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Can neuroimaging help combat the opioid epidemic? A
systematic review of clinical and pharmacological challenge
fMRI studies with recommendations for future research
Hestia Moningka1, Sarah Lichenstein2, Patrick D. Worhunsky1, Elise E. DeVito1, Dustin Scheinost2 and Sarah W. Yip1

The current opioid epidemic is an urgent public health problem, with enormous individual, societal, and healthcare costs. Despite
effective, evidence-based treatments, there is significant individual variability in treatment responses and relapse rates are high. In
addition, the neurobiology of opioid-use disorder (OUD) and its treatment is not well understood. This review synthesizes published
fMRI literature relevant to OUD, with an emphasis on findings related to opioid medications and treatment, and proposes areas for
further research. We conducted a systematic literature review of Medline and Psychinfo to identify (i) fMRI studies comparing OUD
and control participants; (ii) studies related to medication, treatment, abstinence or withdrawal effects in OUD; and (iii) studies
involving manipulation of the opioid system in healthy individuals. Following application of exclusionary criteria (e.g., insufficient
sample size), 45 studies were retained comprising data from ~1400 individuals. We found convergent evidence that individuals
with OUD display widespread heightened neural activation to heroin cues. This pattern is potentiated by heroin, attenuated by
medication-assisted treatments for opioids, predicts treatment response, and is reduced following extended abstinence.
Nonetheless, there is a paucity of literature examining neural characteristics of OUD and its treatment. We discuss limitations of
extant research and identify critical areas for future neuroimaging studies, including the urgent need for studies examining
prescription opioid users, assessing sex differences and utilizing a wider range of clinically relevant task-based fMRI paradigms
across different stages of addiction.

Neuropsychopharmacology (2019) 44:259–273; https://doi.org/10.1038/s41386-018-0232-4

INTRODUCTION
Nonmedical opioid use is a major public health problem in the
United States, with rates of opioid-use disorder (OUD), treatment
admissions, and opioid-associated overdoses and deaths rising
dramatically in recent years [1–3]. Both behavioral and pharma-
cological approaches have shown promise for treating OUD. In
particular, methadone, buprenorphine, and naltrexone are recom-
mended (NIDA/SAMHSA Blending Initiative [4]; [5]) widely used [6]
forms of medication-assisted treatment [7, 8]. However, there is
substantial individual variability in treatment response, and data
indicate high rates of relapse even over the short term [9–13].
Therefore, further research is urgently needed to identify both
novel treatment targets and individual difference factors confer-
ring vulnerability for relapse.
Functional magnetic resonance imaging (fMRI) allows for

indirect assessment of brain function and has been used
extensively to study addictions and their treatment. Extant data
indicate that multiple brain regions interact in a dynamic manner
to influence a range of complex cognitive processes relevant to
drug addictions. In particular, prefrontal cortical (PFC) brain
regions involved in cognitive-control and executive-functioning
processes [14–17] are reciprocally connected with subcortical
limbic neurocircuitry (e.g., striatum, amygdala) involved in reward
and incentive-salience encoding [18–21]. These networks are
altered among individuals with drug addictions [16, 22, 23], and

emerging data suggest that both short-term treatment efficacy
[24–27] and longer-term recovery [28–30] may depend on
appropriate engagement of these systems [31–33]. However,
these processes are incompletely understood, particularly within
the context of OUD.
Similarly, while the neurochemical/pharmacologic effects of

medication assisted treatments for OUD are relatively well
characterized [34], less is known about the down-stream effects
of these medications on functional responses in the brain. fMRI
has the potential to provide invaluable insights into these
processes. Despite this potential, effective translation of research
findings into the clinical realm remains elusive [35]. To synthesize
existing knowledge and facilitate effective translation of findings
to real-world clinical settings, we aim to build upon recent reviews
focused more broadly on fMRI findings across different substance
use disorders [36, 37] and others focused more narrowly on
resting-state fMRI in OUD [38–40] by examining published fMRI
literature (both task-based and resting-state) relevant to OUD,
with an emphasis on findings related to opioid medications and
treatment outcomes, as well as proposing areas for further
research. By delineating common and distinct neural mechanisms
of OUD pathophysiology and treatment response, it may be
possible to identify which individuals are most likely to benefit
from different treatments, optimize existing therapeutic
approaches to target neural and clinical features of OUD, and
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unveil novel neuroscience-informed interventions to combat the
nationwide opioid epidemic [32, 35, 41].

METHODS
A systematic literature search of Medline and Psychinfo was
conducted on September 18th, 2017 using the following parameters:
“fmri” and “heroin” or “opioid” or “opiate” or “buprenorphine” or
“methadone” or “fentanyl”. Our initial search yielded 157 studies. For
simplicity, we categorized studies based on clinical relevance, as
follows: (a) fMRI studies comparing OUD and control participants; (b)
studies related to medication, treatment, abstinence or withdrawal
effects in OUD (no control group required); and (c) studies involving
manipulation of the opioid system in healthy individuals (no OUD
group required Fig. 1). Studies not falling into one of these four
categories (e.g., studies involving manipulation of the opioid system
in alcohol-use disorder) were excluded.
Following exclusion of duplicate citations, manuscripts judged

not to be relevant given the above criteria (based on titles and
abstracts as necessary), or not to contain original, peer-reviewed
research (e.g., reviews, book chapters), 69 studies were retained for
full-text review. For between-group studies, we required a sample
size of n ≥ 15 per group. However, given this review’s focus on
clinical translation, a more liberal threshold of n ≥ 10 was used for
studies employing a within-subjects design (e.g., before and after
daily methadone) or directly investigating treatment/recovery
mechanisms (e.g., comparison of OUD individuals with and without
subsequent relapse). Following full text inspection, an additional
eight studies were judged ineligible (e.g., studies of OUD patients
not related to treatment and not including a control group) and
twenty were excluded due to insufficient or not specified sample
sizes. Four additional studies were identified from other sources
(e.g., references in other manuscripts) resulting in a total of
45 studies included in the present review. Further details on study
inclusion are shown in Supplemental Fig. 1 (CONSORT diagram).

Results and sample characteristics
Using the above criteria, we identified 32 fMRI studies including
opioid-dependent individuals and 13 studies involving manipula-
tion of the opioid system in healthy controls, together comprising
data from just over 1400 individuals (769 OUD; 646 controls).
Neuroimaging methodologies (types of task, analysis approach)
and clinical characteristics (e.g., abstinence duration, medication
status) varied widely across studies. For studies including
individuals with OUD (n= 32), this included 18 task-based studies
and 14 resting state studies. The primary opioid of abuse was
heroin in all but one study. No studies compared OUD individuals

based on type of opioid (e.g., prescription vs. non-prescription
opioid use). Seventeen (37.7%) of the 45 above-reviewed studies
included solely male participants, yet no study was comprised
solely of women. Across all studies, only 208 (14.7%) of
participants were female; Fig. 1). None of the studies identified
in our systematic review (including those excluded for sample size
limitations) included sex comparisons. Tables 1–4 summarize
primary study characteristics (sample size, sex, primary drug, study
design) and findings. Table 5 summarizes clinical characteristics of
OUD individuals included in these studies (medication status,
length of heroin abstinence prior to the study, and the duration
heroin use/dependence). To facilitate comparison of findings
across studies, we have organized our review based on
methodological similarity (i.e., type of fMRI task). Below, we
review primary findings with an emphasis on those from studies
related to treatment or abstinence.

Drug cue reactivity
Predominant theories regarding the neurobiological basis of
addiction assert that extended substance use is associated with
neuroadaptations linked to overvaluation of drug-related stimuli
relative to natural rewards [23, 42]. A number of task-based fMRI
studies have therefore focused on neural response to heroin-
related stimuli among individuals with OUD [43–52] (Table 1). As
expected, studies examining brain activation to heroin-related
cues converge in reporting greater neural response among OUD
participants [48, 49, 53], although the scope of this finding varies
across reports. Findings generally indicate widespread increases in
neural activation to heroin cues in OUD, extending throughout
parietal, limbic (e.g., amygdala, striatum, hippocampus, thalamus),
frontal cortical (e.g., anterior cingulate, dorsolateral prefrontal
cortex, orbitofrontal cortex) and midbrain regions [45, 48, 49]. As a
whole, findings from cue reactivity studies of OUD are therefore
largely consistent with those from the larger addiction literature.
Neural responses to drug cues further appear sensitive to

manipulation of the opioid system. Using a within-subjects, cross-
over design, Walter and colleagues [43] demonstrated increased
orbitofrontal activity (ROI-based analysis only) in response to drug
cues following acute heroin (vs. saline) administration in
individuals receiving heroin maintenance therapy. In contrast,
findings of decreased activity within orbitofrontal, insular,
amygdalar and hippocampal regions have been reported follow-
ing daily methadone administration [46]. Similarly, existing data
indicate that acute administration of both naltrexone (opioid
antagonist) and buprenorphine (partial agonist) are associated
with decreased subcortical activity (e.g., amygdala, striatum,
hippocampus) to drug cues [47, 52].
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Fig. 1 Prevalence of male and female participants across reviewed fMRI studies. Across all studies, 208 (14.7%) of participants were female
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Neural responses to drug cues have also been shown to change
following prolonged abstinence. Findings from cross-sectional
studies comparing abstinence subgroups (e.g., short- vs. long-term
abstinent patients) indicate that longer abstinence durations are
associated with decreased striatal and other corticolimbic activity
to drug cues, although the precise anatomical loci of these
findings varied across studies [45, 50, 51]. Similarly, prospective
studies comparing baseline neural responses between individuals
with and without a subsequent relapse indicate decreased striatal
activity to heroin cues among non-relapsers [48]. Extant data
therefore suggest that corticolimbic engagement to drug cues
decreases with prolonged abstinence, and that individual
differences in baseline reward responses to drug cues may
contribute to variability in treatment response. However, long-
itudinal studies incorporating neuroimaging measures at multiple
time points are needed to confirm these hypotheses.
Although somewhat varied across studies, findings from fMRI

studies using drug cues to study OUD are generally consistent
with current neurobiological theories of drug addictions: They
indicate heightened engagement of corticolimbic neural circuitry
to drug cues among current users relative to controls. In addition,
existing data suggest that neural responses to drug cues are
further increased following heroin administration, but are
decreased following agonist (methadone), antagonist (naltrexone)
or partial agonist (buprenorphine) medications [43, 46, 47, 52].
Thus, despite the differing pharmacological mechanisms of
different forms of MATs (i.e., methadone vs. naltrexone vs.
buprenorphine), these data raise the possibility of somewhat
similar downstream effects of these medications on neural activity
in response to drug cues. Finally, data from primarily cross-
sectional studies indicates that corticolimbic responses to drug
cues may decrease following prolonged abstinence [45, 50, 51].
Overall, these data support the hypothesis that brain regions
involved in salience encoding and drug approach behaviors may
be appropriate treatment targets for OUD interventions. However,
further mechanistic work using longitudinal designs is needed to
support this hypothesis.

Non-drug rewards
In contrast to typically heightened neural responses to drug cues,
individuals with addictions typically exhibit blunted responses to
non-drug rewards [54–56]. However, only two of the identified
studies assessed reward processing in OUD using non-drug
stimuli (Table 2). Using a reward/loss learning task Gradin and
colleagues [57] observed decreased activity within regions including
the dorsal caudate, insula, ventral striatum and inferior frontal gyrus
among methadone-maintained individuals, relative to controls.
Somewhat similar findings of decreased engagement within regions
including the insula, inferior frontal gyrus, posterior cingulate and
dorsolateral PFC have also been reported in a separate study of
methadone-maintained individuals [58]. Thus, while somewhat
limited, current data generally support the hypothesis that
processing of non-drug rewards is diminished in methadone-
maintained individuals. These data raise the possibility that adjunct
treatments targeting reward mechanisms (e.g., contingency man-
agement, neurofeedback) might be beneficial in addressing residual
reward processing deficits among methadone-treated individuals
[35].
Both of the above-described studies reported interactions

between methadone and reward responses, however anatomical
loci and direction of associations differed across studies [57, 58].
Specifically, Gradin and colleagues reported positive associations
between daily methadone dose and BOLD response within the
midbrain and parahippocampal gyrus [57], whereas Yip and
colleagues reported negative associations between daily metha-
done dose and BOLD response within the posterior cingulate and
precuneus [58]. Furthermore, results from both studies diverge from
a recent meta-analysis including individuals with alcohol, cocaine,Ta
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cannabis, nicotine, and gambling disorders, which reported
increased activation of the ventral striatum, as well as frontal,
cingulate, insular, parietal and occipital regions among addicted
individuals relative to controls [59]. This discrepancy suggests that
individuals with OUD may exhibit a distinct pattern of aberrant
neural response to non-drug rewards compared to individuals with
other substance-use disorders. Thus, while findings from both
studies in OUD indicate residual alterations in reward processing of
non-drug stimuli among methadone-treated individuals, further
mechanistic work is needed to determine the specific effects of
methadone on reward responses. Similarly, future studies are
needed to determine the effects of naltrexone and buprenorphine
on neural processing of non-drug rewards, particularly in light of
existing data suggesting effects of these medications on processing
of drug stimuli (reviewed above) [46, 47, 52].

Affect processing
Difficulties in emotion regulation, high rates of negative affect
and alterations in processing of affective stimuli have been widely
documented among individuals with addictions [60–62]. Overall,
findings from studies of non-opioid addictions generally indicate
reduced neural activation across a range of different regions in
response to various emotional stimuli [37], and blunted amygdala
responses to negative stimuli in particular [60, 61]. Consistent
with this, a cross-sectional study of abstinent (inpatient) former
heroin dependent individuals found decreased amygdala
response in OUD individuals, relative to controls [63]. In contrast,
using an ROI-based approach, Schmidt and colleagues [64] found
an increased amygdala response to negative emotional faces
among OUD patients receiving heroin maintenance therapy
relative to controls, that was attenuated following acute heroin
administration. Follow-up seed-based analyses in the same
sample indicated increased connectivity between the fusiform
(structure implicated in face processing) and amygdala that was
also attenuated following heroin administration [65]. Thus, while
extant data support the hypothesis of altered amygdala
responses in OUD patients—and suggest sensitivity of these
responses to opioid administration—the direction of findings
overall remains equivocal (Table 2). Thus, further work across
different patient groups (e.g., currently using, abstinent,
medication-maintained individuals) is warranted. In addition,
further work is needed to determine the extent to which
alterations in amygdala reactivity may be specifically linked to
emotion regulatory processes; e.g., as opposed to simply
reflecting a more general blunting of neural responses to non-
drug stimuli.

Inhibitory control
Response inhibition requires coordination of executive control
processes and is central to models of addictive behavior [66, 67].
Go/no-go tasks are widely used to study neural mechanisms
underlying response inhibition and error processing. Studies
conducted in healthy controls consistently report engagement
of the anterior cingulate during go/no-go task performance [68].
Relative to control participants, data indicate decreased anterior
cingulate, lateral PFC and insular engagement among indivi-
duals with OUD during go/no-go task performance [69].
Decreases in lateral PFC engagement during Go/no-go perfor-
mance following acute heroin (vs. placebo) have further been
demonstrated [70]. In contrast, data from Yücel and colleagues
[71] indicate increased lateral PFC engagement, but no evidence
for alterations in cingulate engagement, among OUD individuals
relative to controls during performance of a multi-source
interference task involving inhibitory control. This stands in
contrast to literature on individuals with other substance use
disorders, which have more consistently reported decreasedTa
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activation of cingulate, insular, and frontal regions during
inhibitory control [37]. As with findings from other task domains
shown in Table 2 (non-drug reward processing, affective
processing), findings from studies of inhibitory control in OUD
individuals remain conflicting and the relationship between
inhibitory control processes and clinical features of OUD remains
unknown. Thus, further work across diverse OUD populations is
urgently needed to identify targets for improved prevention and
intervention efforts.

Resting state
In contrast to task-based fMRI studies, resting-state studies of OUD
individuals aim to characterize differences in the “intrinsic”
organization of the brain via analysis of spontaneous fluctuations
in the fMRI signal while the brain is “at-rest”—i.e., in the absence
of a task. Given the unconstrained nature of resting-state data,
many different methods have been proposed for analysis. This
methodological variability is reflected in the resting-state studies
of OUD individuals identified here, with few manuscripts using
comparable methods. Table 3 summarizes all identified resting
state studies [72–85]. Given the large range of diverse analysis
methods employed, we here focus on primary findings from
studies using similar analysis approaches.
Independent component analysis (ICA) is a network-based

analysis approach for identifying temporally coherent functional
networks. Three studies have used ICA to probe connectivity
within canonical (e.g., default mode, limbic) networks among
individuals with OUD. Using this approach, Li and colleagues
reported decreased anterior default mode network (DMN)
connectivity among recently detoxed, medication-free, heroin
dependent individuals, relative to controls [81]. Similarly, an ICA
study focusing on limbic network connectivity found decreased
connectivity between the posterior cingulate (part of posterior
default mode) and a limbic network among heroin-maintained
patients relative to controls, despite no between-group differ-
ences in within-network limbic connectivity [85]. A separate cross-
sectional study comparing OUD individuals as a function of
relapse status reported increased anterior DMN connectivity—in
addition to decreased posterior DMN connectivity—among
abstinent vs. relapsed patients [82].
Findings from two studies using seed-based approaches

(functional connectivity between one or more a priori ROIs)
using the anterior cingulate as a seed further indicate
connectivity alterations between brain regions consistent with
the posterior DMN (posterior cingulate, precuneus, retro-
splenial cortex), however these studies were inconsistent in
whether OUD exhibited greater connectivity compared to
controls [74, 78]. Thus, ICA studies collectively report a pattern
of altered DMN connectivity among OUD individuals that is
characterized by decreased anterior (e.g., mPFC) and increased
posterior (e.g., posterior cingulate) connectivity, whereas
studies employing seed-based approaches have yielded less
consistent findings.
Other approaches employed in resting state studies of OUD

include graph theory and amplitude of low frequency fluctuation
(ALFF) analyses. Graph theory is a method to characterize global
and regional properties of whole brain functional networks. Two
graph theory studies reported reduced small worldness (prop-
erty where brain regions cluster into segregated networks, but
communication between these networks is efficient due to
highly connected hub regions [86]) and degree (the number of
connections to a brain region) in the cingulate cortex for OUD
individuals compared to healthy controls [79, 83]. ALFF is a
method to quantify the amplitude of the power spectrum of the
BOLD signal, and thus an indirect method for quantifying
“spontaneous” neural activity. In two studies using this approach,
consistent decreases in ALFF were observed in the dorsal ACC
and in the DMN [75, 80] for OUD individuals compared toTa
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Table 5. Clinical characteristics of studies reviewed

Ref Recruitment route MAT Status Abstinence duration prior
to study

Duration of heroin use/
dependence

Langleben et al. [46] MMT clinic in USA MMT 16 ± 13 months n.r.

54 ± 33 months

Mei et al. [52] Inpatient DTX clinic in China DTX (scanned prior to TX or >8 h
after first BUP dose)

50 ± 24 h 4.5 ± 4.4 years

Li et al. [49] Residential treatment in China AB, no MAT 21.7 ± 16 days 78.6 ± 50.1 months

Lou et al. [51] Forced DTX center in China DTX STA: 1.2 ± 0.1 months STA: 7.0 ± 1.0years

LTA: 13.6 ± 0.4 months LTA: 8.2 ± 1.1 years

Li et al. [50] Drug rehab center in China AB (post-methadone-assisted DTX) STA: 23.6 ± 17.6 days STA: 80.5 ± 54.4 months

LTA:193.3 ± 42.7 days LTA: 96.3 ± 69.5 months

Langleben et al. [47] Court mandated OUD TX (selected
XRNTX) in USA

AB 97 ± 123 days 12.5 ± 8 years

Wang et al. [45] MMT in China MMT Group A: <1 year; 7.92 ±
2.89 months

n.r Group A: 48.6 ± 4 9.9 months

Group B: >2 years; 29.62 ±
3.53 months

Group B: 49.64 ± 42.5 months

Li et al. [48] MMT clinic in China MMT n.r. Relapsers: 69.2 ± 68.5 months

Relapsers: 18.3 ± 11.5 months Non-relapsers: 92.3 ±
70.5 monthsNon-relapsers: 25.5 ± 17.3 months

Walter et al. [43] Centre of Substance Use Disorders
in Switzerland

HMT n/a 21.1 ± 5.7 years

7.3 ± 4.4 years

Wang et al. [44] Local ads in China Active users prior to enrollment, DTX
as part of study

n/a n.r.

Gradin et al. [57] NHS addiction service in UK MMT > 6 weeks at stable dose n.r. 3 year minimum

Yip et al. [58] RCT of cocaine use disorder
treatment in USA MMT clinic

MMT > 2 months at stable dose n.r. n.r.

Wang et al. [63] Forced DTX program in China
(2–5 months post-DTX)

AB 3.4 ± 0.9 months 6.9 ± 2.9 years

Schmidt et al. [64,
65]

Centre of Substance Use Disorders
in Switzerland

HMT > 6 months (>3 months at
stable dose)

n/a 21 ± 6.4 years

Fu et al. [69] Inpatient abstinence treatment in
China

AB, no MAT 7.64 ± 2.16 weeks 6.25 ± 3.53 years

Schmidt et al. [70] Centre of Substance Use Disorders
in Switzerland

HMT > 6 months (>3 months at
stable dose)

n/a 20.54 ± 6. 56 years

Yucel et al. [71] Community treatment providers in
Australia

MMT & BMT 24 h minimum 107.44 ± 60.87 months

31.54 ± 32.55 months

Wang et al. [74] Individuals seeking DTX in China Active users prior to enrollment 5.1 ± 0.29 h 19.9 ± 3.1 years

Jiang et al. [80] Individuals seeking treatment in
China

MMT n.r. 10.83 ± 4.61 years

6-7 days

Liu et al. [83] MMT clinic in China MMT 4.76 ± 0.7 months 85.3 ± 46.2 months

Duration n.r.

Xie et al. [76] Hospital in China AB 8.05 ± 2.51 weeks 6.59 ± 3.72 years

Jiang et al. [79] Hospital in China MMTa 6–7 days 9.21 ± 5.28 years

Duration n.r.

2 participants not on MMTa

Wang et al. [75] MMT clinic in China AB n.r. 81.5 ± 33.9 months

Xie et al. [77] Hospital in China AB 8.05 ± 2.51 weeks 6.59 ± 3.72 years

Li et al. [82] MMT clinic in China MMT > 3 months at stable dose n.r. n.r.

Schmidt et al. [85] Centre of Substance Use Disorders
in Switzerland

HMT > 6 months (>3 months at
stable dose)

n/a 21.5 ± 6.10 years

Zhang et al. [78] Forced DTX program in China AB 8.05 ± 2.51 weeks 6.2 ± 3.53 years

Chang et al. [72] MMT clinic in China MMT > 3 months n.r. Non-relapsers: 275.7 ±
69.1 months

Relapsers: 224 ± 64.5 months

Li et al. [81] n.r. AB 21.7 ± 16 days 78.6 ± 50.1 months

Qiu et al. [84] Hospital in China UROD+NMT n.r. 4.96 ± 1.97 years

Wang et al. [73] n.r. MMT > 3 months 237 ± 424.35 days 7.66 ± 3.55 years

Ref. reference, MMT methadone maintenance treatment, USA United States of America, n.r. not reported, DTX detox, TX treatment, BUP buprenorphine, AB
abstinent, MAT medication-assisted therapy, STA short-term heroin abstinence, LTA long-term heroin abstinence, OUD opioid use disorder, XRNTX extended
release naltrexone, HMT heroin maintenance treatment, n/a not applicable, NHS National Health Service, UK United Kingdom, RCT randomized controlled trial,
BMT buprenorphine maintenance treatment, UROD general anesthesia, NMT naltrexone maintenance treatment
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healthy controls. However, the exact regions of the DMN and
regions of increased ALFF were inconsistent across the two
reports.
Preliminary data further indicate that resting state connectivity

may be sensitive to manipulations of the opioid system: in a
randomized, double-blind, cross-over study, Schmidt and collea-
gues [85] reported increases in striatal connectivity following
acute heroin administration (vs. saline) that were positively related
to subjective drug responses. In a separate within-subjects study,
decreases in ALFF following naltrexone treatment (vs. baseline)
were reported within primarily cortical regions including the
medial OFC and DLPFC among codeine-dependent individuals
[84]. Given the large number of methodological differences
between these studies (e.g., drug, analysis approach, study
population), further work directly comparing effects of opioid
agonism vs. antagonism on resting state networks (in the same
group of participants) is needed.
Across most studies, the DMN (including the PCC and mPFC)

was consistently highlighted as exhibiting altered connectivity in
OUD individuals relative to controls. However, the direction of
these effects was varied. The discrepancy between the direction of
DMN connectivity differences in OUD is likely influenced by the
methodology used and the patient population being studied,
making comparisons across studies difficult. Notable character-
istics of study samples may also limit the generalizability of
published results. For example, none of the identified studies were
conducted in the United States, thus generalization of findings to
the current demographically and clinically unique generation of
opioid users in the United States may be limited [87]. Similarly, as
with the majority of task-based studies, very few studies included
female participants (see Fig. 1 for distribution of male and female
participants across studies).

Manipulation of the opioid system in healthy controls
We identified 13 studies assessing the effects of opioidergic
agents on brain activity in samples of healthy adults [88–100]
(Table 4). A number of studies have examined the effects of opioid
agonists and antagonists on brain responses to noxious stimuli in
healthy individuals. Noxious or painful stimuli activate an
established network of regions including the insula, anterior
cingulate, thalamus, medial and lateral prefrontal areas, parietal
cortex, striatal structures and somatosensory regions [101]. While
specific patterns of brain activity may differ by modality (e.g.,
mechanical vs. thermal pain) [102], the effects of opioidergic
agents on pain-related neural responses are largely consistent.
Opioid agonists remifentanil and alfentanil reduced pain-related
signaling in the thalamus, insula, cingulate, striatum, and
sensorimotor regions [93, 96, 98]. By comparison, naloxone
(antagonist) and buprenorphine (partial agonist) administration
in healthy controls are associated with increased signaling across
these regions in response to noxious stimuli [89, 90, 100]. In
addition, naltrexone (antagonist) is associated with increased
insula and amygdala activity to aversive food cues, but with
decreased response within the dorsal anterior cingulate to
appetitive food cues [97].
Several pharmacological fMRI (phfMRI) studies also character-

ized neural responses to opioidergic agents in the absence of
stimuli. Compared to a no-drug condition, buprenorphine (partial
agonist) and aprepitant (antiemetic) similarly increased neural
signals in the striatum, midbrain, thalamus, and orbitofrontal
cortex [90]. Both acute oxycodone and buprenorphine are further
associated with reduced connectivity patterns between the insula
and subcortical regions (e.g., thalamus, striatum) in healthy
controls [89, 95]. Thus, phMRI findings suggest that, in the
absence of stimuli, full (oxycodone) and partial (buprenorphine)
opioid agonists appear to influence connectivity within a similar
set of reward-related regions.

DISCUSSION
This systematic literature review identified 45 fMRI studies relevant
to OUD, together comprising data from ~1400 individuals.
Perhaps not surprisingly, neuroimaging methodologies (task type,
analysis method) and clinical features (abstinence duration,
medication status) varied widely across studies. However,
cumulative evidence did converge for some domains—most
notably drug cue reactivity and, to a lesser extent, drug challenge
studies. Below we summarize findings from key domains and
recommend directions for future clinically oriented neuroimaging
work to help combat the current opioid epidemic.
Consistent with predominant theories of addictions, data

indicate relatively widespread increases within parietal (precu-
neus, posterior cingulate), limbic (amygdala, striatum, hippocam-
pus, thalamus), frontal cortical (anterior cingulate, dorsolateral
prefrontal cortex, orbitofrontal cortex) and midbrain regions
among OUD individuals in response to drug cues [45, 48, 49].
Emerging data further suggest that individual differences in
baseline neural responses to drug cues may be linked to
differences in treatment outcomes, such that reduced responses
are associated with longer abstinence durations [45, 50, 51]. While
replication of this latter finding in larger samples is required, these
data raise the possibility that therapies specifically targeting
neural responses to drug cues (e.g., cognitive bias modification;
real time fMRI) might be effective adjuncts to existing therapies
[31, 103, 104].
Findings from other domains (i.e., non-drug reward processing,

affect processing, inhibitory control) have been far less consistent.
This is likely due to the relative dearth of studies conducted in
these domains (8 studies over three domains), as the over-
whelming majority of identified OUD fMRI studies either utilized
drug-cue paradigms or else assessed the brain “at rest”.
Furthermore, discrepancies in the specific tasks used and the
analytic frameworks employed may also contribute to inconsistent
patterns of results across studies. Thus, further work characterizing
the functional neurobiology of OUD across other clinically relevant
domains is urgently needed. In particular, task-based fMRI studies
using standardized paradigms, which can be applied across
species and analyzed using computational and cognitive model-
ing approaches, will help to elucidate the nature of cognitive and
affective neural functioning in OUD.
Findings from resting-state studies generally support the

hypothesis of altered DMN engagement among individuals with
OUD, although the direction of these alterations has not been
consistent across studies. As noted above, the identified resting
state studies included a large number of methodological
limitations, making interpretation of findings across studies
problematic. In particular, given the variety of analysis methods
employed (e.g., ALFF, ICA), the virtual absence of whole-brain
analyses, and the relatively short durations of image acquisitions
(e.g., ~5min), collective findings from extant resting state analyses
should be interpreted with caution. Thus, both acquisition of more
data (i.e., longer durations) per subject (to improve within-subject
reliability) and harmonization of analysis approaches and data
pooling across studies are strongly recommended as important
future directions for resting-state work in OUD populations [105–
110]. As resting state analyses are particularly sensitive to motion
effects, future studies should also incorporate more sophisticated
motion correction techniques [111, 112] and test for possible
effects of between-group (i.e., patients vs. controls) differences in
motion on connectivity patterns.
Figure 2 summarizes primary findings from selected brain

regions for studies involving manipulation of the opioid system
(further details in Supplemental Table 1). Combined data generally
indicate somewhat similar effects of opioid agonism in healthy
controls and individuals with OUD (Fig. 2). For example,
administration of both acute methadone (in patients) and
oxycodone (in controls) is associated with decreases in neural
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responses within the OFC and limbic regions [46, 95]. In contrast,
acute heroin administration (in patients) is associated with
increases in OFC and striatal regions. In addition, both antagonist
(naltrexone) and partial agonist (buprenorphine) administration
have been associated with relative decreases within limbic regions
in studies of OUD individuals [47, 52], whereas findings on the
effects of buprenorphine administration (during resting state) in
controls have been mixed [89, 90]. Somewhat contrastingly,
buprenorphine (partial agonist) and naloxone (antagonist) admin-
istration have also been associated with increased activity within
the thalamus, insula, cingulate and striatum when paired with
noxious stimuli in healthy controls [89, 90, 100]. Notably, none of
the studies conducted in OUD individuals meeting our inclu-
sionary criteria utilized noxious stimuli/assessed pain response.
Given the very high prevalence rates of chronic pain among
patients entering MAT [113], work in this area is urgently needed.
Despite the apparent relative concordance across some

pharmaco-fMRI studies of OUD individuals and controls, numerous
between-study methodological differences make direct compar-
ison of findings problematic. For example, while several of the
studies conducted in OUD employed randomized, double-blind,
cross-over designs (“gold standard” for pharmacological challenge
research), very few conducted in controls have done the same.
Thus, further work to disentangle actual drug effects from those of
expectation (placebo) effects, particularly among healthy indivi-
duals, is needed. In addition, no studies have controlled for
possible medication-induced changes in metabolism, blood flow,
and neurovascular coupling. Given that each of these factors can
modulate the fMRI signal [114–116] and potentially lead to
mischaracterization of neural activity, future studies also incorpor-
ating cerebral perfusion measures (e.g., pulsed arterial spin
labeling) [117] are needed to better characterize the effects of
opioidergic agents on neural activity across patients and controls.

Over the past two decades there has been a dramatic shift in
opioid use initiation [87], with the overwhelming majority of
heroin users also reporting prior misuse of prescription opioids
[118]. Despite this, heroin was the primary opioid of abuse across
all but one fMRI study, which studied codeine-dependent
individuals [84]. As increases in prescription opioid abuse have
occurred in tandem with changes in clinical and demographic
features of individuals seeking treatment for OUD [87], future fMRI
work specifically assessing the neural correlates of prescription
opioid use and abuse (vs. heroin use) is urgently needed.

Need for consideration of sex as a biological variable in studies of
OUD
The overall inclusion of women was very low across reviewed
studies (<15% of all participants; Fig. 1) and no study included
consideration of sex differences. This is part of a larger problem of
underrepresentation of women and insufficient consideration of
sex in clinical research more generally and addiction research
specifically [119]. Sex differences have been demonstrated in the
rates and clinical characteristics of individuals with OUD. While
women have historically had lower rates of substance use and
dependence, including heroin [120], this pattern is less clear in
prescription opioids, with some studies reporting higher rates of
recent [121] or regular use of prescription opioids [122] in women,
but higher rates of abuse in men [123, 124]. These higher rates of
prescription use in women are worrying since, among individuals
seeking treatment for opioid use disorder, women are more likely
to report first obtaining opioids from a legitimate prescription
from their doctor [125, 126], while men are more likely to first
obtain from an illicit source [127]. Furthermore, as with other
drugs of abuse, there is evidence of “telescoping” (i.e., a faster
transition in women relative to men from initial to problematic
substance use) in OUD [128, 129]. Further, many large trials have

Fig. 2 Regional effects of opioidergic agents on neural function. Summarizes primary findings for selected brain regions from fMRI studies
involving manipulation of the opioid system. OFC orbitofrontal cortex, INS insula, HIP hippocampus, AMY amygdala, ACC anterior cingulate,
IFG inferior frontal gyrus, THA thalamus, STR striatum, MBN midbrain, SMT sensorimotor, OUD opioid use disorder, HC healthy control, NS no
results. Based on data reported in refs [43, 46, 47, 52, 64, 70, 85, 89–91, 93–98, 100]. For studies including multiple conditions, e.g., ref. [89],
results reported for neutral or resting state conditions were used for figure generation (see Supplemental Table 1 for details). Refer to
Tables 1–4 of the primary manuscript for additional summaries of study findings
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found sex differences in clinical correlates at treatment entry, for
example with some samples showing more co-morbid psychiatric
conditions and more psychological distress in women [125, 127,
130].
Several lines of evidence also indicate sex-specific effects of

opioid administration and withdrawal. For example, differential
sex effects of methadone and naltrexone on testosterone [126]
and cortisol [131] levels, respectively, have been reported.
Furthermore, endogenous gonadal hormones impact opioid
effects. For example, estrogens can diminish opioids’ antinocicep-
tive effects [132], there is evidence of interactions and crosstalk
between opioid and estrogen receptors [133], and estrogens may
impact the antinociceptive and rewarding effects of methadone
through effects on methadone metabolism [134]. In addition,
recent preclinical work suggests sex-specific effects of acute
opioid withdrawal and subsequent opioid replacement (with
methadone or buprenorphine) on regional brain metabolism
within regions including the anterior cingulate, amygdala and
striatum [135, 136]. Thus, neuroimaging studies including equal
numbers of male and female participants that are specifically
powered to detect sex-specific effects are urgently needed in
OUD.

Conclusions and recommendations for future work
fMRI has the potential to provide critical insights into the
pathophysiology and treatment of psychiatric disorders. However,
this potential has yet to be fully leveraged within the context of
OUD. Extant data from other substance use disorders (e.g.,
cocaine-use disorder) generally support the hypothesis that
individual differences in brain function are related to differences
in treatment responses [24, 28, 32, 58, 137], yet only a small
number of studies have used fMRI to study treatment mechanisms
relevant to OUD. Of these, most studies have conducted cross-
sectional comparisons of patients based on durations of
abstinence or relapse status [45, 50, 51, 82]. Thus, little is known
about how individual differences in baseline neural function might
contribute to variability in treatment responses to behavioral and
medication treatments for OUD. Further research in this area is not
only critically important to aid in the refinement of existing
treatments based on known brain mechanisms, and to advance
pathophysiological understanding of OUD, but will also pave the
way for individual assignment of patients to specific treatments
based on clinically relevant neuromarkers [35, 138, 139]. Similarly,
longitudinal research assessing neural responses over the course
of treatment is needed to identify brain-based mechanisms of
behavior change within the context of the opioid epidemic.
Furthermore, neuroimaging research also has the potential to
identify novel treatment targets that could facilitate the develop-
ment of innovative prevention and intervention approaches.
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