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Abstract

Importance

ICU-acquired muscle atrophy occurs commonly and worsens outcomes in adults. The inci-

dence and severity of muscle atrophy in critically ill children are poorly characterized.

Objective

To determine incidence, severity and risk factors for muscle atrophy in critically ill children.

Design, setting and participants

A single-center, prospective cohort study of 34 children receiving invasive mechanical venti-

lation for�48 hours. Patients 1 week– 18 years old with respiratory failure and without pre-

existing neuromuscular disease or skeletal trauma were recruited from a tertiary Pediatric

Intensive Care Unit (PICU) between June 2015 and May 2016. We used serial bedside

ultrasound to assess thickness of the diaphragm, biceps brachii/brachialis, quadriceps

femoris and tibialis anterior. Serial electrical impedance myography (EIM) was assessed in

children >1 year old. Medical records were abstracted from an electronic database.

Exposures

Respiratory failure requiring endotracheal intubation for�48 hours.

Main outcome and measures

The primary outcome was percent change in muscle thickness. Secondary outcomes were

changes in EIM-derived fat percentage and “quality”.
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Results

Of 34 enrolled patients, 30 completed�2 ultrasound assessments with a median interval of

6 (IQR 6–7) days. Mean age was 5.42 years, with 12 infants <1 year (40%) and 18 children

>1 year old (60%). In the entire cohort, diaphragm thickness decreased 11.1% (95%CI,

-19.7% to -2.52%) between the first two assessments or 2.2%/day. Quadriceps thickness

decreased 8.62% (95%CI, -15.7% to -1.54%) or 1.5%/day. Biceps (-1.71%; 95%CI, -8.15%

to 4.73%) and tibialis (0.52%; 95%CI, -5.81% to 3.40%) thicknesses did not change. Among

the entire cohort, 47% (14/30) experienced diaphragm atrophy (defined a priori as�10%

decrease in thickness). Eighty three percent of patients (25/30) experienced atrophy in�1

muscle group, and 47% (14/30)—in�2 muscle groups. On multivariate linear regression,

increasing age and traumatic brain injury (TBI) were associated with greater muscle loss.

EIM revealed increased fat percentage and decreased muscle “quality”.

Conclusions and relevance

In children receiving invasive mechanical ventilation, diaphragm and other skeletal muscle

atrophy is common and rapid. Increasing age and TBI may increase severity of limb muscle

atrophy. Prospective studies are required to link muscle atrophy to functional outcomes in

critically ill children.

Introduction

Muscle atrophy in critically ill children may influence illness progression and functional recov-

ery, yet it remains understudied. Only three prospective studies to date have examined inten-

sive care-acquired muscle weakness (ICU-AW) or atrophy (ICU-AA) in children [1, 2].

Banwell et al. used neuromuscular exam to identify a 1.7% incidence of weakness among all

children admitted to the PICU for >24 hours (n = 830)[1]. Recently, however, Valla et al. used

ultrasound to measure quadriceps femoris in critically ill children receiving invasive mechani-

cal ventilation and identified 59% (10/17) with�10% decrease in thickness within 5 days of

endotracheal intubation [2]. Glau et al. found that diaphragm thickness in children receiving

mechanical ventilation decreases on average by 3.4% per day [3]. The two latter studies concur

with robust adult data which indicate that ICU-AA, including diaphragm atrophy, and

ICU-AW affect 30–70% of patients [4–7]. A comprehensive assessment of muscle wasting and

identification of potential risk factors during pediatric critical illness remains lacking.

In particular, critically ill adults receiving mechanical ventilation exhibit diaphragm thin-

ning 24 hours after intubation [8]. Diaphragm thickness may decrease by 3–6% per 24 hours

of mechanical ventilation [3, 9]. Diaphragmatic and other skeletal muscle atrophy and weak-

ness are associated with difficulty weaning from mechanical ventilation [10–13], prolonged

ICU stay [11–13], worse functional outcomes [14, 15] and increased mortality [16–18]. Spe-

cific risk factors identified in critically ill patients include prolonged mechanical ventilation [7,

19], neuromuscular blockade [3], sepsis [20, 21], multi-organ dysfunction syndrome (MODS)

[5, 20, 21], and use of glucocorticoids [19].

We examined how muscle thickness and electrical properties change over time in mechani-

cally-ventilated critically ill children. Both muscle thickness [22, 23] and electrical impedance

[24, 25] correlate with muscle strength, and thus may predict physical disability and need for

rehabilitation after PICU discharge. We used ultrasound to serially measure thickness of the
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diaphragm, biceps brachii/brachialis, quadriceps femoris and tibialis anterior. These muscles

are easily examined with bedside ultrasound equipment routinely available for vascular access.

We also performed serial electrical impedance myography (EIM) on limb muscles to examine

EIM utility in the PICU. Finally, we examined whether demographic and clinical variables

thought to correlate with atrophy in adults influence muscle loss in critically ill children.

Methods

Study design

We performed a single-center, prospective, cohort study in a 35-bed medical-surgical PICU at

a free-standing, academic, tertiary care children’s hospital (St. Louis Children’s Hospital

(SLCH), St. Louis, MO). Washington University School of Medicine (WUSM) physician fac-

ulty staffs the SLCH PICU. The WUSM Institutional Review Board approved the study (IRB

#201504013). We recruited patients between June 2015 and May 2016. We enrolled 34 chil-

dren aged 1 week—18 years who satisfied the following enrollment criteria: 1) normal neuro-

logic development and gross motor function if <15 months old or independently ambulatory

before hospitalization if >15 months old; 2) no known neuromuscular disease; 3) respiratory

failure requiring endotracheal intubation; 4) intubated <72 hrs before enrollment; and 5)

expected to remain intubated >48 hrs. We obtained informed consent from parents and/or

guardians at enrollment and, whenever feasible, patients’ assent.

The PICU attending physician directed all clinical interventions, including sedation man-

agement. Consistent with the current standard of care, continuous neuromuscular blockade is

used sparingly and for the shortest duration possible, as dictated by the patient’s clinical status.

Sedation protocol for patients on mechanical ventilation generally involves a continuous infu-

sion of fentanyl with sequential additions of either midazolam or dexmedetomidine infusions.

Sedation is titrated to a State Behavioral Score (SBS)[26]; SBS goal is specified on daily morn-

ing rounds and depends on the patient’s clinical status and clinical trajectory (e.g. worsening,

improving, titrating towards extubation). The objective goal is to minimize sedative use and

facilitate recovery without impeding ongoing care.

Muscle measurements

We measured muscle thickness with bedside ultrasound (US) (SonoSite Edge II, FUJIFILM

SonoSite Inc., Bothell, WA) using a 13–6 MHz 6 cm linear probe (L25). We also measured

electrical impedance using a commercial EIM device (Skulpt AIM, Boston, MA). Thickness

was measured in the right diaphragm, biceps brachii/brachialis, quadriceps femoris, and tibia-

lis anterior. For EIM, we examined biceps, quadriceps, and tibialis in children >1 yr of age. In

infants <1 yr old, EIM device size limited observations to quadriceps only. EIM could not be

performed on the diaphragm. We obtained US and EIM measurements at enrollment and at

5–8 day intervals until PICU discharge. Observers were blinded to prior measurements.

For US reproducibility, we temporarily marked and regularly reinforced the following skin

landmarks: diaphragm: lower ribs along anterior axillary line at end expiration; biceps: 2/3

from acromion to antecubital crease; quadriceps: 1/2 from anterior superior iliac spine to

patella’s superior edge; tibialis: 1/3 from patella’s inferior edge to lateral malleolus. We mea-

sured thickness with limbs at rest without active flexion/resistance. For biceps, quadriceps and

tibialis, the US probe was oriented strictly perpendicular to the skin to minimize error. Cross-

sectional images were obtained using thick US gel layer without skin compression. Diaphragm

thickness was measured at passive exhalation end with US probe oriented longitudinally along

the ribs. We aimed for a simple and rapid assessment, which, in clinical practice, would permit

a minimally trained PICU practitioner to obtain reliable measurements without interfering
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with ongoing care. Consequently, we did not measure diaphragm thickness at end-inspiration,

precluding calculation of the thickening fraction[3]. Measurements were obtained in triplicate

and averaged for analyses. Intra-rater reproducibility coefficient (κ) was 0.99 for biceps, quad-

riceps and tibialis, and 0.8 for diaphragm, supporting recent suggestions by our group and oth-

ers that serial US may reliably assess muscle properties in children[2, 27, 28].

For EIM, we used a commercial handheld device (Skulpt AIM, Boston, MA). Per manufac-

turer’s instructions, EIM device was applied to moistened skin overlying the target muscle

with all surface electrodes contacting the skin. As with thickness measurements, we measured

EIM while avoiding active flexion/resistance. The EIM device uses proprietary algorithms to

report two scores: muscle “quality” and “fat percentage”. Higher muscle “quality” score and

lower “fat percentage” score are considered desirable outcomes.

Outcomes

Primary outcome measure was percent change in thickness between the 1st and 2nd US exams.

For patients with>2 US exams, the measurement with the greatest difference from baseline

(either increase or decrease) was used. Secondary outcomes were changes in EIM-derived

scores. Change in thickness was expressed both in absolute terms and as percent change,

because muscle size in children changes substantially during development. In addition, we cal-

culated percent change/day in order to normalize the data for different time intervals between

US exams; this normalization does not imply that the change occurs linearly over time. EIM-

derived scores–muscle “quality” and “fat percentage”–were compared using change in absolute

values.

Clinical covariates

Demographic and clinical variables that may influence incidence and severity of muscle loss in

critically ill children were defined a priori and abstracted from the electronic medical record.

Non-modifiable variables included age (years), age group (infants <1 yr old vs children >1 yr

old), PRISM score, SOFA scores on days 1 and 7, traumatic brain injury (yes/no), sepsis as

recorded in the medical record by the treating physician (yes/no), PICU and hospital length of

stay (days), ventilator-free days at 28 days, body mass index (BMI), Down’s Syndrome (yes/

no) and extubation failure. Potentially modifiable variables included glucocorticoids (total

dose expressed as hydrocortisone equivalent/kg), neuromuscular blockade (none, single dose,

or continuous), hyperglycemia (serum glucose >200 mg/dL), and vasopressors/inotropes (yes/

no). We also calculated the Pediatric Risk of Mortality (PRISM) III[29] and daily Sequential

Organ Failure Assessment (SOFA) scores [30, 31]. For each organ system, a SOFA organ-spe-

cific score >2 defined failure. We defined multi-organ failure as failure of�2 systems.

Statistical analyses

Statistical analyses were performed with SAS Statistics, v 9.4 (SAS Institute Inc., Cary, NC).

Kolmogorov-Smirnov test was used to assess normality for continuous variables. Normally

distributed variables were compared to using paired Student’s t-test. Non-normally distributed

variables were compared using Wilcoxon Signed-Rank Test (WSRT). Bivariate relationships

between patient characteristics (including risk factors) and continuous outcome variables

were examined using simple linear regression. Violations of linear regression assumptions

(linearity, multivariate normality, no multicollinearity, no auto-correlation and homoscedas-

ticity) were verified before interpretation of the model. Statistical significance level was set at

0.05. Variables with a p value�0.20 in bivariate analyses were considered for multivariate
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model building. In the final multivariate model, p�0.05 was considered statistically

significant.

We defined muscle atrophy a priori as�10% decrease in thickness. We chose this cut-off

because in prior studies, critically ill adults lost ~10% of their muscle mass within one week of

hospitalization[32, 33]. Therefore, we additionally examined presence or absence of atrophy in

each muscle group as a dichotomous outcome variable. We used bivariate and multivariate

logistic regression to assess the relationship between patient characteristics and muscle atro-

phy. Similar to thickness analyses, risk factors for atrophy with a p value�0.20 on bivariate

analyses were entered into multivariate logistic regression. Results are reported as mean (95%

CI) for normally distributed variables and as median (interquartile range (IQR)) for non-nor-

mally distributed variables.

Results

Participants

We enrolled 34 patients between June 2015 and May 2016 (Fig 1). Thirty patients had�2

assessments a median of 6 (IQR 6–7) days apart. Six patients had three assessments. Four

patients were transferred (n = 3) or discharged (n = 1) before the second assessment and were

excluded from final analyses. Table 1 shows pertinent patient characteristics. The mean age

was 5.42 years. Twelve (40%) were infants <1 yr old, and 18 (60%) were children >1 yr old.

The most common primary diagnoses were airway/respiratory (33%), central nervous system

(24%) and trauma (15%). Mean PRISM III score was 14.72, and mean day 1 SOFA score was

7.85.

At least two US examinations of diaphragm, biceps, quadriceps and tibialis were completed

in 100%, 83%, 100% and 97% of patients, respectively (Table 2). The two most significant fac-

tors limiting assessment were 1) presence of peripherally-inserted central catheters (PICCs)

which limited access to biceps landmarks and 2) liberation from mechanical ventilation and

associated sedation in infants prior to second assessment, which precluded passive extension

of the extremities. Two EIM assessments of biceps, quadriceps and tibialis were completed in

50%, 70% and 53% of patients, respectively (Table 2). The main factor limiting EIM device use

was patient size. Among infants <1 yr old, we successfully conducted quadriceps EIM in only

4 subjects. Among children >1 yr old, however, we completed two EIM assessments of biceps,

quadriceps and tibialis in 83%, 89% and 83% of subjects, respectively (Table 2). Therefore, we

limited EIM analyses to children >1 yr old.

Change in muscle thickness

In the entire cohort, diaphragm thickness decreased 11.1% ([95%CI, -19.7% to -2.52%];

p = 0.013) or by 2.2%/day. Sixteen subjects had their 2nd diaphragm US a median of 1 day after

extubation [IQR 1–4] and 14 –either prior to or on the day of extubation [median 3 days prior,

IQR 0–7]. The timing of the 2nd US exam relative to extubation did not affect the decrease in

diaphragm thickness (WRST, p = 0.44).

Quadriceps thickness decreased 8.62% ([95%CI, -15.7% to -1.54%]; p = 0.0187) or by 1.5%/

day. We did not detect a decrease in either biceps (mean = -1.71%; [95%CI, -8.15% to 4.73%];

p = 0.5885) or tibialis (mean = 0.52%; [95%CI, -5.81% to 3.40%]; p = 0.4762) thickness (Fig 2A

and Fig 3A). We defined muscle atrophy a priori as�10% decrease in thickness. Approxi-

mately half of all children examined experienced diaphragm (47%, 14/30) or quadriceps (53%,

16/30) atrophy (Fig 2B and Fig 3A). Among the entire cohort, 83% (25/30) experienced atro-

phy in�1 muscle group and 47% (14/30) in�2 muscle groups (Fig 2C). Among children >1
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yr old with all 4 muscle groups measured at least twice (n = 16), 94% (15/16) experienced atro-

phy in�1 muscle group and 56% (9/16)—in�2 muscle groups.

We conducted bivariate and multivariate analyses to identify variables associated with mus-

cle loss. Bivariate analyses (Table 3) revealed that increasing age and being a child (vs. infant)

predicted greater decrease in the thickness of biceps, quadriceps and tibialis but not diaphragm

(Fig 3B–3F and Fig 4A). Indeed, children > 1 yr of age on average lost 6.8% of their biceps

(95%CI [-14%, 0.8%]), 6.5% of their tibialis (95%CI [-11%, -2%]), and 15% of their quadriceps

(95% CI [-22%, -7.2%]) thickness. Increasing BMI correlated with greater loss in biceps and

quadriceps muscles (Table 3). Patients with TBI (n = 4) experienced significantly greater

decreases in biceps and tibialis thickness than either children or infants without TBI (Fig 4B).

On average, children with TBI lost 21% and 17% of biceps and tibialis thickness, respectively.

Fig 1. Flowchart of the study population.

https://doi.org/10.1371/journal.pone.0207720.g001
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In comparison, children without TBI lost 3.7% and 3.8% of biceps and tibialis thickness,

respectively.

Predictor variables with p�0.2 on bivariate analysis (Table 3, bold) were included in the

multivariate model. For quadriceps, no statistically significant associations were found on mul-

tivariate analysis. For biceps, step-wise multivariate linear regression revealed that increasing

age and presence of TBI were associated with greater decrease in thickness (Table 4). Adjusting

for TBI, each additional year of age was associated with an additional 1.46% decrease in biceps

thickness. Adjusting for age, presence of TBI was associated with an additional 18.1% decrease

Table 1. Baseline characteristics of study participants.

Descriptor All patients (N = 33�)

Age, mean (95% CI), years 5.42 (3.44–7.40)

Age Group, No. (%): Infant (< 1 year) 14 (42)

Child (>1 year) 19 (58)

Female, No. (%) 15 (45)

Race, No. (%): White 26 (79)

Black 4 (12)

Unknown 3 (9)

Body Mass Index, mean (95% CI), kg/m2 17.23 (15.76–18.70)

Hospital length of stay, median (range), days 22.10 (5.20–119.50)

PICU length of stay, median (range), days 10.00 (3.3–33.70)

Duration of intubation, median (range), days 7.37 (2.36–22.78)

PRISM III score, mean (95% CI) 14.72 (4.00–30.00)

SOFA score day 1, mean (95% CI) 7.85 (6.51–9.19)

SOFA score day 7, mean (95% CI) 6.61 (5.42–7.79)

Neuromuscular blockade, No. (%): Single dose# 17 (52)

Continuous infusion 10 (30)

Cumulative hydrocortisone equivalent dose, median (range), mg/kg 20.20 (0–1000)

Blood glucose level, mean (95% CI), mg/dL 160.3 (129.8–190.9)

Cumulative insulin dose, median (range), IU 79.01 (0–134.58)

Admission diagnosis, No. (%): Airway/respiratory 11 (33)

Central nervous system 8 (24)

Trauma 5 (15)

Infection/sepsis 3 (9)

Hematology/Oncology 3 (9)

Abdominal 2 (6)

Other 1 (3)

� One patient was discharged home prior to second assessment and was excluded from analyses.

# In addition to the dose used for intubation

https://doi.org/10.1371/journal.pone.0207720.t001

Table 2. Percent of patients completing at least two assessments.

Muscle Group Ultrasound Electrical Impedance Myography

All Infants Children All Infants Children

Diaphragm 100% (30/30) 100% (12/12) 100% (18/18)

Biceps 83% (25/30) 75% (9/12) 89% (16/18) 50% (15/30) 0% (0/12) 83% (15/18)

Tibialis 97% (29/30) 92% (11/12) 100% (18/18 53% (16/30) 8% (1/12) 83% (15/18)

Quadriceps 100% (30/30) 100% (12/12) 100% (18/18) 70% (21/30 25% (3/12) 100% (18/18)

https://doi.org/10.1371/journal.pone.0207720.t002
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in biceps thickness. In addition, hospital LOS correlated positively with biceps thickness. For

tibialis, increasing age also predicted a greater decrease in thickness. Although the effect of TBI

Fig 2. Loss of muscle thickness in critically-ill children. A. Percent change in muscle thickness between the first two ultrasound assessments in the

entire study cohort. Dashed red line indicates a 10% decrease. Gray line at zero is shown for clarity. Box boundaries represent 25th and 75th

percentiles, whiskers– 5th and 95th percentiles. B. Percent of patients experiencing muscle atrophy, defined as>10% loss of muscle thickness. C.

Frequency distribution of patients by the number of muscle groups showing atrophy.

https://doi.org/10.1371/journal.pone.0207720.g002

Fig 3. Change in muscle thickness and correlation with age in critically-ill children. A-C. Percent change in muscle thickness in the four examined

muscle groups in all patients (A), infants< 1 yr of age (B), and children> 1 yr of age (C). Scatter data are shown with mean ± SD. The red line indicates a

10% decrease in thickness. The gray line indicates zero for convenience. �WSRT p< 0.05. D-F. Simple linear regression of percent change in muscle

thickness as a function of age in months for the Biceps (D), Tibialis (E) and Quadriceps (F). Red dashed lines indicate 95% CI for the slope.

https://doi.org/10.1371/journal.pone.0207720.g003
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on tibialis thickness was not statistically significant, there was an interaction between TBI and

age. Adjusting for TBI, each additional year of age was associated with an additional 1.20%

decrease in tibialis thickness. Adjusting for age, presence of TBI was associated with an addi-

tional 18.9% decrease in tibialis thickness.

Change in EIM parameters

Muscle “quality” decreased in all muscle groups examined (biceps: - 6.5 [IQR -19 to -2.0],

p = 0.040; quadriceps: - 11 [95%CI, -16 to -5.4], p = 0.001; tibialis: -8.1 [95%CI, -12 to -4.1],

Table 3. Summary of bivariate associations.

Patient Characteristics Muscle Group

Discrete Variables Diaphragm Biceps Tibialis Quadriceps

Median (IQR) p Median (IQR) p Median (IQR) p Median (IQR) p
Sex: Male -8.1 (-15.9, 15.0) 0.28 -1.2 (-9.6, 11.6) 0.61 -6.3 (-13.0, 5.5) 0.31 -12.5 (-25.6, -8.0) 0.09

Female -11.4 (-25.9, 0.0) -8.8 (-11.5, 14.4) -3.3 (-7.4, 17.7) 2.8 (-20.0, 17.0)

Age Group: Infant, <1y -7.1 (-14.8, 2.0) 0.56 -9.0 (0.0, 14.4) 0.03 9.24 (-3.5, 20.1) 0.01 -0.82 (-12.4, 11.3) 0.08

Child, >1y -11.0 (-29.0, 14.3) -9.6 (-14.6, 4.4) -8.6 (-13.0, 0.24) -15.5 (-22.2, -3.90)

Race: White -7.14 (-25.0, 14.3) 0.86 -6.6 (-11.5, 11.6) 0.57 -7.3 (-12.8, 12.0) 0.34 -12.0 (-21.0, 2.9) 0.44

Black -11.5 (-31.1, -2.4) 0.0 (-15.4, 15.0) -3.2 (-3.5, 1.5) -8.7 (-22.4, -0.4)

Unknown -2.68 (-20.0, 14.6) 3.6 (-4.8, 15.8) -0.2 (-3.1, 52.9) 21.8 (-22.2, 35.5)

Cancer: Yes -20.0 (-59.3, 51.3) 0.69 -2.5 (-10.4, 15.8) 0.64 -0.2 (-15.1, 12.0) 0.50 -14.3 (-16.7, 21.9) 0.78

No -8.12 (-22.4, 6.5 -4.3 (-11.5, 11.6) -3.5 (-11.6, 5.5) -10.4 (-22.2, 3.6)

Trisomy 21: Yes -51.3 (-51.9, -50.6) 0.25 -9.6 (-11.5, 0.0) 0.24 -10.6 (-13.9, -5.0) 0.39 -9.4 (-20.0, 2.8) 0.04

No -7.1 (-17.7, 15.0) 0.6 (-9.6, 11.6) 2.5 (-7.4, 16.0) -12.1 (-21.6, 4.6)

Hyperglycemia: Yes -14.8 (-29.0, 0.0) 0.25 -9.6 (-11.5, 0.0) 0.32 -10.6 (-13.9, -5.0) 0.05 -9.4 (-20.0, 2.8) 0.68

No -7.1 (-17.1, 15.0) 0.6 (-9.6, 11.6) 2.5 (-7.4, 16.0) -12.1 (-21.6, 4.6)

Asthma: Yes -11.5 (-11.5, -11.5) 0.84 0 (0.0, 0.0) 0.78 — — -12.9 (-12.9, -12.9) 0.81

No -8.1 (-23.7, 10.4) -4.3 (-11.0, 12.0) -3.3 (-12.2, 8.7) -10.4 (-21.0, 3.6)

Sepsis: Yes -20.0 (-22.4, 14.3) 0.66 -3.5 (-11.0, 9.7) 0.50 -3.5 (-11.6, 45.1) 0.55 6.3 (-35.5, 21.9) 0.51

No -8.1 (-21.0, 4.4) -3.9 (-104, 11.6) -3.3 (-12.8, 5.5) -12.1 (-20.9, -0.5)

TBI: Yes -12.1 (-23.1, 4.2) 0.90 -14.2 (-45, -3.9) 0.09 -15.3 (-19.3,-12.9) 0.01 -13.7 (-25.4, -5.2) 0.56

No -9.1 (-22.4, 6.5) -1.2 (-10.4, 12.4) -2.3 (-8.5, 12.2) -11.2 (-21.0, 3.7)

NMB: None -15.0 (-22.4, 0) 0.71 -9.7 (-14.2, -2.5) 0.35 -7.2 (-11.6, 5.5) 0.86 -13.2 (-20.0, 2.8) 0.98

Single -9.1 (-25.9, 2.3) 7.4 ((-10.4, 14.4) -4.2 (-12.8, 17.7) -10.7 (-30.1, 9.8)

Continuous -7.1 (-11.5, 14.6) -3.9 (-9.6, 12.4) -3.2 (-7.4, 1.4) -8.5 (-22.2, 3.9)

Continuous Variables Correlation

Coefficient

p Correlation

Coefficient

p Correlation

Coefficient

p Correlation

Coefficient

p

Age (years) -0.20 0.29 -0.46 0.02 -0.50 0.01 -0.32 0.08

BMI (kg/m2) 0.04 0.85 -0.37 0.07 -0.12 0.54 -0.25 0.18

Hospital LOS (days) -0.09 0.63 0.31 0.13 -0.34 0.07 -0.09 0.60

PICU LOS (days) 0.05 0.81 0.19 0.38 -0.07 0.73 -0.14 0.48

Duration of intubation (days) -0.08 0.68 0.26 0.22 -0.03 0.87 0.00 0.98

PRISM III score 0.19 0.34 0.21 0.32 0.26 0.20 0.38 0.04

SOFA score day 1 -0.10 0.61 0.12 0.57 0.08 0.70 0.03 0.86

SOFA score day 7 0.17 0.37 0.13 0.54 0.18 0.35 0.01 0.93

Glucose most abnormal in 24 hrs (mg/dL) -0.23 0.24 -0.11 0.62 -0.30 0.13 -0.03 0.87

SaO2 most abnormal (%) -0.09 0.64 0.01 0.97 -0.42 0.03 0.10 0.61

Max cumulative steroid dose (mg) -0.08 0.67 0.16 0.43 -0.35 0.07 -0.22 0.25

Cumulative Hydrocortisone equivalent dose

(mg/kg)

0.00 0.98 0.23 0.27 -0.22 0.25 -0.12 0.50

https://doi.org/10.1371/journal.pone.0207720.t003
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Fig 4. Effect of age group and TBI on change in muscle thickness in critically-ill children. A. Change in muscle

thickness in infants< 1 yr of age (open) and in children> 1 yr of age (closed). �p = 0.084, ��p = 0.025, ���p = 0.002,

Muscle atrophy in mechanically-ventilated critically ill children

PLOS ONE | https://doi.org/10.1371/journal.pone.0207720 December 19, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0207720


p = 0.001; all tests WRST; Fig 5A). Fat percentage increased by ~3–5% in all muscle groups

examined (biceps: +5.2 [IQR 2.2 to 7.0], n = 14, p = 0.036; quadriceps: +3.5 [95%CI, 0.0 to 7.1],

n = 17, p = 0.052; tibialis: +2.8 [IQR -0.3 to 8.8], n = 14, p = 0.009; all tests WRST; Fig 5B).

We also correlated change in EIM parameters and change in thickness. For biceps,

increased fat percentage and decreased muscle “quality” correlated with greater decrease in

thickness (Spearman ρ = - 0.63, p = 0.017 and Spearman ρ = 0.44, p = 0.11, respectively). We

did not observe an association between EIM parameters and thickness for quadriceps or tibia-

lis. Similar to its effect on thickness, TBI was associated with worsening of EIM parameters.

On bivariate analyses, only TBI was associated with significant decrease in quadriceps muscle

“quality” (Kruskal-Wallis χ2 = 4.40, DF = 1, p = 0.036).

Discussion

The current study used ultrasound and EIM to measure changes in muscle over time in criti-

cally ill children with respiratory failure and correlated the extent of muscle loss with potential

risk factors. Results indicate that muscle atrophy (�10% decrease in thickness) in this popula-

tion is common and rapid, occurring within 5–7 days. Eighty three percent of children experi-

enced atrophy in�1 muscle group, and 47% − in�2 muscle groups. Importantly, in our study

population of critically ill children receiving invasive mechanical ventilation for>2 days, dia-

phragm atrophy affected almost half. We also found that increasing age and presence of TBI

appear to increase muscle loss severity.

Study limitations include single-center nature of the study and relatively small sample size,

which may hamper generalization to other centers. Additionally, infants in our PICU do not

represent the entire population of infants receiving critical care, as pre-term and full-term

infants in the neonatal ICU and infants with congenital heart disease in the cardiac ICU were

not included. The SLCH PICU, however, is a tertiary care referral center. Patient population

mix and acuity are representative of other large, multidisciplinary PICU’s. One of the inclusion

paired t-tests. To account for multiple comparisons, discovery (q) was determined using the two-stage linear step-up

procedure of Benjamini, Krieger and Yekuteli (BKY) with FDR = 10%; �q = 0.061, ��q = 0.028, ���q = 0.005. B. Change

in muscle thickness in patients without TBI (open) and with TBI (closed). �p = 0.022, ��p = 0.038, t-tests. Similar to A,

discovery was determined with BKY and FDR 10%; � and ��q = 0.043. For both A and B, dashed red line indicates a

10% decrease, and solid gray line–zero. Box boundaries represent 25th and 75th percentiles, whiskers– 5th and 95th

percentiles.

https://doi.org/10.1371/journal.pone.0207720.g004

Table 4. Summary of multivariate analyses.

Risk Factor Biceps Tibialis Quadriceps

Slope Coefficient (95% CI) p Slope Coefficient (95% CI) p Slope Coefficient (95% CI) p
Age Group -11.1

(-23.1, 1.0)

0.07 -18.53

(-31.6, -5.4)

0.01 -9.0

(-23.0, 5.1)

0.20

TBI -21.3

(-37.8, -4.8)

0.01 -9.9

(-27.9, 8.1)

0.26 — —

Hospital LOS 0.27

(0.05, 0.5)

0.02 -0.15

(-0.42, 0.13)

0.28 — —

Hyperglycemia — — 0.04

(-0.28, 0.37)

0.80 — —

Downs Syndrome — — — — -19.0

(-46.1, 8.1)

0.16

PRISM Score — — — — 0.9

(-0.20, 1.9)

0.10

https://doi.org/10.1371/journal.pone.0207720.t004
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criteria–the requirement that patients were considered likely to remain intubated for at least

48 hours after enrollment–led to selection of a sicker patient cohort than the general PICU

population. Consistent with selecting a subset of sicker patients, the median duration of intu-

bation in the current sample is 5 days longer than that in our PICU population as a whole (7.4

vs. 2.4 days). Another limitation is lack of long-term follow-up, preventing characterization of

functional deficits and/or recovery. The study was designed to investigate the incidence of

muscle wasting in critically ill children and to identify potential risk factors. These data are

required for larger observational or interventional studies to correlate muscle loss with long-

term outcomes. Finally, we used a commercial rather than a research EIM device in an attempt

to provide an easy bedside tool for the clinician. The commercial device limited available infor-

mation to derived values, and size discrepancy between the EIM device and infants’ limbs pre-

cluded EIM in infants. Although US data suggest that loss of limb muscle mass may not be a

major feature of muscle wasting in critically-ill infants <1 year of age, it is possible that EIM-

derived measures would have revealed additional abnormalities.

Our data suggest that diaphragm atrophy in intubated critically ill children occurs rapidly

and irrespective of age. Similarly, in critically ill adults, diaphragm atrophy occurs within days

[8, 9, 13], and perhaps hours[8], of initiating invasive mechanical ventilation. In animal stud-

ies, specific force generated by diaphragm muscle fibers (maximum force normalized to fiber

cross-sectional area) decreases 25% six hours into neuromuscular blockade and mechanical

ventilation[34]. Diaphragm atrophy in adults predicts difficulty separating from the ventilator,

lengthened ICU stay, worse functional outcomes and mortality9-17. Similar studies in children

do not yet exist, although a retrospective analysis of a large database revealed that ICU-AW

was associated with longer mechanical ventilation and with increased risk of discharge to a

chronic care or rehabilitation facility[35]. Our data indicate that future studies in children may

need to investigate prospectively how diaphragm atrophy affects outcomes such as respiratory

muscle strength, duration of mechanical ventilation and extubation failure. Indeed, a recent

observational study showed that children with diminished respiratory muscle strength, as evi-

denced by lower airway pressure generated during airway occlusion, were significantly more

likely to require reintubation within 48 hours of extubation[36]. In addition, mechanical venti-

lation modes that require diaphragm contraction (e.g. Neurally Adjusted Ventilatory Assist,

NAVA) may prevent diaphragm atrophy.

In limb skeletal muscles, muscle atrophy in critically ill children appears to depend on age.

On average, children >1 year old lost muscle mass in arms and legs, whereas infants <1 year

old did not. Indeed, 89% of older children (16/18) lost thickness in�1 limb muscle. In con-

trast, only 41% of infants (5/12) lost thickness in limb muscles. US may be less likely to detect

Fig 5. Changes in EIM-derived values in critically-ill children. A. Change in muscle “quality” (arbitrary values). B.

Change in fat percentage. Scatter data are shown with mean ± SD. � p< 0.05, �� p< 0.01, paired t-tests.

https://doi.org/10.1371/journal.pone.0207720.g005
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limb muscle loss in infants due to smaller muscle size. Age, however, has been noted as a

potential factor in ICU-AW previously. Banwell et al. noted that 11/14 patients with muscle

weakness in their cohort were>10 years old, and none was<18 months[1]. One possible

explanation is that older children, unlike infants, bear weight. Hence, supine positioning dur-

ing mechanical ventilation may suddenly decrease limb muscle loads in older children but not

in infants.

Muscles atrophied more in children with TBI in our small sample. The association

remained significant when adjusted for age. TBI often results in a hypermetabolic state with

negative nitrogen balance[37] (although see Mtaweh et al.[38]), which may contribute to exag-

gerated muscle breakdown. In animal studies, TBI-associated muscle wasting occurs regardless

of nutritional status, suggesting that brain injury may initiate specific signaling cascades that

alter muscle function[39, 40]. Experimental TBI increased expression of atrophy markers atro-

gin-1 and m-calpain and altered muscle contractile properties[41]. TBI may also decrease rest-

ing muscle tone early after injury, which may contribute to muscle wasting. Our sample of

children with TBI is small, and our findings require confirmation in a larger study. If con-

firmed, the finding that TBI increases severity of acute muscle loss may highlight the need for

early interventions to prevent secondary deterioration and improve functional outcomes.

We included EIM to assess its utility in predicting muscle atrophy in critically ill children.

EIM is noninvasive and requires minimal training and patient cooperation[42]. Our data

show that EIM, as assessed with a commercial device, is feasible in older children but not in

infants. Both markers of muscle “quality” and fat percentage deteriorated during the study.

The correlation with thickness, however, is relatively weak. It is unknown whether EIM pre-

dicts functional outcomes after critical illness. Interestingly, intermittent electrical muscle

stimulation may prevent muscle atrophy in critically ill adults[43, 44]. It remains to be deter-

mined whether EIM could predict the efficacy of such intervention in critical illness.

The current findings generate several questions and provide impetus for future studies of

acute muscle loss in critically ill children. First, does diaphragm atrophy predict difficulty

weaning from mechanical ventilation? Second, do mechanical ventilation modes that require

sustained diaphragm activity during inspiration prevent diaphragm atrophy? Third, does atro-

phy severity correlate with functional disability after discharge? Fourth, do interventions such

as passive and active motion, early mobilization or electrical stimulation preserve limb muscle

mass and improve outcomes in older children? Fifth, how does nutrition affect muscle loss?

Sixth, does severe TBI predispose children to acute muscle atrophy and, if so, through what

mechanism? Future studies to address these questions in critically ill children are needed.
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