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Abstract

The success of biological control may depend on the control agent co-evolving with its target

pest species, precluding the emergence of resistance that often undermines chemical con-

trol. However, recent evidence of a decline in attack rates of a sexual pest weevil by its asex-

ual parasitoid suggests that evolutionary arms races may not prevent the emergence of

resistance if the host and parasitoid do not have reproductive strategies that generate equal

amounts of genetic variation. To understand how these asymmetries in reproductive strate-

gies may drive the emergence of resistance, we combined life history data from two pest

weevils and their parasitoids (one sexual and one asexual) in the New Zealand pastoral eco-

system, with a population dynamic model that allows the coevolution of hosts and parasit-

oids. We found that the ratio of the genetic variance of hosts to parasitoids was a key

determinant of the emergence of resistance. Host resistance eventually occurred unless the

parasitoids had considerably greater additive genetic variance than their host. The higher

reproductive rate of asexual parasitoids did little to offset the cost of reduced additive genetic

variance. The model predictions were congruent with long-term parasitism rates observed

in the field for both of the pests considered (one with a sexual and one with an asexual para-

sitoid). We then explored the consequences of introducing two parasitoids with different

reproductive strategies that attack the same sexual host. The model showed that the sexu-

ally reproducing parasitoid always out-competed the asexually reproducing one. Our study

shows that any asymmetry in reproductive strategies is extremely important for predicting

the long-term success of biological control agents. Fortunately, introduction of sexually

reproducing individuals after an initial introduction of asexual strains may overcome the

problems of host resistance. We conclude that evolution must be considered when evaluat-

ing the long-term outcomes of importation biological control.
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Introduction

Regulation of pesticides is increasing internationally, fuelled by concerns about impacts on

human health and the environment [1]. Combined with the cost of rapid evolution of resis-

tance to chemical insecticides [2], demand is growing for sustainable pest control strategies

[3], including integrated pest management [4]. Biological control will likely form a component

of such strategies, particularly if reduced pesticide use improves the survival of natural ene-

mies. A key advantage of importation biological control (as described in [5]) is its long-term

sustainability if initially successful [6]. Moreover, the evolution of pest resistance to natural

enemies such as parasitoids is considered unlikely because an evolutionary arms race allows

the enemy to evolve counter-adaptations [7–9]. In this sense, the success of a biological-control

agent may depend on it co-evolving with the pest, rather than it being unresponsive to host

adaptation [10]. In fact, a lack of sufficient co-evolutionary dynamics has been highlighted as

one of the possible mechanisms by which successful biological control can break down [11]. A

recent example of rapid decline in parasitism rates in a host-parasitoid system, has been shown

in the dynamic between the Argentine stem weevil, Listronotus bonariensis (Kuschel) (Coleop-

tera: Curculionidae) and its asexual parasitoid Microctonus hyperodae (Loan) (Hymenoptera:

Braconidae). This work points to the suggestion that arms races per semay not always prevent

the emergence of resistance [12]. Specifically, it has been suggested that differences in additive

genetic variance of the sexual weevil population versus its asexual parasitoid may have caused

the emergence of apparent resistance [13]. Additive genetic variance is known to relate to the

ability of a population to respond to selective pressures [14], and thus should be important in

coevolution. The asymmetry in reproductive strategies between the host and parasitoid would

be expected to generate differences in additive genetic variance, as populations of sexually

reproducing organisms have greater additive genetic variance than those of asexual organisms

[15]. Although asymmetries in additive genetic variance are well known in the case of rapidly-

evolving pathogens and slowly reproducing hosts (Fenner 1983), to our knowledge they have

not been considered in the context of biological control when pathogens are not the control

agent [16].

In host-parasitoid biological control systems, there are many advantages associated with

introducing an asexual parasitoid to control a given pest. In general, they have higher rates of

population increase than sexual reproducers, during mass rearing there is no “waste” of hosts

in the production of males [17], and they avoid Allee effects that can occur due to declining

mate encounter rates [18]. Overall, asexual parasitoids are better colonizers than their sexual

counterparts and, indeed, in some circumstances they are able to suppress a host population to

a level lower than a comparable sexual form [18]. However, when hosts reproduce sexually

and the control agent asexually, then the asymmetry in additive genetic variance could be det-

rimental for the biological control system in the longer term. Such asymmetry may stop the

arms race that prevents the emergence of host resistance. In short, sexual forms of a parasitoid

will, through genetic recombination, adapt at a faster rate to changed circumstances [19] than

the asexual form; this includes the evolution of resistance by the host. In contrast, clonal lines

of asexual parasitoids depend on mutations as the only source of genetic variability, and it is

not clear whether any asexual advantages gained from initial greater host suppression are suffi-

cient to offset this evolutionary disadvantage. For these reasons, it has even been suggested

that asexual strains could be introduced first for rapid colonisation, followed by sexual strains

to provide longer-term adaptive potential [18]. Although this proposition is intuitively logical,

it remains unclear whether the benefits of this added adaptive potential would allow sexual

strains to out-compete asexual lines that have a higher intrinsic population growth rate. More

generally, it is unclear whether a greater number of parasitoid species or lines (asexual or
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sexual) inhibits the evolution of resistance by their hosts. Although biological control is essen-

tially applied population biology, there are very few cases where population dynamic models

have been used to provide guidance on the implementation of this practice [20], and to our

knowledge there is no incorporation of evolutionary processes into these assessments.

Thus, this contribution seeks to understand how asymmetry in reproductive strategies of

hosts and parasitoids relate to the emergence of resistance and the continuing success of bio-

logical control agents, and whether this asymmetry can be offset by the higher attack rates of

asexual parasitoids. Although we were initially motivated by the asymmetric reproductive

strategies (sexual versus asexual) generating differences in additive genetic variance, differ-

ences in additive genetic variance can also arise through other mechanisms (such as very small

population bottlenecks and/or inbreeding). In order to explore these aspects, we used a cou-

pled population dynamic model that allows the co-evolution of host resistance to parasitism

and parasitoid “virulence” (Hochberg and Holt, 1995 [21]). As an illustrative case study, we

used two examples of introduced pasture pest weevils in New Zealand that were, at least ini-

tially, controlled by introduced parasitoids. In these examples both hosts reproduce sexually,

whereas in one case the parasitoid is asexual and in the other the parasitoid reproduces sexu-

ally. This aimed at shedding further light on the significance of reproductive asymmetry, and

allowed us to ground-truth predictions of our model. We expected that sexually reproducing

parasitoids would maintain higher parasitism rates than asexuality reproducing ones, provid-

ing more effective pest control. We used published empirical data on the species’ biologies to

parameterize our models, as well as published long-term data on field parasitism rates to com-

pare with model predictions.

We also extended Hochberg and Holt’s (1995) model to test for the effect of the inclusion of

an additional parasitoid species into an already established host-parasitoid system. In particu-

lar, we asked if it was possible to rescue, enhance or disrupt an established biological control

system, depending on the additive genetic variance of the initial host/parasitoid populations

and that of a parasitoid introduced subsequently to the first system being established. Here, we

expected that sexually reproducing parasitoids would be able to rescue unsuccessful biological

control by asexually reproducing parasitoids. This, in turn, provided the opportunity to

explore the role of parasitoid diversity in the emergence of host resistance.

Materials and methods

Model framework (“two-species model”)

We used a model originally developed by Hochberg and Holt (1995 [21]) to study the evolu-

tion of refuges (host unavailability for parasitism or resistance) alongside the population

dynamics of coupled host-parasitoid associations for our two study systems. Throughout this

work we call this first model a “two-species model”. It is important to note that the genetics of

the host and parasitoid are not explicitly addressed in this model, and there is not tracking of

gene frequencies or assumptions of dominance or recessiveness. Rather, the model considers

co-evolutionary changes in quantitative characters that influence the proportion of hosts that

is resistant to the parasitoid. The discrete, non-overlapping generation model is as follows:

Ntþ1 ¼ l NtgfNtg ðaþ ð1 � aÞf fNt; PtgÞ ð1Þ

Ptþ1 ¼ cNtgfNtg ð1 � aÞð1 � f fNt;PtgÞ ð2Þ

where Nt is the density of host (weevils) at the beginning of generation t, and Pt is the density

of female parasitoids during generation t. The parameter λ represents the intrinsic growth rate

of the weevil population; c is the mean number of parasitoid females surviving per parasitized
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host; and α is the proportion of weevils that is resistant to parasitism. We assumed that the

weevil population is self-regulated when there are no parasitoids in the system, and we used

the same density-dependent growth function g{Nt} chosen by Hochberg and Holt (1995) to

describe this:

gfNtg ¼ ½1þNt ðl � 1Þ=K�� 1
ð3Þ

where K is the ecological carrying capacity of the weevil population, and we assigned λ> 1

and K > 0 to ensure weevil population persistence in the absence of the parasitoid.

The proportion of susceptible weevils that escape parasitism is given by the function f{Nt,

Pt}:

f fNt;Ptg ¼ ½1þ ðaPt=kð1þ aNt gfNtgð1 � aÞ=Z�
� k

ð4Þ

where a is the parasitoid searching efficiency, k is the spatial heterogeneity in parasitism and η
is the maximum number of weevils that each female parasitoid is able to parasitise (intrinsic

attack rate).

The co-evolutionary integration of the model builds upon the above ecological model, and

has three parts: the “resistance” functions, the “character” functions, and the “cost” functions.

The model assumes that resistance and “virulence” depend on a single character in each spe-

cies, designated respectively as n for the weevil and p for the parasitoid. The proportion of wee-

vils resistant to parasitism is defined as a function of the average character value of both

species. Therefore, the “resistance” function that determines the proportion of weevils resistant

to parasitism is as follows:

atf�n; �pg ¼ 1 � expf� ð�nt � �ptÞ
2
g ð5AÞ

The “character” functions, which are the connection between the ecological model and its evo-

lutionary component are as follows:

�ntþ1 ¼ �nt þ Gn½@ln Wn=@�n� ð6AÞ

�ptþ1 ¼ �pt þ Gp½@ln Wp=@�p� ð6BÞ

In these equations, Γn and Γp are the values for the additive genetic variance (a proxy for adap-

tive potential) of the weevil and the parasitoid respectively. Here it is important to note that we

used these values to capture a key feature of the reproductive strategy of the parasitoids: if the

parasitoid reproduces asexually with no possibility of adapting to its host (i.e. the value of the

character will not change over time) and with that the additive genetic variance is equal to 0.

This is of course the extreme case where we assumed that the rate of beneficial mutations in

the parasitoid is negligible relative to the new phenotypes produced by recombination of avail-

able genetic variance in the weevils. In this study we also explored a range of cases for different

ratios of additive genetic variance between the host and the parasitoid; here if the additive

genetic variance is greater than 0, then the parasitoid reproduces sexually or accrues mutations

and therefore has adaptive potential. As in Hochberg and Holt (1995) we assumed that selec-

tion pressure is weak so the additive genetic variance in the population is constant over time.

We did not make any assumptions about the magnitude of the additive genetic variance, and

also explored a wide range of possibilities in the model, as we do not have any data about the

genetic variance in the modelled systems. Wn = Nt+1/Nt and Wp = Pt+1/Pt are the fitnesses of

the weevils and the parasitoids, respectively.

Finally, the “cost” functions describe the cost of character evolution. An increase in the

mean value of the character in the weevils incurs a direct cost (Cn�n) imposed on the otherwise

Coevolution in bio-control systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0207610 December 19, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0207610


cost-free intrinsic growth rate of the population λ�:

ltf�ntg ¼ l
� � Cn�nt ð7Þ

For the parasitoid, an increase in the character value incurs a direct cost (Cn�p) imposed on the

otherwise cost-free intrinsic attack rate, η�:

Ztf�ptg ¼ Z� � Cn �pt ð8Þ

Such costs of evolving resistance or virulence have been discussed widely in the literature (see

[22,23] and references therein), and would occur if, for example, the host uses behavioural

responses to avoid parasitism, which interfere with its ability to feed but also slow the parasit-

oid’s attack rate. Even though we could express the cost of character change using other

parameters such as the searching efficiency (a) or the within-host survival rate (c), here we use

η following the original model of Hochberg and Holt (1995) because this parameter can be

interpreted in the same unit as λ (offspring produced). Complete information on the develop-

ment of the two-species model and exploration of parameter space can be found in the detailed

work of Hochberg and Holt (1995).

Model parameterization and study cases

There were no data available to parameterize the evolutionary component of the models, so we

used the parameter values suggested by Hochberg and Holt (1995) in their original model. We

parameterized the ecological part of the model using data from the literature (Table 1) for two

study systems in New Zealand’s simplified grassland ecosystems.

The first system involved the Argentine stem weevil, Listronotus bonariensis (Kuschel),

which was first recorded in New Zealand in 1927. It is generally accepted that this species was

probably accidentally introduced around the turn of the twentieth century [24]. The weevil

can cause severe damage to the very important ryegrass component of New Zealand’s exten-

sive areas of improved pasture. In 1991 the thelykotous (i.e. females produce clonal offspring

Table 1. Parameter values for the different biological control systems in this study and the range of values for each parameter explored during simulations.

Parameter Definition L. bonariensis -

M. hyperodae
S. discoideus -

M. aethiopoides
(Moroccan strain)

Range of values used for analysis

λ Intrinsic growth rate of the host 1–18 6–91 1–100

K Host carrying capacity 720 773 50–800

η Intrinsic rate of attack of the parasitoid 42±22 33 20–64

c Survival of parasitoid larvae 0.92 ? 0.5–1

κ Spatial heterogeneity in parasitism 0.23–0.87 0.11 0.1–0.9

a Searching efficiency 4.14 ? 1–8

гn Additive genetic variance in host 0.01 0.01 0–0.1

гp Additive genetic variance in parasitoid 0 0.01 0–0.1

Cn Cost to host character 1 1 0–2

Cp Cost to parasitoid character - 1 0–2

N0 Initial host density K K 50–800

P0 Initial parasitoid density 10 10 1–100

n0 Initial host character 1 1 0.5–1.5

p0 Initial parasitoid character 0.9 0.9 0.5–1.5

See S1 File for references to support these values and their units.

https://doi.org/10.1371/journal.pone.0207610.t001
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via unfertilised eggs) braconid endoparasitoid Microctonus hyperodae (Loan) was introduced

with the aim of suppressing this species [25]. This biological control agent was successful for

the first seven years, however, its effectiveness began to decline thereafter [12]. The heritability

of these reduced parasitism rates in the laboratory [26] suggests that they may have arisen

through the evolution of resistance by the Argentine stem weevil population, with no, or a

slower, co-evolutionary response from the asexual wasp.

The second system, the lucerne weevil, Sitona discoideus Gyllenhal (Coleoptera: Curculioni-

dae), was discovered in New Zealand in 1974. It was probably introduced from Australia, but

it originates from the Mediterranean area [27]. The damage resulting from larval feeding on

rhizobial root nodules led to yield losses of up to 43% in young lucerne stands [28]. In 1982 a

sexually reproducing Moroccan strain of the parasitoidMicroctonus aethiopoides Loan (Hyme-

noptera: Braconidae) was introduced as a control agent [29]. After the introduction of this par-

asitoid, the observed levels of parasitism were subsequently found to be sufficient to offset

economic impacts [30] such that insecticidal control was usually found to be unnecessary.

These parasitism levels have been maintained over time.

Population persistence, parasitism rates and the proportion of resistant hosts were

model outputs and we did not use data derived from the outputs for the parameterization of

the model. Information supporting the values shown in Table 1 is found in S1 File.

Sensitivity analysis

To investigate the evolution of resistance as a function of evolutionary asymmetries in the two-

species model, we began by performing a sensitivity analysis to study the influence of each

parameter in terms of the model output (i.e. the proportion of resistant hosts (αt) at t = 300 gen-

erations). Thus we calculated partial rank correlation coefficients to establish how strong the

linear associations are between the result (proportion of resistant hosts) and each input parame-

ter, after removing the linear effect of the other parameters [31]. We used the Latin-Hypercube

sampling technique [31] to obtain values of the parameters from a uniform distribution with

minimum and maximum values. These are described in Table 1 under the column headed

“range of values used for analysis”. Note that, wherever possible, we used a range of parameter

values that were obtained from the literature (Table 1). We generated 6000 parameter combina-

tions (and samples of the model results), and calculated the partial rank correlation coefficients

from these samples (any sampling size above 2000 gave qualitatively similar partial rank correla-

tions, see Figure A in S2 File). We bootstrapped the correlation coefficients 50 times to estimate

their confidence intervals. For this analysis, we used the package “pse” for R [32].

Two-species model exploration

We used the model to explore how population persistence, parasitism rates and the proportion

of resistant hosts responded to parameters related to the additive genetic variance of the weevil

hosts and parasitoids. We studied the models via numerical simulations, given the difficulty of

deriving interpretable analytical expressions for the dynamic of the systems [21]. The simula-

tion started with the parasitoid at low densities (10 m-2) and the host at ecosystem carrying

capacity. We studied how the output of the models changed as a function of the parameters

shown to most strongly influence the results of the model via the sensitivity analysis. We per-

formed this analysis within the empirically-derived parameter spaces described in Table 1.

Comparison with field data

To assess the plausibility of our model predictions, we compared the model results with field

data. We ran the two-species model for both systems, L. bonariensis withM. hyperodae and S.
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discoideuswithM. aethiopoides, for the range of parameters described above under the heading

“model parameterization and study cases”. When only one measured value was available for a

particular parameter, we used only that value in the model, otherwise we sampled 20 values

from inside the range of values found for a given parameter in the literature (see Table 1). The

survival of parasitoid larvae (c) was only available for one of the parasitoids; therefore we

assumed the same value for both species. It is important to note that the model parametriza-

tion was totally independent of the model results; i.e. the studies of field parasitism rates were

not used to parameterize the models.

For this field versus model comparison, we used the field data on nationwide parasitism in

L. bonariensis withM. hyperodae published by Tomasetto et al. (2017 [12]). We compared the

parasitism rate values at the beginning of the biocontrol programme (three years after the

introduction of the parasitoid) and those available from the latest field data (24 years after the

introduction of the parasitoid) with model data obtained over the same time frame: 9 and 72

generations, because L. bonariensis has a maximum of three generations per year [33].

For the model validation in the S. discoideus withM. aethiopoides system, we used field data

from two sources: three years after the introduction of the parasitoid, from Goldson et al.

(1990 [34]); and 12 years after the introduction of the parasitoid, from Kean and Barlow (2000

[35]). We compared these data with parasitism rate obtained from the model simulations for

the same time frame: 3 and 12 generations, because S. discoideus has only one generation per

year.

Although it could be argued that 1–3 generations per year are few for studying evolution,

rapid evolution of resistance to sexually [36] and asexually [12]) reproducing parasitoids has

been reported in the wild, and rapid (within few seasons) evolution of resistance to pesticides

in insects is well known (e.g. Sudo et al. 2018 [37]). Thus, the timescales of this comparison are

congruent with those at which insect evolution is known to occur. For both host-parasitoid

pairs, we used a simple two sample Student’s t-test to determine if the model data (mean across

all runs, with a range of parameter values described above) and the field data (mean across dif-

ferent sites and dates for the same year) differed significantly for the two time steps chosen.

We tested the data for normality and we performed an F-test to compare the variances of the

different data sets. If the variances differed significantly, we estimated them separately for each

group and used the Welch modification to the degrees of freedom in the t-test. We also calcu-

lated for both systems the predicted parasitism rates at 100 years after the introduction of the

parasitoids.

Extension of the model framework (“three-species model)

We then extended the “two-species model”, as described above, to generate a model where

three species interact with each other, in the form of two parasitoids and one host (hereafter:

“three-species model”). This three-species model is a modification of the original model by

Hochberg and Holt (1995), which allowed us to study the consequences of introducing a new

parasitoid after an existing parasitoid has already become established in the system. The basic

system of equations for this three-species model is as follows:

Ntþ1 ¼ l NtgfNtg ðap þ ð1 � apÞf fNt;PtgÞðaw þ ð1 � ayÞhfNt;YtgÞ ð9Þ

Ptþ1 ¼ cpNtgfNtgð1 � apÞð1 � f fNt;PtgÞhfNt;Ytg ð10Þ

Ytþ1 ¼ cyNtgfNtg ð1 � ayÞð1 � hfNt;YtgÞf fNt; Ptg ð11Þ

The new parasitoid, Y, is introduced to the system after the first host-parasitoid (N-P) system

Coevolution in bio-control systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0207610 December 19, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0207610


had undergone 500 generations since the onset of the simulation (preliminary exploration sug-

gested that this was enough for the first host-parasitoid system to stabilise). Varying the num-

ber of generations before the introduction of the second parasitoid did not change the overall

result of the model. When the second parasitoid is introduced, the parasitism rate it exerts is

determined by the character values of the existing host (bearing in mind that this character

value had been changing due to coevolution with the first parasitoid), and the character value

of the new parasitoid (which has the same value as that which the first parasitoid had when

introduced). The parameters for this system of equations are essentially the same as those

described above for the “two-species model”, however note that the parasitoid parameters are

specific to each parasitoid and are denoted by the subscript “p” and “y”, for the first and second

parasitoid respectively. Likewise, h{Nt, Yt} represents the proportion of weevils unparasitised

by the added second parasitoid. For this model we assumed that there is not a competitive

hierarchy between the two parasitoids, and that parasitoids of one species cannot parasitise a

host that has already been parasitised by the other species. Both parasitoids attack at the same

time and the proportion of weevils available to be parasitised by each parasitoid depends on

the proportion parasitised by the other parasitoid and the proportion of the host population

that is resistant to each parasitoid. The host resistance level is not totally independent for each

parasitoid in the “three-species model”. The model assumes that resistance depends on a single

character in each species, designated as n for the weevil and p and y for the two parasitoids; the

character n that governs host resistance is the same for both parasitoids. The proportion of

weevils resistant to parasitism is defined as a function of the average character value of both

species:

aptf�n; �pg ¼ 1 � expf� ð�nt � �ptÞ
2
g ð5AÞ

aytf�n; �yg ¼ 1 � expf� ð�nt � �ytÞ
2
g ð5BÞ

The changes in the average value of the character of the host is therefore driven by its change

in fitness, which is the result of the interaction with both parasitoids.

�ntþ1 ¼ �nt þ Gn½@ln Wn=@�n� ð6AÞ

�ptþ1 ¼ �pt þ Gp½@ln Wp=@�p� ð6BÞ

�ytþ1 ¼ �yt þ Gy½@ln Wy=@�y� ð6CÞ

Wn ¼ Ntþ1=Nt; Wp ¼ Ptþ1=Pt and Wy ¼ Ytþ1=Yt

For the purposes of starting research on what would be the consequences of introducing popu-

lations of parasitoids with different reproductive strategies and to keep the model simple, we

assumed that both populations of parasitoids are exactly the same except for their additive

genetic variance (Γ, as a proxy for their reproductive strategy) and their intrinsic attack rate

(η). This would be possible if strains of the same species of parasitoid, but with different repro-

ductive strategies, were introduced. This is a strong assumption of the three species model,

and we take it into account when discussing the results of the simulations. For this model we

took the extreme case of assuming that the asexual parasitoid had 0 additive genetic variance,

but this was balanced by having double the intrinsic attack rate (η) of the sexual parasitoid

with additive genetic variance greater than 0. This double attack rate of the asexual line repre-

sents a case where the sexual parasitoid has a 1:1 sex ratio, so only half of its population (the
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females) produce offspring. A description of the model extension to the three species case and

the R [38] script used for its implementation are presented in S1 File.

Results

Two-species model and sensitivity analysis

Even though most of the relationships between the model output used for the sensitivity analy-

sis (the proportion of resistant hosts) and the parameters tested were significant (Table 2),

only four parameters each explained 20% or more of the variation: additive genetic variance of

the host and that of the parasitoid, the spatial heterogeneity of parasitism in the field and the

intrinsic growth rate of the host. The two most important parameters determining the evolu-

tion of resistance were the additive genetic variance of the host and that of the parasitoid,

which represent the abilities of each population to respond to the selective pressure of the

other. We used the additive genetic variance as a proxy for the reproductive strategy of each

species. At the extreme, an asexual population would have 0 additive genetic variance, assum-

ing that beneficial mutations would be negligible in comparison with genetic recombination

by sexual reproduction. The partial rank correlation coefficients between the additive genetic

variance of the host and parasitoid, and the proportion of resistant hosts were 0.73 and -0.71

respectively, explaining most of the variation in resistance (Table 2).

The spatial heterogeneity of parasitism in the field and the intrinsic growth rate of the host

were the next most important parameters. The partial rank correlation coefficients between

these parameters and the proportion of resistant hosts were 0.49 and -0.20 respectively

(Table 2). Thus spatial heterogeneity in parasitism (κ) is a measure of parasitism aggregation.

As the value of κ increases, the heterogeneity in parasitism decreases. Here small values of κ
indicate aggregation in parasitism while higher κ values approach a more random distribution.

The positive correlation between the spatial heterogeneity and host resistance shows that

aggregation in parasitism is an important influence on resistance, which decreases as parasit-

ism aggregates. The negative correlation coefficient between the intrinsic growth rate of the

host and its resistance is not surprising, as it matches the model prediction in the original

paper by Hochberg and Holt (1995 [21]). They showed that for lambda values of 12 or higher,

the system is pushed towards a bottom up control, where both populations and their refuge

Table 2. Results for the sensitivity analysis of the “two-species model” for 6000 simulations.

Parameter Definition Partial rank correlation coefficient p-value

гn Additive genetic variance of host 0.73 < 0.0001
гp Additive genetic variance of parasitoid -0.71 < 0.0001

κ Spatial heterogeneity in parasitism 0.49 < 0.0001
λ Intrinsic growth rate of the host -0.20 < 0.0001
K Host carrying capacity (adults/m2) 0.16 < 0.0001
p0 Initial parasitoid character 0.11 < 0.0001
Cn Cost to host character 0.10 < 0.0001
n0 Initial host character -0.09 < 0.0001
c Survival of parasitoid larvae 0.09 < 0.0001
η Intrinsic rate of attack of the parasitoid 0.05 < 0.0001

N0 Initial host density 0.02 0.063

P0 Initial parasitoid density 0.01 0.248

Cp Cost to parasitoid character 0.001 0.909

The partial rank correlations are between the proportion of resistant hosts (result from the model) and each parameter.

https://doi.org/10.1371/journal.pone.0207610.t002
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characters evolve and equilibrate to constant levels, with the parasitoid only moderately sup-

pressing the host. This happens only when parasitoids and hosts have close to, or equal levels

of additive genetic variance (meaning in our model that both reproduce sexually). This is

because the host is able to reproduce disproportionately faster than the parasitoid (resulting in

higher fitness and faster changes in the host character value. This creates an imbalance where

parasitoid numbers decrease until they stabilise with very low values for the number of host

resistant to parasitism. This can be seen in Figure C in S2 File, where the bottom two lines

show the change over time in resistance for lambda values of 20 and 40. It is also interesting to

note that Cp, which represents the cost for the parasitoid to evolve, was not significantly corre-

lated with the proportion of resistant hosts. Also, the initial population sizes of the parasitoid

and host were not significantly correlated with the proportion of resistant hosts of the model

(Table 2).

Further analysis of these parameters showed that the ratio between the additive genetic vari-

ance of the parasitoid and the host, Γp: Γn, alone determines the general patterns of parasitism

rates and the evolution of resistance in the host (Fig 1A). A lower ratio between parasitoid and

host additive genetic variance leads to a higher proportion of hosts evolving resistance and

consequently lower parasitism rates over time (from a parasitism rate of 5% when the parasit-

oid had 0 additive genetic variance to a parasitism rate of 72% when the parasitoid had more

than 0.03 additive genetic variance; the host additive genetic variance was held constant at

0.01). Moreover, the additive genetic variance of a given parasitoid must be at least three times

higher than that of the host to prevent the emergence of resistance in the host population (Fig

1A). An example of a comparison between an asexual parasitoid (with no additive genetic vari-

ance) and a sexual parasitoid (with additive genetic variance equal to the host) is given in Fig

1B. Varying other parameters such as the growth rate of the host or the spatial heterogeneity of

parasitism did not qualitatively change the patterns described above (S2 File).

Comparison with field data

The two-species model for L. bonariensis andM. hyperodae predicted a decline in parasitism

rates over time, which matched the field data at the start of the biocontrol implementation

(three years after the introduction of the parasitoid, p-value = 0.85, Fig 2A). This model also

predicted the magnitude of the decline, but over a much longer time scale, such that it pre-

dicted higher parasitism rates than were present in the field for the last year of available field

data (24 years after the introduction of the parasitoid, p-value = 0.001, Fig 2A). The model pre-

dicted an ongoing decrease in parasitism rate for 100 years after the introduction of the para-

sitoid, culminating with an average parasitism rate of 0.12 (7% lower than the most recent field

data and 32% below the model predictions for 24 years after parasitoid introduction, Fig 2A).

For S. discoideus andM. aethiopoides the two-species model results were not significantly

different from the field data, and showed that the parasitism rates in this system would not

change over time (p-value = 0.45 for the 3rd year after the introduction of the parasitoid; p-

value = 0.92 for the 12th year after the introduction of the parasitoid). Further, the model pre-

dicts that they will remain at these levels 100 years after release (Fig 2B). Of course, correlations

between model predictions and field observations are not evidence of any mechanism. How-

ever, this congruence demonstrates that our model parameterisation generates predictions

that fall within the realms of biological reality.

Three-species model

The three-species model showed that a sexual parasitoid surpasses the parasitism rate of an

asexual parasitoid over time, and eventually drives the asexual parasitoid to extinction,
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Fig 1. Effect of additive genetic variance on parasitism rates and resistance. a) Proportion of parasitized and resistant weevils at 300 generations for different

ratios between the additive genetic variance (AGV) of the parasitoid and the host. All parameters were kept constant, except for the parasitoid AGV. The

dashed blue line and the blue arrows show resistance and parasitism rate of an asexual parasitoid interacting with a sexual host (parasitoid AGV = 0 and host

AGV = 0.1). The dotted red line and the red arrows show resistance and parasitism rate of a sexual parasitoid interacting with a sexual host (parasitoid

Coevolution in bio-control systems
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irrespective of the order in which the two variants were added. The fate of a second parasitoid

that is introduced into a system where there already is a parasitoid interacting with the same

host depends on its additive genetic variance (Table 3, Fig 3). The only instance where an asex-

ual parasitoid survives the introduction of another parasitoid is when another asexual parasit-

oid is also introduced to the system. However, in this case, the parasitism rate exerted by both

of these parasitoids is lower than the parasitism rate of the first parasitoid alone. In an asexual

parasitoid system where the populations are at equilibrium (albeit with a very low parasitism

rate), the introduction of a new parasitoid perturbs that equilibrium and, in all cases studied,

further lowers the parasitism rate of the first parasitoid. In a sexual parasitoid system, the new

asexual parasitoid does not persist and its parasitism levels decline at a rate higher than if this

parasitoid were alone. Varying the growth rate of the host or the spatial heterogeneity of

AGV = 0.1 and host AGV = 0.1). b) Examples of the parasitism rates over generation time for an asexual parasitoid (blue dashed line) and a sexual parasitoid

(red dotted line).

https://doi.org/10.1371/journal.pone.0207610.g001

Fig 2. Comparison between the field data and the model results for both systems. a) L. bonariensis andM. hyperodae; b) S. discoideus andM. aethiopoides
(Moroccan strain). The upper and lower "hinges" represent the first and third quartiles. The whiskers extend from the hinge to the highest and lowest value that

is within 1.5 � distance between the first and third quartiles. The points beyond the end of the whiskers are outliers.

https://doi.org/10.1371/journal.pone.0207610.g002
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parasitism of either parasitoid does not qualitatively change any of the patterns of results

described above (S2 File).

These results (Table 3, Fig 3 and S2 File) show that, if there is at least one sexual parasitoid

in a given system, greater diversity of parasitoids reduced the proportion of resistant hosts in

that system. Even when the asexual parasitoids go extinct after being introduced with a sexual

competitor; the resulting parasitism rate of the sexual parasitoid remains higher than it was

prior to the introduction of the asexual parasitoid. This elevated parasitism rate occurs because

the asexual parasitoid promotes more rapid evolution of the host, and the rapid change in

character values of the sexual parasitoid to compensate for this rapidly-evolving host results in

higher parasitism rates after the asexual parasitoid goes extinct. This applies even if it had

never existed in the system. Overall, diversity of asexual parasitoids did not improve the overall

levels of parasitism and even allowed the host population to increase its resistance levels rela-

tive to when a single parasitoid species was present.

Because the character that governs resistance in the weevil is the same for both parasitoids,

when both parasitoids had the same additive genetic variance, upon the introduction of the

second parasitoid, the host population automatically has a higher resistance rate to the new

parasitoid than to the parasitoid to which it has been exposed for a long time, and with which

it has co-evolved. The new parasitoid has to “catch up” by evolving its character value to be

able to parasitise the weevil at the same rate as the older parasitoid in the system. This assump-

tion also explains why the parasitism rate in a system with two asexual parasitoids becomes

lower than in a system with just one and why parasitism rate of an asexual parasitoid decreases

more rapidly when it is in a system that also includes a sexual parasitoid.

Discussion

Our model revealed that, unless parasitoids have at least three times the genetic variance of

their hosts, the evolution of some level of host resistance is inevitable in the long term.

Although the dependence of evolution on additive genetic variance is not surprising (and in

fact is described by the well-known breeder’s equation [39]), there are two key aspects of our

findings in this contribution. The first is that the additive genetic variance of parasitoids must

be disproportionately greater than that of the host to avoid evolution of resistance. Second, the

relationship between the ratio of parasitoid-host additive genetic variance and the emergence

Table 3. Parasitism rates resulting from different combinations of additive genetic variance of parasitoids for the three species model.

Additive genetic variance of

the first parasitoid

Additive genetic variance of the

second parasitoid

Parasitism rates before the introduction of

the second parasitoid

Parasitism rates at the end of simulation (first

parasitoid–second parasitoid)

0 0 0.06 0.03–0.03

0 0.01 0.06 Extinct– 0.50

0 0.1 0.06 Extinct– 0.65

0.01 0 0.4 0.84 –Extinct

0.01 0.01 0.4 0.22–0.22

0.01 0.1 0.4 0.23–0.23

0.1 0 0.5 0.82 –Extinct

0.1 0.01 0.5 0.23–0.23

0.1 0.1 0.5 0.24–0.24

Parasitism rates are calculated as the proportion of all hosts that are infected by a given parasitoid, so the total proportion of hosts infected is the sum of the two attack

rates.

https://doi.org/10.1371/journal.pone.0207610.t003
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of resistance is not linear. In the case of a sexual parasitoid, such resistance is relatively minor,

and stabilises sooner, whereas asexual parasitoids invoke substantial host resistance and a

long-term decline to very low parasitism rates (Fig 1B). That parasitoids with greater genetic

Fig 3. Four examples of parasitism rates and resistance over generation time for the three species model (two parasitoids and one host). The y axis shows

parasitism rate (a) and proportion of resistance (b). The blue line represents the parasitoid that was introduced first, and the red line represents the parasitoid

introduced second (at 500 generations). The dashed line represents an asexual parasitoid, and the dotted line represents a sexual parasitoid. The dash-dotted

line represents the sum of the parasitism rate of the two parasitoids. The inset graphs are expansions of the box where the second parasitoid was introduced

(showing 50 generations before and after the introduction). Parasitoids are extinct when the parasitism rate equals 0 and the resistant proportion equals 1.

https://doi.org/10.1371/journal.pone.0207610.g003
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variance are more successful in co-evolutionary arms races has been shown with a pure co-

evolutionary model approach before (not including a population dynamics component [40]).

This latter scenario reflects the recently reported 44% decline in mean parasitism rates over

two decades observed in the Argentine stem weevil [12]. The generally low levels of parasitism

found in the native range of this pest byM. hyperodae (average of 15.8% [41]) also coincide

with the long-term predicted attack rate of our model. However, resistance of the Argentine

stem weevil to its parasitoid in the field evolved more quickly than our model predicted (Fig

2A). One possible hypothesis is that we underestimated the additive genetic variance in the

weevil host. Further, the results from our three-species model, where an asexual parasitoid is

introduced to a system already containing a sexual parasitoid, gives us another possible

hypothesis to explain the difference between the model results and the field data. In this model

case, parasitism rates by the asexual parasitoid decline faster than when it is interacting with

the host alone. To this effect, Barratt et al. (2007 [42]) have shown that L. bonariensis is also

parasitized by the sexual parasitoidM. aethiopoides at very low levels. Thus, it is possible that

this accelerated the decline in parasitism rates byM. hyperodae. However, more research is

needed to study and test this hypothesis fully.

Our results on the importance of the reproductive strategy in biological control are sup-

ported by the work of Burdon and Marshall (1981 [43]) on the reproductive strategy of weeds

and their biological control. They found that sexually reproducing weeds were more difficult

to control than their asexually reproducing counterparts. This scenario is illustrated in Fig1A,

where we can substitute the ratio of additive genetic variance between parasitoid and host by

the ratio of additive genetic variance between the herbivore and its weed host. Here we see that

when the additive genetic variance of the weed gets disproportionally smaller than the herbi-

vore (as in a situation where the herbivore reproduces sexually and the weed asexually), the

weed would not evolve resistance to the herbivore.

Our model results suggest that even when both species in a parasitoid-host system repro-

duce sexually, resistance can in fact still evolve depending on the ratio between the additive

genetic variance of both species. In a thorough laboratory experiment looking at the space-

time component of the population dynamics of house flies and their parasitoid, Nasonia vitri-
pennis, Pimentel et al. 1963 [44] showed that the reproductive capacity of the parasitoid

declined by between 40% and 68% within 8 and 20 generations respectively. These results

agree with our model results when both species have some degree of additive genetic variance;

with additive genetic variance ratios varying between 0.5 and 10, there is a decrease of between

44% and 1% in parasitism rates respectively from the start of the simulation to 300 generations

(Fig 1A). This also relates to our results regarding the New Zealand parasitism rates of the

lucerne weevil by its sexually reproducing parasitoid, where parasitism rates were found to be

~25–50% (year average). In Australia, where the lucerne weevil was also introduced and is con-

sidered a pest, the parasitism byM. aethiopoides was found to be less than 25% [45]. The para-

sitism levels in this weevil’s and its parasitoid’s native range of Morocco are very low,

averaging less than 10% of parasitised weevils among different regions [45]. However, these

low levels of parasitism byM. aethiopoides in its native range might be caused by the complex-

ity of the ecosystem and interfering species that are absent in the New Zealand pastures.

One of the best-known cases of biological control success is the use of the asexual parasitoid

Encarsia formosa for the control of whiteflies in greenhouses. Two biological control strategies

are successfully used for this system: an inundative release method, where E. formosa is

released periodically in large numbers to obtain an immediate control effect; and a seasonal

inoculative release method, where E. formosa is released in large numbers in short-term crops

to obtain an immediate control effect as well as a build-up of the E. formosa population for

control later during the same season [46]. The nature of the strategies used in this system will
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prevent the evolution of resistance in the hosts, as the host population from one season to the

next is completely different. Moreover, many aphid species reproduce asexually for at least

part of their life cycle, which eliminates genetic recombination [47] and places the evolutionary

asymmetry in favour of the parasitoid.

The importance of additive genetic variance suggests that, for effective long-term control of

a given pest, the genetic variability of the introduced control agent should be maximized. This

idea has been noted by several authors in the past [5,48–50]. Here we showed that the additive

genetic variance of a control agent has to be disproportionately greater than that of the host for

achieving a successful biocontrol program. Avoiding severely bottlenecked populations of the

control agent is as important as trying to introduce a control agent that has the same or even

greater additive genetic variance (via its reproductive strategy) than its target species. More-

over, we can extrapolate from the model results that it may be more challenging to control

pests that have been established for a long time (so have accumulated more variability by

mutation and recombination), those that have been introduced multiple times on the same

region, or native pests.

It has been suggested that a possibility for improving the long-term success of biological

control using parasitoids would be to first introduce an asexual form of the parasitoid, fol-

lowed by additional later releases of a sexual form [18]. The results of our “three-species

model” supported this idea showing that a sexual form of the parasitoid that is introduced

after an asexual form has been established will succeed and out-compete the asexual form.

These results are important when the success of an asexual form of a parasitoid is already

declining, as in the case ofM. hyperodae, and the introduction of a sexual parasitoid could

improve the control of the host: in this case the Argentine stem weevil.

Our model results showed that asexual parasitoids do not persist if they have to compete

with a sexual parasitoid of similar characteristics. Sexual and asexual parasitoids of the same or

different species that attack the same host are known to co-exist in nature (e.g. Lysiphlebus
fabarum [51]; Trichogramma spp. [52]; Venturia canescens [53]). Moreover, it is possible that

many cases of coexisting sexual and asexual strains of parasitoids have been overlooked, and

this scenario might be more common than is known from the literature. However, there are

several examples where the co-existence of both reproductive forms could be explained by a

geographic or niche segregation (see Mitsui and Kimura 2010 [54] for some examples in the

islands of Japan, and Amat et al. 2006 [55] for an example on the sexual and asexual forms of

the species Venturia canescens). Also, work on sexual and asexual populations of Lysiphlebus
fabarum in Europe showed that it is possible that, in some cases, the groups of sexual and asex-

ual populations of a species of parasitoid represent a young complex of lineages that are not

completely isolated between reproductive modes [56]. The lack of genetic isolation between

these populations would explain their coexistence.

An assumption of the “three-species model” is that the character that governs resistance in

the weevil population is the same for both parasitoids. We made this assumption because

many haplodiploid Hymenoptera are capable of both sexual and asexual reproduction. In such

systems, it is probable that host resistance to different parasitoid individuals is not influenced

by sexual reproduction. Also making this assumption, Ikegawa et al. (2014 [57]) investigated

the effects of predator-nonspecific adaptive defences on the success of biological control using

a theoretical modelling approach. Our results matched their findings; predator–nonspecific

defences enhanced three species coexistence (in the case of all having the same ability to

evolve), but the introduction of two natural enemies rarely improved the efficiency of biologi-

cal control. This assumption is also supported by empirical evidence of several cases where

defences against natural enemies are nonspecific, from physical and behavioural defences to

generalized immune responses. Several examples of the first two types are found in a review
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on insect behaviour and morphological defences against parasitoids by Gross (1993 [58]).

There is also evidence that immune response to parasitoid infection can be non-specific, as

shown by Fellowes et al. (1999 [59]) on encapsulation of three different species of parasitoid

larvae by Drosophila melanogaster. Furthermore, our results showed that after the introduction

of a second parasitoid, the host population immediately has a higher resistance rate to the new

parasitoid. Our results in conjunction with the work of Ikegawa et al. (2014 [57]) and the

above evidence suggest that whether defence traits of pests are non-specific may be important

in determining the potential success or failure of a “multiple enemies” approach for biological

control of pests.

Overall, our findings illustrate that the asymmetry in the reproductive strategies between

parasitoids and hosts (and the extent of differences in additive genetic variance between them)

is crucial for predicting their long-term success as biological control agents. Long-term moni-

toring of biological control efficacy is rare, and resistance may be more common than known

examples would imply [12]. In general our findings suggest that the use of parasitoids with

lower additive genetic variance than their host (due to asexuality or severe population bottle-

necks) is likely to promote resistance, unless there are repeated reintroductions to prevent evo-

lutionary dynamics. Fortunately, introduction of sexually reproducing individuals after an

initial introduction of asexual strains may overcome these problems. Moreover, our results

would also suggest that biological control of an asexual pest (e.g. some aphids) or pests that

have recently colonized following an extreme bottleneck will be more sustainable. Irrespective,

we suggest that evolution must be considered when evaluating the long-term risks and benefits

of classical biological control.
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