm to 790 nm (Fig 8B and 8E). The cor-

responding bright-field image is shown in the right panel (Fig 8C). Fig 8F shows the fluores-

cence image overlay of AuNP-SIDAG-LUG at an excitation wavelength of 690 nm to 790 nm

Fig 5. Depiction of the results of the pilot measurements. (Fig 5A) Fluorescence and (Fig 5B) X-ray imaging at 1 h p.i. using AuNP-SIDAG-BBN in healthy mice with

the In-Vivo Xtreme system with an exposure time of 60 s. (Fig 5C) Fluorescence imaging at 1 h p.i. using AuNP-SIDAG-BBN in healthy mice with the developed setup

and an exposure time of 50 ms.

https://doi.org/10.1371/journal.pone.0208236.g005
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and an X-ray from the left side of the mouse. The newly developed laser scanner shows the

expected significant accumulation of the fluorescent agent in the tumor after 48 h p.i [46].

Discussion

We have shown the efficient and reliable localization of cyanine- and SIDAG dye- based con-

trast agents in vitro and in vivo with two imaging systems at different settings. Fig 2 shows the

detection limit for the 16-bit camera used as the reference imaging system, which was approxi-

mately 16 mm in depth in tissue. In contrast, the detection limit for our modified imaging

setup is approximately 32 mm. The developed laser scanner enables a higher SNR than the

cooled 16-bit CMOS camera. By combining the image intensifier with a 12-bit CCD camera

via a fiber optical connector, the dynamic range of the camera is increased. The image intensi-

fier acts as a preamplifier and increases the dynamics of the detection system. Therefore,

extremely weak light signals can be detected. In general, the detection properties are influenced

by many different factors. These include the exposure time and the intensity of the excitation

Fig 6. Overlay of Bright Light and Fluorescence Images at the Tumor Site in the Laser Scanner. (Fig 6A) White light, (Fig 6B) fluorescence imaging, (Fig 6C)

overlay. I) fluorescence before injection, II) 3 h p.i., III) 6 h p.i., IV) 24 h p.i. and V) 48 h p.i. Measured in the developed laser scanner.

https://doi.org/10.1371/journal.pone.0208236.g006

Fig 7. Fluorescence Imaging of AuNP-SIDAG-LUG at 3 h p.i. Using the In Vivo Xtreme System. (Fig 7A) Fluorescence image at an excitation wavelength of 750 nm

to 790 nm. (Fig 7B) X-ray imaging. (Fig 7C) Bright field imaging. (Fig 7D) Fluorescence image at an excitation wavelength of 750 nm to 790 nm from the left side of the

mouse. (Fig 7E) X-ray Imaging from the left side of the mouse. (Fig 7D) Bright field imaging from the left side of the mouse.

https://doi.org/10.1371/journal.pone.0208236.g007
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light source, which leads to an increase in the intensity of the detected fluorescence upon

increase. The concentration of the fluorescent dye, which exhibits the best emission properties

at optimum concentration, with these influences being specifically investigated (Figs A-D in

S1 File). Additional information about the system properties and the linearity of the developed

laser scanner can be found in the supporting informations. Further improvements of the men-

tioned optical design limits may be achievable. In principle, the developed laser scanner

employed in this study could be used to achieve a signal amplification of up to a factor of 1000,

depending on the applied voltage of the intensifier. Thus, space-resolved single-photon count-

ing should also be possible. The light trap was developed to achieve this amplification factor

because the amplifier should not be overexposed, as this would destroy the amplifier. There-

fore, an additional light trap on the detection site is necessary to completely suppress the detec-

tion of the excitation light. This is shown by Fig B in S3 File which displays an image with and

without a light trap. Another advantage of the light trap is the suppression of the direct reflex,

which is consequently not visible in the detection unit. Only light that has passed the tissue is

recognized. For physical reasons, reflections, background light and other optical disturbances

are amplified in addition to the signal to be detected. To prevent this, the light-disturbing

effects were minimized using a massive blocking filter stack in front of the detection system.

Unlike various other approaches on fluorescence imaging [18,34], focused excitation

Fig 8. Overlay of X-ray and Fluorescence Imaging at 48 h p.i. Using the In Vivo Xtreme System. (Fig 8A) Fluorescence image of AuNP-SIDAG-LUG obtained at an

excitation wavelength of 750 nm to 790 nm and (Fig 8B) 690 nm to 790 nm. (Fig 8C) Corresponding bright field image. (Fig 8D) Fluorescence image obtained at an

excitation wavelength of 750 nm to 790 nm from the left side of the mouse. (Fig 8E) Fluorescence image obtained at an excitation wavelength of 690 nm to 790 nm from

the left side of the mouse. (Fig 8F) Fluorescence image overlay of AuNP-SIDAG-LUG obtained at an excitation wavelength of 690 nm to 790 nm from the left side of the

mouse.

https://doi.org/10.1371/journal.pone.0208236.g008
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illumination is used for this application. Due to the focusing, a high-energy input occurs on a

small sample volume. This results from the radiant intensity, which is defined by the quotient

of the radiant power and the solid angle. The small diameter of the excitation light spot thus

allows a higher irradiance compared to larger spot diameters since the absolute input energy

of the system’s light source is concentrated on a smaller area. The dependencies of the detect-

able fluorescence intensity of the introduced radiation power of the excitation light source are

shown in the supporting information in Fig B in S2 File. In addition, the light trap should not

be too large, since with increasing size of the light trap a loss of the field of view occurs. There-

fore, a compromise was necessary between the size of the light trap respectively of the excita-

tion light spot and the field of view. To minimize the extent of the focused beam due to

structural differences in the height of the sample surface, a lens with a long focal length (1000

mm) was used for focusing. With a difference of ± 40 mm, the beam expansion is approxi-

mately 1 mm. The size of the light trap was chosen so that it can compensate for differences

of ± 50 mm. The suppression realized by the localized shuttering of this single spot solved the

problems associated with overexposure and the resulting gain limit. This enabled a higher gain

voltage to be used for the image intensifier, which consequently increased the signal amplifica-

tion and SNR. The type of excitation illumination can be influenced by the image representa-

tion, and the image information can be almost inverted in extreme cases. The contours,

structural bumps and slanted edges are dark or even lighter depending on the angle. In addi-

tion, there is an oval excitation spot magnification at a too flat angle of incidence. This in turn

affects the size of the light trap. The chosen angle of incidence of the excitation illumination is

a compromise between avoiding the direct reflection incident on the detector and the still-

existing illumination from the bright field. The illumination from the side at an angle of 35˚

causes the direct reflections hitting the detector to be reduced. However, there is still a rela-

tively vertical bright illumination of the object. Homogeneous illumination of the sample is

necessary to make quantitative statements regarding the presence of tumors. The surface scan

(Figs A and B in S2 File) and the subsequent calculation of the individual images show that the

sample illumination is homogenous, with a standard deviation of 7.7% relative to the mean

illumination of the sample. The homogeneity can be further increased by increasing the num-

ber of image recordings made during a scan. This allows a quantitative statement to be made

about the presence of tumors. In contrast to the planar imaging system used for comparison,

the developed optical setup can only map a small subject field of the image. However, this is

not a disadvantage because the laser scanner can also scan larger areas. Due to the short expo-

sure times, which are in the ms range per image, larger areas can be imaged as quickly as with

planar imaging systems, which require exposure times in the range of 60–120 s for comparable

images. The current system was designed to study smaller samples. It represents a compromise

between the size of the sample to be examined and the spatial resolution. With the aid of image

stitching, theoretically, the image area can be magnified to an infinite extent. The limitations

here are in the mechanic, time and price expenses. For the investigation of larger samples, the

field of view could be adjusted, but this would decrease the spatial resolution. The system offers

another advantage. In the In Vivo Xtreme system examination (Fig 8B), the tumor is very diffi-

cult to detect because the kidneys and liver strongly over-radiate the tumor. This is because the

conventional lighting systems are tuned to the homogeneous illumination of the largest possi-

ble object fields (19 cm x 13 cm In vivo Xtreme, Bruker). The object to be examined is excited

at once for fluorescence emission. To avoid loss of information, the exposure time is set to the

area with the highest fluorescence emission, such as liver and kidney, in Fig 8. In this case,

areas with low fluorescence emission lose much of their dynamics, which lies in the lower

third of the images, by the fluorescence influences from other areas. In contrast to the investi-

gation with the developed imaging system, the tumor can be clearly recognized by the selective
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excitation shown in Fig 6C. The excitation illumination is specifically tuned to the small sub-

ject matter field by focusing. Through to the customized spot lighting, the dynamics can be

adapted to any area of interest and cross-influences caused by fluorescence emission from

other areas are avoided. This offers the advantage that the fluorescence is excited only in the

observed image detail and does not cause overirradiation in other fluorescent image areas in

which fluorescence is enriched, such as the kidney or liver. The main advantage of the devel-

oped laser scanner is that, using the stitching algorithm, the spatial resolution can be increased

several times over that of planar imaging systems, which produce only one image. The image

detail on the sample in the individual images can be zoomed in up to the diffraction limit. The

working principle can also be adapted to other wavelength ranges. If the setup and the fluores-

cent dye are adjusted accordingly, the system could also work in other wavelength ranges

[50,51,52,53,54]. The laser scanner developed in the study presented here can, as shown, work

alone as well as in combination with existing systems, demonstrating its versatility.

Conclusions

This quantitative fluorescence measurement method, presented in combination with the light

trap and filtering strategy, is promising for use in tissue diagnostics using optical fluorescence

imaging. The characterization and quantitative analysis of fluorescently labeled tissue in the

first optical window was possible through the applied noncontact, real-time laser-induced

fluorescence imaging approach. Moreover, in contrast with other clinically established sys-

tems, such as CT or MRI, which are routinely used in tumor imaging, the developed laser scan-

ner is simple and inexpensive and can therefore find wide application in tumor diagnostics.

Nevertheless, it is not intended to replace but to supplement established imaging modalities,

e.g., using these systems for intraoperative imaging. The advantages of the developed detection

system are the high SNR and the possibility of increasing the spatial resolution. The use of a

small animal rotation system, as used in In Vivo Xtreme, would theoretically also allow the

performance of optical tomography. Furthermore, the depth inside the tissue from which the

fluorescence can be measured in a contactless manner with the use of this laser scanner should

allow preclinical in vivo studies not only in mice but also in the whole rat body using an animal

rotation system. From the technical side, a reduction of the blind spot on the detector could

occur. For this, the excitation spot size must be further reduced. By this step, the diameter of

the light trap could be further reduced. Another way to reduce the blind spot would be a multi-

ple exposure with minimal lateral offset of the optic. The light trap is always a compromise

between penetration depth and collection efficiency, because the light trap creates a distance

between excitation and detection side. As a result, only light that has penetrate the tissue is

detected. Further improvements are conceivable and possible in terms of dye optimization as

well as suppression of the scatter caused by surroundings, off-focal-plane light, and secondary

emission from the tissue. In this context, further investigations on the various tissue influences

(vessel, nerve) within the penetration route should be conducted. These tissues have different

densities and thus also influence the scattering and absorption behavior of the fluorescence

measurement [7, 8]. Two of the primary objectives during the development of the described

laser scanner were to ensure the simplicity of the technology used and its user-friendliness.

Overall, this is an easy-to-use, energy-efficient, affordable, and compact system compared to

established systems. The proposed technique enables the rapid measurement of fluorescence.

Therefore, the laser scanner could also be used to selectively investigate specifically labeled

near-surface tumors in humans in real time without causing a dose burden due to ionizing

radiation. Other possible fields of application are the detection of near-surface breast cancer,

other soft tissue carcinomas, and lymph nodes affected with metastases. Additional
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applications can be envisioned for the detection of chemical and biological processes involving

luminescent or fluorescent substances, e.g., detecting concentration profiles in liquid films or

pathogens in wounds and foods. Furthermore, the high measuring speed enables new applica-

tions of fluorescence imaging analysis due to the realization of real-time monitoring.
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(DOCX)
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