
RESEARCH ARTICLE

Predicting protein targets for drug-like

compounds using transcriptomics

Nicolas A. PabonID
1☯, Yan Xia2☯, Samuel K. Estabrooks3, Zhaofeng Ye4, Amanda

K. Herbrand5, Evelyn Süß5, Ricardo M. BiondiID
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Abstract

An expanded chemical space is essential for improved identification of small molecules for

emerging therapeutic targets. However, the identification of targets for novel compounds is

biased towards the synthesis of known scaffolds that bind familiar protein families, limiting

the exploration of chemical space. To change this paradigm, we validated a new pipeline

that identifies small molecule-protein interactions and works even for compounds lacking

similarity to known drugs. Based on differential mRNA profiles in multiple cell types exposed

to drugs and in which gene knockdowns (KD) were conducted, we showed that drugs induce

gene regulatory networks that correlate with those produced after silencing protein-coding

genes. Next, we applied supervised machine learning to exploit drug-KD signature correla-

tions and enriched our predictions using an orthogonal structure-based screen. As a proof-

of-principle for this regimen, top-10/top-100 target prediction accuracies of 26% and 41%,

respectively, were achieved on a validation of set 152 FDA-approved drugs and 3104 poten-

tial targets. We then predicted targets for 1680 compounds and validated chemical interac-

tors with four targets that have proven difficult to chemically modulate, including non-

covalent inhibitors of HRAS and KRAS. Importantly, drug-target interactions manifest as

gene expression correlations between drug treatment and both target gene KD and KD of

genes that act up- or down-stream of the target, even for relatively weak binders. These cor-

relations provide new insights on the cellular response of disrupting protein interactions and

highlight the complex genetic phenotypes of drug treatment. With further refinement, our

pipeline may accelerate the identification and development of novel chemical classes by

screening compound-target interactions.
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Author summary

Bioactive compounds often disrupt cellular gene expression in ways that are difficult to

predict. While the correlation between a cellular response after treatment with a small

molecule and the knockdown of its target protein should be simple to establish, in practice

this goal has been difficult to achieve. The main challenges are that data are noisy, drugs

are not intended to be active in all cell types, and signals from a bona fide target(s) may be

obscured by correlations with knockdowns of other proteins in the same pathway(s).

Here, we find that a random forest classification model can detect meaningful correla-

tional patterns when gene expression profiles after compound treatment and gene knock-

downs in four or more cell lines are compared. When this approach is enriched by a

structure-based screen, novel drug-target interactions can be predicted. We then validated

new ligand-protein interactions for four difficult targets. Although the initial compounds

are not especially potent in vitro, they are capable of disrupting their target pathway in the

cell to an extent that generates a significant and characteristic gene expression profile. Col-

lectively, our studies provide insight on cell-level transcriptomic responses to pharmaceu-

tical intervention and the use of these patterns for target identification. In addition, the

method provides a novel drug discovery pipeline to test chemistries without a priori

knowledge of their target(s).

Introduction

Most research programs focus on a subset of roughly 10% of human proteins, and this bias has

a profound effect on drug discovery, as exemplified by studies on protein kinases [1–3]. The

origin for this relatively limited exploration of the human interactome and the resulting lack of

novel drugs for emerging ‘genomic-era’ targets has been traced back to the availability of small

molecular weight probes for only a narrow set of familiar protein families [1]. To break this

vicious cycle, a new approach is needed that goes beyond known targets and old scaffolds and

benefits from the vast amount of information we possess on gene expression, protein interac-

tions, protein structures, and the genetic basis of disease.

The current target-centric paradigm relies on high-throughput in vitro screens of large

compound libraries against a single protein [4]. This approach has been effective for kinases,

GPCRs, and proteases, but has produced meager yields for new targets such as protein-protein

interactions, which require chemotypes absent in most compound libraries [5, 6]. Moreover,

these in vitro biochemical screens often cannot provide any context regarding drug activity in

the cell, multi-target effects, or toxicity [7, 8]. On the other hand, the goal of leveraging new

chemistries requires a compound-centric approach that would test compounds directly on

thousands of potential targets. In practice, this is undertaken in cell-based phenotypic assays,

but it is often unclear how to identify potential molecular targets in these experiments [9–11].

Understanding how cells respond when specific interactions are disrupted is not only essential

for target identification but also for developing therapies that might restore perturbed disease

networks to their native states.

Compound-centric computational approaches are now commonly applied to predict drug—

target interactions by leveraging existing data. However, many of these methods extrapolate

from known chemistry, structural homology, and/or functionally related compounds, and excel

in target prediction only when the query compound is chemically or functionally similar to

known drugs [12–17]. Other structure-based methods, such as molecular docking, can evaluate

novel chemistries but are limited by the availability of protein structures [18–20], inadequate
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scoring functions, and excessive computing times, which render structure-based methods ill-

suited for genome-wide virtual screens [21].

More recently, a new paradigm to predict molecular interactions using cellular gene expres-

sion profiles has emerged [22–24]. Previous work showed that distinct inhibitors of the same

protein target produce similar transcriptional responses [25]. Other studies predicted second-

ary pathways affected by chemical inhibitors by identifying genes that, when deleted, diminish

the transcriptomic signature of drug-treated cells [26]. When target information is lacking for

a compound, alternate approaches were needed to map drug-induced differential gene expres-

sion networks onto known protein interaction network topologies. Prioritized potential targets

could then be identified through highly perturbed subnetworks [27–29]. These studies pre-

dicted roughly 20% of known targets within the top 100 ranked genes, but did not predict or

validate any previously unknown interactions.

The NIH Library of Integrated Cellular Signatures (LINCS) project presents an opportunity

to leverage gene expression signatures from numerous cellular perturbations to predict drug-

target interaction. Specifically, the LINCS L1000 dataset contains cellular mRNA signatures

from treatments with over 20,000 small molecules and 20,000 gene over-expression (cDNA) or

knockdown (sh-RNA) experiments. Based on the hypothesis that drugs which inhibit their tar-

get(s) should yield similar network-level effects to silencing the target gene(s) (Fig 1a), we cal-

culated correlations between the expression signatures of thousands of small molecule

treatments and gene knockdowns (KDs) in the same cells. We next used the strength of these

correlations to rank potential targets for a validation set of 29 FDA-approved drugs tested in

the seven most abundant LINCS cell lines. We then evaluated both direct signature correla-

tions between drug treatments and KDs of their potential targets, as well as indirect signature

correlations with KDs of proteins up- or down-stream of potential targets. We subsequently

combined these correlation features with additional gene annotation, protein interaction and

cell-specific features in a supervised learning framework and use Random Forest (RF) [30, 31]

to predict each drug’s target. Ultimately, we achieved a top 100 target prediction accuracy of

55%, which we show is due primarily to our novel correlation features. Finally, to filter out

false positives and further enrich our predictions, molecular docking evaluated the structural

compatibility of the RF-predicted compound—target pairs. This orthogonal analysis signifi-

cantly improved prediction accuracy on an expanded validation set of 152 FDA-approved

drugs, obtaining top-10 and top-100 accuracies of 26% and 41%, respectively, more than dou-

ble that of aforementioned methods. A receiving operating characteristic (ROC) analysis

yielded an area under the curve (AUC) for top ranked targets of the RF and structural re-

ranked predictions of 0.77 and 0.9, respectively. We then applied our pipeline to 1680 small

molecules profiled in LINCS and experimentally validated seven potential first-in-class inhibi-

tors for disease-relevant targets, namely HRAS, KRAS, CHIP, and PDK1.

Results

Preliminary prediction of drug targets using expression profile correlation

features

We constructed a validation set of 29 FDA-approved drugs tested in at least seven LINCS cells

lines and whose known targets were among 2634 KD genes in the same cell lines. For these

drugs, we ranked potential targets using the direct correlation between the drug-induced

mRNA expression signature and the KD-induced signatures of potential targets (Fig 1b and

1c). For each cell line, the 2634 KD signatures were sorted by their Pearson correlation with

the expression signature of the drug in that cell line. We used each gene’s lowest rank across all

cell lines to produce a final ranking of potential targets for the given drug. Using this approach,
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we predicted known targets in the top 100 potential targets for 8/29 validated compounds

(Table 1). Indirect correlations were evaluated by the fraction of a potential target’s known

interaction partners (cf. BioGrid [32]) whose KD signatures correlated strongly with the drug-

induced signature. Ranking by indirect correlations predicted the known target in the top 100

for 10 of our 29 validation compounds (Table 1). Interestingly, several of these compounds

showed little correlation with the KD of their targets (Fig 1d and 1e), with only 3/10 targets

correctly predicted using the direct correlation feature alone.

Fig 1. Drug and gene knockdown induced mRNA expression profile correlations reveal drug-target interactions.

(a) Illustration of our main hypothesis: we expect a drug-induced mRNA signature to correlate with the knockdown

(KD) signature of the drug’s target gene and/or genes on the same pathway(s). (b,c) mRNA signature from KD of

proteasome gene PSMA1 does not significantly correlate with signature induced by tubulin-binding drug

mebendazole, but shows strong correlation with signature from proteasome inhibitor bortezomib. Data points

represent differential expression levels (Z-scores) for the 978 landmark genes measured in the LINCS L1000

experiments. (d,e) Signature from tubulin-binding drug vinblastine shows little signature correlation with KD of its

target TUBA1A, but instead correlates with the KD of functionally related genes, such as RUVBL1.

https://doi.org/10.1371/journal.pcbi.1006651.g001
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It is well known that expression profiles vary between cell types [33]. Thus, we constructed

a cell selection feature to determine the most “active” cell line, defined as the cell line produc-

ing the lowest correlation between the drug-induced signature and the control signature.

Ranking by direct correlations within the most active cell line for each drug predicted six

known targets in the top 100 (Table 1). However, all six of these targets were already predicted

by either direct or indirect correlations, strongly suggesting that scanning for the optimal cor-

relation across all cell lines is a better strategy than trying to identify the most relevant cell type

by apparent activity.

Next, to incorporate findings of previous studies that suggest that drug treatments often up/

down regulate the expression of their target’s interaction partners [27–29], we constructed two

Table 1. Performance of target prediction using different features and methods on the 29 FDA-approved drugs tested in 7 cell lines.

Drug LINCS ID

(BRD-)

Target(s) Random DIR IND CS MAX MEAN LR RF

vinorelbine K10916986 TUBB6, TUBA1A, TUBB2A, TUBB2C 310 126 128 1318 1690 425 28 88

dexamethasone A69951442 NR3C1 1498 1891 284 943 315 1143 757 157

dasatinib K49328571 LCK, YES1 2325 1009 94 222 290 2621 182 532

vincristine A76528577 TUBB6, TUBA1A, TUBB2A, TUBB2C 1979 473 439 386 2231 2196 456 37

mycophenolate-

mofetil

K92428153 IMPDH2 564 1100 1263 2986 100 301 3064 3086

amlodipine A22032524 CACNA1D 995 1338 2439 1801 1875 974 3037 650

lovastatin A70155556 HMGCR 1712 72 811 2078 1124 1068 1334 55

clobetasol A26095496 NR3C1 2194 820 21 157 74 15 38 65

calcitriol K27316855 VDR 2514 1059 2938 221 125 1814 1299 252

flutamide K28307902 AR 919 2604 69 2806 463 298 702 647

prednisolone A27887842 NR3C1 2382 1439 206 787 402 1068 257 23

nifedipine K96354014 CACNA1D 940 1225 1465 1285 88 322 3037 2249

vemurafenib K56343971 BRAF 1042 1 82 1 1149 1403 22 2

glibenclamide K36927236 KCNJ11 29 1415 2028 409 1059 740 1300 366

digoxin A94756469 ATP1A3, FXYD2, ATP1B1 2376 73 1470 118 828 567 732 44

bortezomib K88510285 PSMB10, PSMA3, PSMA1, PSMA5, PSMB7, PSMB5, PSMA8,

PSMB1

1882 1 1 2 2546 2513 24 5

vinblastine A22783572 TUBB6, TUBA1A, TUBB2A, TUBB2C 1612 515 56 100 224 377 38 2

digitoxin A93236127 ATP1A3, FXYD2, ATP1B1 573 89 430 216 521 653 79 50

losartan K76205745 AGTR1 645 489 988 770 636 31 735 1931

pitavastatin K30097969 HMGCR 1855 1976 1036 1117 90 527 1632 373

digoxin A75144621 ATP1A3, FXYD2, ATP1B1 69 521 776 194 127 559 208 64

hydrocortisone A65767837 NR3C1 303 312 72 58 93 122 29 17

paclitaxel A28746609 TUBB6, TUBA1A, TUBB2A, TUBB2C 2299 74 121 47 371 1862 79 19

lovastatin K09416995 HMGCR 988 1 735 1587 1698 1484 128 100

irinotecan K08547377 TOP1 1742 1023 20 236 128 1886 46 160

vincristine A60414806 TUBB6, TUBA1A, TUBB2A, TUBB2C 1394 96 74 17 1272 69 28 9

vinblastine A55594068 TUBB6, TUBA1A, TUBB2A, TUBB2C 1359 490 75 1383 373 1735 35 2

raloxifene K63828191 ESR2 2080 2883 1818 1172 1064 479 1114 2520

digoxin K23478508 ATP1A3, FXYD2, ATP1B1 1005 102 1066 112 2096 2027 252 167

Mean Ranking 1365 800.6 724.3 776.9 794.9 1009.6 712.8 471.4

Top 100 2 8 10 6 5 3 11 16

DIR: direct correlation feature; IND: indirect correlation feature; CS: cell selection feature; MAX: maximum differential expression feature; MEAN: mean differential

expression feature; LR: logistic regression; RF: random forest. Values are for the ranking of the top known target for each drug.

https://doi.org/10.1371/journal.pcbi.1006651.t001
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features to report directly on the drug-induced differential expression of potential target inter-

action partners. These features compute the maximum and the mean differential expression

levels of potential interaction partners in the drug-induced expression profile. The lowest rank

of each potential target across all cell lines is used in a final ranking. Though neither expression

feature produces top 100 accuracies better than those of our correlation features, maximum

differential expression identifies three new targets that were not identified using any of the pre-

vious features (Table 1).

Combining individual features using random forest

While each of the features in Table 1 performed better than random, combining them further

improved results. Using Leave-One-Out Cross Validation (LOOCV) for each drug, logistic

regression [31] correctly identified known targets in the top 100 predictions for 11 out of 29

drugs and improved the average known target ranking of all drugs (Table 1). However, logistic

regression assumes that features are independent, which is not the case for our dataset given

the complexity and density of cellular protein interaction networks. Hence, we used RF, which

is able to learn more sophisticated decision boundaries [34]. Following the same LOOCV pro-

cedure, the RF classifier led to much better results than the baseline logistic regression, cor-

rectly finding the target in the top 100 for 16 out of 29 drugs (55%) (Table 1). Without further

training, we tested the RF approach on the remaining 123 FDA-approved drugs that had been

profiled in 4, 5, and 6 different LINCS cell lines, and whose known targets were among 3104

genes knocked down in the same cells. We predicted known targets for 32 drugs (26%) in the

top 100 (S2 Text), an encouraging result given the relatively small size of the training set and

the expected decline in accuracy as the number of cell lines decreases (Table 2).

Re-training on the full set of 152 drugs and validating with LOOCV allowed us to test two

alternative RF models: “on-the-fly”, which learns drug-specific classifiers trained on the set of

drugs profiled in the same cell types, and “two-level”, which learns a single classifier trained on

experiments from all training drugs (see Methods). The performances of both methods as a

function of the number of cell lines profiled are summarized in Table 2. On-the-fly RF cor-

rectly ranked the targets of 8 out of 152 drugs in the top 100 (38%), with 42 of them in top 50

Table 2. Performance of two random forest models on validation set of 152 FDA-approved drugs as a function of

cells tested.

# of Cells All 7 6 5 4

# of Drugs 152 29 30 42 51

On-the-fly

Top 100 58 13 15 16 14

Top 50 42 10 10 12 10

Top 100% 38% 45% 50% 38% 27%

Top 50% 28% 34% 33% 29% 20%

Two-level

Top 100 63 14 15 22 13

Top 50 54 12 14 20 8

Top 100% 41% 48% 50% 52% 25%

Top 50% 36% 41% 47% 48% 16%

Top 50%/100% - percent of drugs with targets correctly predicted as top 50/100. The number of drugs with targets

ranked in top 100/50 are shown for the “on-the-fly” and “two-level” RF classification models. Results of the models are

shown for “All” drugs tested in four or more cell lines, as well as for the subsets of drugs profiled in different numbers

of cell lines. Note that the success rate for RF is significant with p < 10−6 based on randomization tests (S1 Fig).

https://doi.org/10.1371/journal.pcbi.1006651.t002
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(28%). Two-level RF produced better enrichment, correctly predicting targets for 63 drugs in

the top 100 (41%), and for 54 drugs in the top 50 (36%).

To further evaluate model performance, we generated a receiver operating characteristic

(ROC) curve from the LOOCV predictions of our two-level RF (S2 Fig). In this analysis, the

False Positive Rate (x axis) is the normalized rank threshold we use to define potential targets

from non-targets (e.g., top-10, top-100). The True Positive Rate (y axis) is the fraction of com-

pounds for which the known target ranks above the given threshold. Prediction power is mea-

sured as the area under the ROC curve (AUC), with AUC = 1 indicating perfect prediction

and AUC = 0.5 indicating random prediction. Our RF produced an AUC of 0.77 while, in

sharp contrast, random rankings (based on 20000 permutations) leads to only 7% of drugs

with targets in the 100, indicating that both our training/testing and LOOCV results are

extremely significant (S1 Fig). It is also noteworthy that the top-100 accuracy of the two-level

RF analysis increases to 50% if we only consider drugs treated in 5 or more cell lines.

We note that 20%, or 33, out of the 152 FDA approved training drugs have multiple known

targets with KD signatures in the LINCS library (S1 Table). However, only 16 of those had more

than one target among the KDs in four or more cell lines. Thus, only a small portion (10%) of

the analyzed compounds had multiple known targets that we could potentially predict (see S2

Table), making the analysis of polypharmacological effects difficult. However, for 4 (out of 16)

multi-target compounds, our RF model was able to identify more than one target. It is thus pos-

sible that drugs in the training set might bind to other targets that could be in our top 100 list.

Gene ontology analysis of protein targets

Next, we analyzed in what context our RF analysis was most successful. To this end, we divided

the 152 drugs in our training data into “successful” predictions (the 63 drugs for which the cor-

rect target was ranked in the top 100), and “unsuccessful” predictions. We also divided the

known targets into those that were correctly predicted and those that were not. We considered

several different ways to characterize small molecules including molecular weight, solubility,

and hydrophobicity, but none of these seemed to significantly correlate with our “successful”

and “unsuccessful” classifications. Next, we used gene ontology to test for enrichment of “suc-

cessful” and “unsuccessful” targets. Interestingly, we found that “successful” targets were sig-

nificantly associated with intracellular categories, while the “unsuccessful” targets were mostly

associated with transmembrane and extracellular categories (S3 Table). Based on this result we

further incorporated this cellular component as a feature in our two-level RF. We encode this

feature by assigning 1 to the intracellular genes and -1 to the transmembrane and extracellular

ones. We ran the two-level RF with this additional feature included and demonstrated that the

cellular component increases the number of top 100 genes to 66 and top 50 genes to 55. These

results demonstrate the possibility of further improving our predictions by incorporating rele-

vant properties of compounds or targets.

Structural enrichment of genomic predictions

Fig 1d and 1e show that the gene regulatory effects of TUBA1A inhibition by the drug vinblas-

tine manifest primarily as indirect correlations with KDs of the target’s interaction partners,

such as RUVBL1, rather than via direct correlation with KD of the target. Such cases reflect the

intrinsic connectivity of cellular signaling networks, which sometimes produce gene expres-

sion correlations that are ambiguous with respect to which of the interacting proteins in the

affected pathway is the drug’s actual target. Our pipeline eliminates some of these false posi-

tives using an orthogonal structure-based docking scheme that—although limited to targets

with known structure—allows us to significantly improve our prediction accuracy. After
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performing RF classification on the validation set, we mined the Protein Data Bank (PDB)

[35] to generated structural models of the potential targets for our 63 “hits”. This set represents

drugs for which we correctly identified the known target in the top 100. We selected one or

more representative crystal structures for each potential target gene, optimizing for sequence

coverage and structural resolution (see S1 Text). We then docked hits to their top 100 potential

targets and ranked them using a prospectively validated pipeline [36–39].

On average, crystal structures were available for 69 out of the top 100 potential targets for

each compound, and structures of known targets were available for 53 of the 63 hits. In order

to avoid redocking into cocrystals, we excluded all crystal structures containing these 53

ligands from our analysis, ensuring that our results would not depend on prior knowledge of

interaction partners or binding modes. As shown in Fig 2, molecular docking scores improved

re-ranking of the known target for 40 of the 53 drugs, with a mean and median improvement

of 13 and 9, respectively. Based on genomic data alone, the known target was ranked in the top

10 for 40% of the 63 hits. After structural re-ranking, 65% had their known targets in the top

10 candidates, and this value improved to 75% in the subset of 53 drugs with known target

structures. ROC analysis of structurally-refined predictions yielded an AUC of 0.90 (S3 Fig).

These results demonstrate the power of orthogonal genomic and structural screens and estab-

lish that molecular docking can efficiently eliminate false positives in our gene expression-

based predictions.

Fig 2. Structural enrichment of genomic target predictions. Predicted ranking (lower is better) of the highest-ranking known target for the

53 hits in our validation set with known target structures. Percentile rankings are shown following RF analysis (blue) and following structural

re-ranking (orange). We note that docking and scoring macrocycles or covalent inhibitors is particularly challenging. Furthermore, scoring

functions are destined to predict false positives, yet within the limited and orthogonal set of drug targets predicted by the genomic screening

the scoring function used in our pipeline [36] shows significant enrichment.

https://doi.org/10.1371/journal.pcbi.1006651.g002
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Identifying new interactions in the LINCS dataset

After validating our approach on known drug targets, we applied our pipeline to a test set of

1680 small molecules and 3333 gene KDs and predicted several novel interactions. The experi-

mental testing set was chosen based solely on the predicted correlations of the RF model and

availability of the assays. We applied our pipeline (Fig 3) in both compound-centric (target

prediction) and target-centric (virtual screening) contexts, in each case producing a final,

enriched subset of roughly 10 predictions (either compounds or targets) that we tested experi-

mentally. In compound-centric analyses, we performed molecular docking on the available

structures of the input compound’s top-100 RF-predicted targets. In target-centric analyses,

we ran the RF on our full test set, identified compounds for which the input protein is ranked

in the top 100 potential targets, and then docked these candidates into the target. In both appli-

cations, we analyzed the final docking score distributions and applied a 50% cutoff threshold

to identify highly enriched compound/target hits. Structural analysis further facilitated visual

Fig 3. Workflow of combined genomic (green) and structural (blue) pipeline for drug-target interaction

prediction. Approximate numbers of proteins/compounds in each phase are indicated on the left.

https://doi.org/10.1371/journal.pcbi.1006651.g003
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validation of the docking models of predicted hits, thereby minimizing false positives. Because

of limitations in available assays for subsequent tests, we analyzed our experimental results

within a target-centric approach. According to our validation results, we would expect one hit

in about 5 to 6 compounds on targets where crystal structures are available. As outlined below,

we chose four targets for this analysis, and it is vital to note that the compounds have not been

optimized but represent “crude” hits obtained from the pipeline. Needless to say, significantly

improved results could be obtained with chemical optimization, but our efforts simply repre-

sent a facile way to isolate these initial hits.

Target-centric prediction of novel RAS inhibitors

Our first application consisted in identifying novel binders of the high-impact and historically

“undruggable” RAS-family of oncoproteins. HRAS and KRAS are among the most frequently

mutated genes in human cancers [40, 41]. However, despite the extensive structural data avail-

able and tremendous efforts to target them with small-molecule therapeutics, as of yet no

RAS-targeting drug candidates have shown success in clinical trials [42–44].

Among the 1680 compounds in our test set, 84 and 156 were predicted (within the top-100)

to target KRAS and HRAS, respectively. These compounds produced mRNA perturbation sig-

natures that correlated strongly with KDs of KRAS (Fig 4a), and HRAS (Fig 4b). Of note, dif-

ferential expression of genes functionally related to K/HRAS, i.e. FGFR4, FGFR2, FRS1,

inform on novel regulatory phenotypes responding to both compound inhibition and gene

knock out. We docked predicted compounds to our representative structures of KRAS (PDB

Fig 4. HRAS/KRAS inhibitors predicted based on direct correlations and docked poses show direct binding in SPR assays. Differential gene expression profiles of

(a) Phloretin and (b) RS-39604 cell treatments and KRAS and HRAS KD experiments, respectively. Several functionally related genes listed in BioGrid [32] are

indicated to demonstrate the relevance of these profiles as suggestive of direct drug-target interactions. Models of (c) phloretin and (d) RS-39604 bound to an allosteric

site on the KRAS and HRAS catalytic domains, respectively. (e) SPR titration response curves for (e) phloretin and (f) RS-39604 binding to KRAS and HRAS,

respectively, compared to DCAI positive control.

https://doi.org/10.1371/journal.pcbi.1006651.g004
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ID: 4DSO [42]) and HRAS (PDB ID: 4G0N [45]) (Fig 4c and 4d). RF ranking and docking

score distributions were compared to select compounds from our enriched datasets that were

both commercially available and moderately priced. Docking models of promising candidates

were also examined visually to reject models with unmatched hydrogen bonds [46] and select

those that showed suitable mechanisms of action (see, e.g., Fig 4c and 4d). We purchased six

potential HRAS inhibitors and five potential KRAS inhibitors for experimental validation (S4

Table).

We sent our compounds to the RAS Biochemistry and Biophysics Group at Leidos Biomed-

ical Research for validation. Their SPR assay measured direct binding of predicted inhibitors

to AviTagged HRAS and KRAS. Initial 100 μM screens showed binding response for com-

pounds RS-3906 against HRAS and phloretin against KRAS, and subsequent titrations con-

firmed binding at μM concentrations (Fig 4e and 4f), comparable to the DCAI positive control

[42].

Target-centric prediction of novel CHIP inhibitors

Next, we targeted STUB1, also known as CHIP (the carboxy-terminus of Hsc70 interacting

protein), an E3 ubiquitin ligase that manages the turnover of over 60 cellular substrates [47].

To our knowledge, inhibitors of this ligase—even of low affinity/potency—have not been iden-

tified. CHIP interacts with the Hsp70 and Hsp90 molecular chaperones via its TPR motif,

which recruits protein substrates and catalyzes their ubiquitination. Thus, treatment with

small molecules that inhibit CHIP may prove valuable for pathologies where substrates are

prematurely destroyed by the ubiquitin-proteasome system [48].

The screening of the 1680 LINCS small molecules profiled in at least four cell lines pre-

dicted 104 compounds with CHIP among the top 100 targets. We docked these molecules to

our representative structure of the TPR domain of CHIP (PDB ID: 2C2L [49]), for which we

had an available fluorescence polarization (FP) assay. The RF ranking and docking score dis-

tributions were compared to select compounds highly enriched in one or both scoring met-

rics. We next visually examined the docking models of top ranking/scoring hits to select

those that show suitable mechanisms of action, and purchased six compounds for testing

(S5 Table). In parallel, we performed a pharmacophore-based virtual screen of the ZINC

database [50] using the ZincPharmer [39] server, followed by the same structural optimiza-

tion [36–39] performed on the LINCS compounds. We purchased seven of the resulting

ZINC compounds for parallel testing (none of the selected compounds were in the LINCS

library).

Our FP assay measured competition with a natural peptide substrate for the CHIP TPR

domain. We found that four (out of six) of our LINCS compounds reliably reduced substrate

binding (Fig 5a and 5b), while three (out of seven) ZINC compounds did so to a modest degree

(S4 Fig). The two strongest binders were LINCS compounds 2.1 and 2.2. To test if these

compounds would inhibit CHIP activity, we utilized a cell-free ubiquitination assay in which

purified CHIP polyubiquitinates an Hsc70-derived substrate protein in an ATP dependent

manner (S5a Fig). This functional assay verified that 2.1 and 2.2 prevented substrate ubiquiti-

nation and CHIP autoubiquitination (Fig 5c and 5d, S5b and S5c Fig), while ZINC compounds

did not (S5d Fig). Compounds 2.1 and 2.2 also prevented ubiquitination of an alternate sub-

strate that was tested subsequently (S6 Fig). Importantly, the predicted binding modes of these

two compounds did not match the pharmacophore model of the TPR-HSP90 interaction [49],

which was used to screen the ZINC database (S7 Fig). The latter emphasizes the power of our

approach to identify novel compounds and mechanisms of action to targets without known

inhibitors.
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Contrary to the RAS compounds that were identified based on direct correlations between

compound treatments and RAS KDs (Fig 4a and 4b), CHIP hits show almost no direct correla-

tion (ρ2.1 = 0.15, ρ2.2 = 0.02), but were predicted based on indirect correlations with CHIP

interaction partners. This may explain their relatively low potency. Fig 6 shows the correlating

differential gene expression profiles for compound 2.1 and KDs of the CHIP interaction part-

ners UbcH5 and HSP90, which, along with CHIP, were also predicted as potential targets by

the RF classifier. However, structural screening ruled out these two partners as potential tar-

gets because of a lack of favorable binding modes.

Compound-centric prediction of a novel target for the drug Wortmannin

We next demonstrated a compound-centric application of our pipeline by analyzing Wort-

mannin, a selective PI3K covalent inhibitor and commonly used cell biological tool. DrugBank

[51] lists four known human targets of Wortmannin: PIK3CG, PLK1, PIK3R1, and PIK3CA.

Of the 100 targets predicted for Wortmannin, the PDB contained structures for 75, which we

used to re-rank these potential targets. Only one known kinase target of Wortmannin,

PIK3CA, was detected, and ranked 5th. The human kinase PDPK1 (PDK1) ranked 2nd in our

pipeline. Although PDK1 is a downstream signaling partner of the PI3Ks [52], there is no

prior evidence of a direct Wortmannin-PDK1 interaction in the literature. Nevertheless, both

the strong direct correlation of wortmannin with the PDK1 KD (Fig 7a), and the native-like

binding mode predicted by our pipeline (Fig 7b) suggested a possible interaction.

We experimentally tested this interaction using an alphascreen PDK1 interaction-displace-

ment assay. Since we predicted that Wortmannin binds to the PH domain of PDK1 (Fig 7b),

we measured the effect of increasing Wortmannin concentrations on the interaction of PDK1

Fig 5. Predicted inhibitors show direct binding to and functional inhibition of CHIP. (a,b) Predicted CHIP

inhibitors disrupt binding to chaperone peptide by fluorescence polarization. High ranked (a) and low ranked (b)

compounds were tested for the ability to compete with a known TPR ligand (5-FAM-GSGPTIEEVD, 0.1 μM) for

binding to CHIP (0.5 μM). Results are the average and standard error of the mean of two experiments each performed

in triplicate. (c,d) CHIP inhibitors prevent ubiquitination by CHIP in vitro. (c) Quantification of substrate

ubiquitination by CHIP from Anti-GST western blot experiments with tested compounds at 500 μM, blotted as in S5a

Fig and normalized to DMSO treated control (2.1, 2.2: N = 4; all other compounds: N = 2). (d) Quantification of total

ubiquitination by CHIP from Anti-GST western blot experiments with tested compounds at 500 μM, blotted as in S5b

Fig and normalized to ubiquitination by a DMSO treated control (all compounds: N = 2).

https://doi.org/10.1371/journal.pcbi.1006651.g005

In silico identification of drug-protein partners

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006651 December 7, 2018 12 / 24

https://doi.org/10.1371/journal.pcbi.1006651.g005
https://doi.org/10.1371/journal.pcbi.1006651


with the second messenger PIP3. We found that Wortmannin specifically increased

PDK1-PIP3 interaction, relative to control (Fig 7c). Given that PIP3-mediated recruitment of

PDK1 to the membrane is thought to play an important regulatory role in the activity of the

enzyme [55, 56], a disruptive increase in PDK1-PIP3 interaction following treatment with

Wortmannin supports our prediction.

Comparison to existing target prediction methods

For completeness, we compared results for our 63 hits from the validation set to those pro-

duced by available structure and ligand-based methods. HTDocking (HTD) [57] is a struc-

ture-based target prediction method that docks and scores the input compound against a

manually curated set of 607 human protein structures. For comparison, in our analysis we

were able to extract high-quality domain structures for 1245 (40%) of the 3104 potential gene

targets. PharmMapper (PHM) [58] is a ligand-based approach that screens the input com-

pound against pharmacophore models generated from publicly available bound drug-target

cocrystal structures of 459 human proteins, and then ranks potential targets by the degree to

which the input compound matches the binding mode of the cocrystalized ligands. The scope

of HTD is limited by the availability of the target structure, while PHM is limited by chemical

and structural similarity of active ligands.

HTD and PHM rankings for known targets are shown in Table 3, and complete results are

shown in S3 Text. Our combined genomics-structure method outperforms the structure-

based HTD server (average ranking of the known target is 13 for our method vs. 50 for the

HTD server). This observation suggests that limiting the structural screening to our genomic

hits allowed us to predict targets with higher accuracy than docking alone. Results when using

the PHM server are on average similar to ours. However, PHM relies on the availability of

Fig 6. mRNA expression signature of CHIP inhibitor 2.1 correlates with knockdown of CHIP interacting partners. The figure illustrates the correlation between

the mRNA expression profile signatures produced by treating cells with 2.1 and by knocking down CHIP interaction partners UbcH5 and HSP90. These three

perturbations have similar network effects (left), as illustrated by their resulting differential expression signatures (right). For clarity, expression signatures show only

the subset of LINCS landmark genes that are functionally related to CHIP according to BioGRID [32].

https://doi.org/10.1371/journal.pcbi.1006651.g006
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Fig 7. Wortmannin promotes PDK1 –PIP3 binding in vitro. (a) Wortmannin treatment and PDK1 KD experiments

produce directly correlating differential gene expression profiles. Several functionally related genes listed in BioGrid

[32] are indicated to demonstrate the relevance of these profiles as suggestive of direct drug-target interactions. (b)

Model of wortmannin bound to the PH domain of PDK1, compared to known ligand 4PT (PDB ID: 1W1G [53]). (c)

Alphascreen PDK1-PIP3 interaction-displacement assay results for increasing concentrations of wortmannin. Error

bars represent the standard error of the mean from two parallel runs. (d) Effect of wortmannin on the in-vitro

phosphorylation of the substrate T308tide [54] by the isolated catalytic domain of PDK1. The two lines are from two

replicates of the activity assay, with error bars representing the standard error of the mean from two parallel runs for

each replicate.

https://doi.org/10.1371/journal.pcbi.1006651.g007

Table 3. Comparison of our pipeline to existing drug-target prediction methods.

Structures available Genomic Rank Structural Re-rank HTD PHM

All hits (n = 63) 69 22 24 56 23

Hits w/ known target structures (n = 53) 71 23 13 50 12

New predictions (n = 7) 73 28 31 n/a n/a

The average ranking of the highest ranked known target is listed for all 63 validation ‘hits’, for the subset of 53 validation hits with known target structures, and for our

seven predicted interactions. ‘Structures available’ indicates the average number of top-100 potential targets with available crystal structures for the compound set.

Rankings are compared between the initial random-forest genomic ranking, the structural re-ranking of the top 100 RF predicted targets, the HTDocking server (HTD),

and the PharmMapper server (PHM).

https://doi.org/10.1371/journal.pcbi.1006651.t003
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ligand-bound crystal structures, which in practice makes this class of methods more suitable

for drug repurposing than assessing new chemistries or targets.

Finally, we emphasize that alternative approaches failed to predict compound interactions

with HRAS, KRAS, and CHIP that were verified—albeit with low potency—in our assays.

However, a Wortmannin-PDK1 interaction was predicted at the catalytic site by HTD, ranked

540th, and by PHM, ranked 56th. Although we cannot rule out a possible kinase domain inter-

action, a catalytic activity assay showed that Wortmannin had no measureable effect on the in

vitro phosphorylation of the substrate T308tide [54] by the isolated catalytic domain of PDK1

(Fig 7d). Overall, the novel drug-protein interaction pipeline outlined in this study can now be

significantly improved—with ever-expanding genomic and proteomic databases—to continue

to identify new probe compounds for specific protein targets. Even without further optimiza-

tion, some of these probes can be used to test new hypotheses, as described above. Through

medicinal chemistry, other probes can be in turn be optimized to provide more potent effects

in cell and in vitro-based systems.

Discussion

Delineating the role of small molecules in perturbing cellular interaction networks in normal

and disease states is an important step towards identifying new therapeutic targets and

chemistries for drug development. To advance toward this goal, we developed a novel target

prediction method based on the hypothesis that drugs that inhibit a given protein should

have similar network-level effects to silencing the inhibited gene and/or its up- or down-

stream partners. Using gene expression profiles from KD and drug treatment experiments

in multiple cell types from the LINCS L1000 dataset, we developed several correlation-based

features and combined them in a RF model to predict drug-target interactions. Notably, the

identified candidates validated our hypothesis that drug treatments and target KDs cause

similar disruptions of cellular protein networks. More interestingly—and consistent with

our hypothesis—we discovered that these correlations occur for KDs of the drug’s actual

protein target(s) and/or for genes up- or down-stream of the target(s). We refer to the latter

as “indirect correlations”. Several aspects of our approach represent a significant step for-

ward from previous work exploring only expression correlations as a means to predict

molecular interactions [59, 60]. In our case, there are no assumptions about the small mole-

cule or its likely protein target/pathway, and our evaluation of both direct and indirect cor-

relations allow us to screen compounds on a much larger scale and with higher accuracy

than previously reported. Furthermore, to our knowledge, this is the first time that pathway

connectivity is explicitly considered by indirect correlational effects between drugs and KDs

of target interaction partners. Importantly, we have also open-sourced our predictions and

methods, providing enriched sets of what will undoubtedly lead to active compounds for

hundreds of human targets. In more general terms, our approach presents a new avenue for

identifying suitable targets for novel chemistries, accelerating the discovery of chemical

probes and potentially new drugs.

On a validation set of 152 FDA-approved drugs, we achieve top-100 target prediction accu-

racy more than double that of previous approaches that use differential expression alone [28,

29]. Consistent with our underlying hypothesis, the RF results highlight the importance of

both direct expression signature correlations between drug treatment and KD of the gene tar-

get (Figs 1c, 4a, 4b and 7a) and indirect correlations between the drug and the target’s interact-

ing partners (Figs 1e and 6). Contrary to earlier work [27–29], our method is capable of

predicting potential targets for any compound, even those unrelated to known drugs, and as

noted above, our predictions are open source and available for immediate download and
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testing (http://sb.cs.cmu.edu/Target2/). These include potential targets for 1680 LINCS small

molecules from among over 3000 different human proteins.

Unlike most available ligand-based prediction methods [12–17], the accuracy of our

approach does not rely on chemical similarity between compounds in the training/test sets.

For instance, our screen against CHIP, a target with no known small molecule inhibitors,

delivered four out of six binding compounds, whereas a parallel analysis using a state-of-the-

art structure-based virtual screening [36, 61] yielded even weaker-binding compounds. More-

over, the predicted mechanisms of actions of the more potent LINCS compounds suggest

novel interactions that were not prioritized by the ligand-based screen (S7 Fig).

In contrast to other machine learning methods, our approach reveals important, human-

interpretable insights into perturbation-response properties of cellular networks. Direct and

indirect gene expression profile correlations inform on global regulatory responses triggered

by small molecule cell treatments (see, e.g., Figs 4, 6 and 7). Namely, our genomic screening

not only identifies compounds targeting a given protein, but also highlight related genes that

are affected by the chemical modulation of the target. This knowledge is bound to play an

important role in the design of polypharmacological therapies.

Detailed analyses of our predictions suggest several avenues to improve enrichment. First,

we established a clear correlation between the number of cell-types screened and the target

prediction accuracy. Second, we identified that a significant source of false positives are indi-

rect correlations that, while important to detect the true target, also tend to predict interacting

partners as potential targets. Incorporating compound- or target-specific features are also

likely to improve our results. For instance, we noticed that our prediction results were less

accurate for extracellular and membrane proteins, and incorporating a cellular localization fea-

ture into our RF model increased the number of top-100 hits in our validation set from 63 to

66. Third, we envision that improved KD databases and transcriptomic profiling databases will

emerge, as will more entries and higher resolution structures into the PDB, leading to more

effective computational strategies. Nevertheless, we are aware that our pipeline currently suf-

fers from several limitations. For example, since the LINCS data is currently based on 978

landmark genes, any correlations that are not reflected by these genes (which may be identified

when using the full list of 20K genes) will be lost. Moreover, LINCS has only profiled genes in

a small number of cell lines. While we try to account for this limitation with special features,

some targets are likely missed because of inactivity in these cell lines. As noted above, we

expect to improve on many of these issues when new LINCS data are released as this should

include more KDs in more cell lines. A more detailed analyses of polypharmacological effects

could also improve predictions, and we are aware that this will likely occur, especially when

non-optimized compounds are employed in assays, as reported above.

In sum, our method represents a novel application of gene expression data for small mole-

cule—protein interaction prediction, with structural analysis further enriching hits to an

unprecedented level in a proteome-scale screen. The success of our proof-of-concept experi-

ments opens the door for a compound-centric drug discovery pipeline that can leverage the

relatively small fraction of potentially bioactive compounds that could be of interest for further

investigation to become drugs [62]. Interestingly, even relatively weak compounds are able to

leave a fingerprint in gene expression correlations. Compared to alternative approaches, our

method would be particularly suitable for scanning for targets of newly synthesized scaffolds.

We are hopeful that our open source method and predictions might be useful to other labs

around the world for identifying new drugs for key proteins involved in various diseases and

for better understanding the impact of drug modulation of gene expression. Moreover, our

approach represents a new framework for extracting robust correlations from intrinsically

noisy gene expression data that reflect the underlying connectivity of the cellular interactome.
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Materials and methods

Data sources

All predictions and code are open source and available at the supporting website http://sb.cs.

cmu.edu/Target2/. A full description of the data used in our analysis can be found in the S1

Text. Briefly, from the NIH LINCS library we extracted gene expression perturbations on 978

“landmark genes” from thousands of small molecule treatment and gene KD experiments in

various cell lines. We then used ChEMBL [63], an open large-scale bioactivity database, to

identify the LINCS compounds that were FDA approved and had known targets. To construct

our validation set we selected the 152 FDA approved compounds that had been tested in at

least four distinct LINCS cell lines, and whose known targets were knocked down in the same

cell lines. Protein-protein interaction data used in feature construction was extracted from

BioGRID [32] and HPRD [64], both of which contain curated sets of physical and genetic

interactions. Protein cellular localization data used in feature construction was obtained from

the Gene Ontology database [65].

Extracting and integrating features from different data sources

The notation and symbols that we use in constructing and using the genomic features are

described in S6 and S7 Tables. Feature construction is summarized below and is explained in

detail in the S1 Text.

Direct correlation. The first feature fcor, computes the correlation between the expression

profiles resulting from a gene KD and treatment with the small molecule. Since we are consid-

ering multiple cells for each molecule/KD, the correlation feature for each molecule d, i.e.

fcor(d,�,�), has a dimension of |Td| × |Cd|.

Indirect correlation. Information about protein interaction networks may be informative

about additional KD experiments that we might expect to be correlated with the small mole-

cule treatment profile. To construct a feature that can utilize this idea we did the following: for

each molecule, protein, and cell line we computed fPC(d, g, c), which encodes the fraction of

the known binding partners of g (i.e. the proteins interacting with g) in the top X KD experi-

ments correlated with this molecule/cell compared to what is expected based on the degree of

that protein (the number of interaction partners—this corrects for hub proteins). We used

X = 100 here, though 50 and 200 gave similar results. See S1 Text for complete details.

Cell selection. While the correlation feature is computed for all cells, it is likely that most

drugs are only active in certain cell types and not others (cell lines used in this study are listed

in S8 Table). Since the ability to consider the cellular context is one of the major advantages of

our method, we added a feature to denote the impact a drug has on a cell line. For each drug/

molecule d we compute a cell specific feature, fCS(d,�), which measures the correlation between

the response expression profile and the control (WT) experiments for that cell. We expect a

smaller correlation if the drug/molecule is active in this cell, and a larger correlation if it is not.

Differential expression. In addition to determining the correlation-based rankings of

interacting proteins, we also took their drug-induced differential expression into account. We

constructed two features that summarize this information for each protein (see S1 Text for

details). These features either encode the average or the max (absolute value) expression level

of the interaction partners of the potential target protein.

Generating structural models for docking

In order to use molecular docking to enrich our random forest predictions, we needed to gen-

erate structural models for the genes profiled in LINCS. The union of our top 100 target
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predictions for the 1680 small molecules profiled in LINCS in at least four cell lines consisted

of 3333 unique human genes. We used a python script (available on https://github.com/

npabon/generate_gene_models) to mine the PDB for structures of these genes and then select

representative crystal structures for each. When multiple structures were available, a represen-

tative subset of structures were chosen so as to maximize sequence coverage, minimize struc-

tural resolution, and account for structural heterogeneity. Full details of this procedure can be

found in the S1 Text.

Docking procedure

Compounds were docked to representative structures of their predicted targets with smina

[37], using default exhaustiveness and a 6 Å buffer to define the box around each potential

binding site. Docked poses across predicted binding sites [66] on a given target were compared

and the highest scoring pose of each compound was selected for further analyses [36–39] and

comparison to other targets/compounds.

Experimental assays

Full details on all experimental assays involving HRAS, KRAS, CHIP and PDK1 can be found

in S1 Text.

Supporting information

S1 Fig. Comparing random forest approaches with a random classifier for predicting

known targets of validation compounds. The red arrow indicates the success rate of on-the-

fly random forest and the green arrow represents the two-level random forest.

(TIFF)

S2 Fig. Receiver operating characteristic (ROC) curve analysis of two-level random forest

classification model for predicting the known target of 152 FDA-approved drugs.

(TIFF)

S3 Fig. Receiver operating characteristic (ROC) curve analysis of structure-enriched target

predictions for 53 FDA-approved validation compounds with known target structures.

(TIFF)

S4 Fig. ZINC compounds weakly disrupt CHIP binding to chaperone peptide as measured

by fluorescence polarization. Results are the average and standard error of the mean of two

experiments each performed in triplicate.

(TIFF)

S5 Fig. CHIP inhibitors prevent ubiquitination by CHIP in vitro. (a) Anti-GST western blot

showing a lack of substrate ubiquitination in in vitro reactions conducted without CHIP, the

GST-Hsc70395-646 substrate, or ATP, or where either GST is substituted for the full-length

GST-fused substrate or where methylated ubiquitin (mUb) is substituted for human ubiquitin.

(b) Anti-GST western blot showing substrate ubiquitination by CHIP in reactions treated with

highly ranked (2.1, 2.2) and a low ranked (2.5) compound. (c) Anti-ubiquitin western blot

showing total ubiquitination by CHIP in reactions treated with highly ranked (2.1, 2.2) and a

low ranked (2.5) compound. (d) Anti-ubiquitin western blot showing ubiquitination by CHIP

in in vitro reactions treated with 500 μM of compound 1.7, which was identified as a candidate

inhibitor through a pharmacophore-based screen of the ZINC database.

(TIFF)
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S6 Fig. Predicted CHIP inhibitors prevent ubiquitination of an alternate substrate. (A)

Anti-GST western blot showing AT-3 JD substrate ubiquitination by CHIP in reactions treated

with compounds. (B) Quantification of all reactions as in A treated with up to 500 μM com-

pound 2.1, 2.2, or 2.6, normalized to ubiquitination by a DMSO treated control (all com-

pounds: N = 4).

(TIFF)

S7 Fig. Comparison of gene expression-based and pharmacophore-based virtual screens

against CHIP. HSP90 shows structure of the CHIP (grey)—HSP90 (magenta) interface (PDB

ID: 2C2L [49]), indicating the hydrophobic (green spheres) and polar contact (blue surface /

dashed lines) pharmacophores used to screen the ZINC database. Strong binders show pre-

dicted binding modes for compounds 2.1 and 2.2 from the LINCS screen, which showed the

strongest FP signal and robust inhibition of CHIP ligases activity. Interestingly, 2.1 and 2.2 are

the only predicted hits to make a novel hydrogen bond to CHIP residue Q102, a contact whose

importance is not obvious from the cocrystal structure. Weak binders show predicted binding

modes for compounds 2.3 and 2.4 from the LINCS screen, and compounds 1.1, 1.2, and 1.7

from the ZINC screen, which showed modest FP signal. Non-binders show predicted binding

modes for non-binding LINCS compounds 2.5 and 2.6, and non-binding ZINC compounds

1.3–1.6.

(TIFF)

S1 Table. Compounds in validation set with multiple known protein targets.

(DOCX)

S2 Table. Compounds in validation set with known protein targets knocked down in 4 or

more LINCS cell lines. Parentheses in the rightmost column indicate the predicted ranking of

each known target out of over 3000 potential targets.

(DOCX)

S3 Table. The cellular localization of successful and unsuccessful drug targets enriched by

gene ontology. P-values were computed by intersecting proteins assigned to GO terms listed

below with proteins in the sets compared (successful and failed) using the hypergeometric dis-

tribution.

(DOCX)

S4 Table. Predicted HRAS/KRAS-targeting compounds purchased for experimental vali-

dation. ‘Target Rank’ indicates the ranking of HRAS/KRAS in the RF-predicted list of poten-

tial targets for each compound. ‘Cpd Rank’ indicates the structure-based ranking of the

compound after docking all candidate inhibitors.

(DOCX)

S5 Table. Predicted CHIP-targeting compounds purchased for experimental testing. ‘Chip

Rank’ indicates the ranking of CHIP in the random-forest predicted list of potential targets for

each compound. ‘Cpd Rank’ indicates the structure-based ranking of the compound after

docking all candidate inhibitors.

(DOCX)

S6 Table. Symbols and notations.

(DOCX)

S7 Table. Summary of constructed feature sets. Note that different feature sets can have dif-

ferent dimensions (some contain values for each of the cell lines, etc. . .). The exact dimension
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and content of each feature set is discussed in the text.

(DOCX)

S8 Table. Cell lines included in the validation dataset. The number of drugs, knockdown

genes, and control experiment are shown. For a given cell line, we only include drugs that have

their target knockdown experiments available in that cell line.

(DOCX)

S1 Text. Supplemental methods.

(DOCX)

S2 Text. Results of testing our random forest classifier on the 123 FDA approved drugs

profiled in 4–6 LINCS cell lines after having trained our model on the 29 FDA approved

drugs profiled in all 7 LINCS cell lines. The rank of the highest-ranking known target for

each compound is listed next to their LINCS ID. We achieve top-100 predictions for 32 drugs,

a 26% success rate.

(XLSX)

S3 Text. Structural enrichment of random forest predictions for validation hits and com-

parison with existing methods. Table lists the 63 ‘hits’ from our validation drug set, including

their names, LINCS ID and the number of top-100 predicted targets that had structures avail-

able in the PDB. The ranking of the known targets for each compound are shown after our

genomic random forest target prediction (GEN), and after our structural re-ranking (STR),

along with the percentile rankings produced by alternative target prediction methods

HTDocking (HTD) and PharmMapper (PHM). STR, HTD, and PHM values of 100 indicate

that the structure of the known target either is not known or was not included in the set of

potential targets used by the method.

(XLSX)
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