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Abstract

Recent live-cell microscopy techniques now allow the visualization in multiple colors of RNAs as 

they are transcribed on genes of interest. Following the number of nascent RNAs over time at a 

single locus reveals complex fluctuations originating from the underlying transcriptional kinetics. 

We present here a technique based on concepts from signal theory—called fluctuation analysis—

to analyze and interpret multicolor transcriptional time traces and extract the temporal signatures 

of the underlying mechanisms. The principle is to generate, from the time traces, a set of functions 

called correlation functions. We explain how to compute these functions practically from a set of 

experimental traces and how to interpret them through different theoretical and computational 

means. We also present the major difficulties and pitfalls one might encounter with this technique. 

This approach is capable of extracting mechanistic information hidden in transcriptional 

fluctuations at multiple timescales and has broad applications for understanding transcriptional 

kinetics.

1. INTRODUCTION

Enzymatic reactions involved in the making of a mature messenger RNA (mRNA) are 

numerous. These include reactions to initiate transcription at the promoter, to synthesize the 

pre-mRNA from the DNA template, to cleave and add a poly(A) tail to the transcript once 

the 3′ end of the gene is reached, and to splice the pre-mRNA into a fully mature mRNA 

(Craig et al., 2014). In addition to the RNA polymerase II (Pol II) and the spliceosome—the 

two enzymes that carry out RNA synthesis and splicing, respectively—many others act 

indirectly on this process, eg, by affecting the topology of DNA or depositing 

posttranslational marks on proteins such as histones or Pol II itself, which in turn influence 

the recruitment and function of other enzymes (Craig et al., 2014).

As often in enzymology, the energy-dependent nature of the reactions involved requires an 

out-of-equilibrium description: some of the synthesis and processing reactions are non- (or 
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very weakly) reversible, hence maintaining a constant flux in the system turning substrates 

into products (Segel, 1993). In this context, certain reaction pathways can be favored simply 

because some reactions occur faster than others and not because the product is more 

energetically favorable as in an equilibrium scheme. This situation is also seen in the 

preinitiation steps of gene regulation and has implications for accuracy of transcriptional 

control (Coulon, Chow, Singer, & Larson, 2013). As a consequence, the final product of 

RNA synthesis and processing critically depends on the temporal coordination between the 

different events involved. For instance, splicing decisions are expected to be influenced by 

whether the pairing of splice sites occurs in a first-come-first-served basis as the transcript 

emerges from the elongating polymerase or happens slower than elongation, hence allowing 

more flexibility to pair nonadjacent splice sites (Bentley, 2014). A recurrent question in the 

RNA processing field is whether splicing decisions are governed by this principle of kinetic 
competition or if the cell has developed additional checkpoint mechanisms to ensure a 

predefined order between events (Bentley, 2014). Clearly, answering such questions, given 

the stochastic and non-equilibrium nature of these processes, requires being able to observe 

and dissect their dynamics at the single-molecule level.

To address this, we and others have developed tools and methods to visualize transcription 

and splicing in real time as it occurs in living cells (Coulon et al., 2014; Martin, Rino, 

Carvalho, Kirchhausen, & Carmo-Fonseca, 2013). The principle is to decorate the RNAs 

from a gene of interest with fluorescent proteins that are fused to an MS2 bacteriophage coat 

protein (MCP) that binds to MS2 RNA stem-loops present in the transcripts due to the 

insertion of a DNA cassette in the gene (Fig. 1A; Bertrand et al., 1998). This method allows 

detecting both single RNAs diffusing in the nucleoplasm as well as nascent RNAs being 

synthesized at the transcription site (TS) (Fig. 1B). In the latter case, one can track the TS 

and follow over time the fluctuations in the amount of nascent transcripts on the gene, 

originating from the stochastic and discrete nature of the transcription process (Fig. 1C). 

Combining the MS2 technique with a recent equivalent from the PP7 bacteriophage (Chao, 

Patskovsky, Almo, & Singer, 2007; Larson, Zenklusen, Wu, Chao, & Singer, 2011), we were 

able to decorate different RNAs or different regions of the same RNA with distinct 

fluorophores (Coulon et al., 2014; Lenstra, Coulon, Chow, & Larson, 2015).

Interpreting the two-color time traces resulting from the MS2/PP7 RNA-labeling technique 

can be nontrivial—so much so that data analysis might only focus on the rare instances in 

time traces where a single nascent RNA can be distinguished at the TS. An alternative 

approach, which we favor, consists in extracting information about the synthesis and 

processing kinetics of single RNAs by analyzing entire time traces using a method based on 

signal theory, called fluctuation analysis. This method allows an unbiased selection of all the 

observed transcription events, hence resulting in a high statistical power and a detailed 

description of the underlying kinetics (Coulon et al., 2014). In addition, it is a very general 

framework and can be used to interpret transcriptional fluctuations in many contexts, such as 

gene bursting and the kinetics of sense and antisense transcription of a single gene (Lenstra 

et al., 2015). In principle, it may also be applied to—or combined with—time traces from 

single-molecule imaging of protein recruitment at the TS (such as TFs and Pol II). By 

revealing the temporal relationship between specific molecular events one can now answer a 
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wide range of questions about the mechanisms and regulation of RNA synthesis and 

processing.

Here, we discuss this fluctuation analysis methods, how to implement it, how to interpret its 

results, and the main difficulties that may arise. For reagent preparation, single-molecule 4D 

imaging, and time trace generation, we refer the readers to our earlier description of these 

methods (Ferguson & Larson, 2013).

1.1 Definitions and Terminology

Fluctuation analysis consists in computing and interpreting functions called correlation 
functions from a set of time traces. The term correlation function can have slightly different 

meanings depending on the context and the field of research. It always consist in some 

measure of the joint second moment between the values of a signal a(t) and the 

corresponding values at each time point of a signal b(t + τ) (ie, b(t) shifted by a delay τ), 

hence measuring the statistical correlation between fluctuations in the two signals as a 

function of time separation τ (Fig. 1D). Differences in the precise formulation essentially 

rely on how the second moment is calculated and normalized (eg, central vs raw moments, 

and covariance vs coefficient of variation vs Pearson correlation). In the biophysics field, the 

correlation between two signals is often written

G(τ) = δa(t)δb(t + τ)
a(t) b(t) (1)

where δa(t) = a(t) – 〈a(t)〉 and 〈·〉 denotes the temporal mean. Let us note R(τ) = 〈a(t)b(t + 

τ)〉 and M(τ) = 〈δa(t)δb(t + τ)〉, respectively, the raw moment and the central moment (or 

covariance), so that we have

G(τ) = M(τ)
a(t) b(t) = R(τ)

a(t) b(t) − 1 (2)

When the two signals a(t) and b(t) are the same, G(τ) and M(τ) are, respectively, called an 

autocorrelation and an autocovariance, and both are necessarily symmetrical by 

construction. When the two signals are different, G(τ) and M(τ) are, respectively, called a 

cross-correlation and a cross-covariance and may be asymmetrical. Note that, when one 

measures multicolor time traces (eg, a PP7 signal a(t) in red and an MS2 signal b(t) in 

green), all the pairwise correlations should be calculated (the two red and green 

autocorrelations and the red–green cross-correlation) since they carry complementary 

information about the underlying processes.

The formulation of G(τ) in Eq. (1)—akin to a squared coefficient of variation—yields a 

dimensionless measure that has the advantage of being insensitive to any arbitrary rescaling 

of either signal by an unknown multiplicative factor. This situation indeed arises frequently 

in microscopy data since the correspondence between fluorescence units and actual number 

of molecules—the fluorescence-to-RNA conversion factor—is often unknown and may 

change from one experiment to the next: eg, depending on the optical setup, the imaging 
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conditions and, in the case of MS2/PP7 time traces, the expression level of coat proteins 

which can vary substantially between cells. Note that the Pearson correlation (ie, 

normalization by the product of the standard deviations rather than the means), although also 

dimensionless, is less informative since it is insensitive to both rescaling and offsetting the 

values of the signals. When the fluorescence-to-RNA conversion factor is known, the time 

traces can be expressed in terms of number of RNAs instead of arbitrary fluorescence units. 

In this case, using the covariance function M(τ) instead of G(τ) is preferable since it 

maximizes the information that this function reflects.

1.2 What Correlation Functions Can—and Cannot—Do

An important point to make first is that, even though a correlation function is made of many 

transcription events from one or several time traces (typically ~2000 transcripts in Coulon et 

al., 2014), the result is not an average view of the transcriptional kinetics, on the contrary. As 

an analogy, if Xi are Nrandom variables following a probability distribution with density 

P(x),then averaging together the Dirac functions δ(x – Xi) converges toward the full 

distribution P(x) = limN ∞∑iδ x − Xi /N, not its average, with an accuracy that increases 

with N. From a theoretical point of view, this is exactly what a correlation functions reflects 

about the stochastic kinetics of the underlying processes (eg, Xi could be the stochastic 

elongation and release time of single transcripts), with the difference that the elementary 

functions averaged together are not Dirac functions (cf Section 3.1). In practice, full 

distributions are difficult to estimate accurately, but one can typically discriminate between 

distribution shapes (eg, Dirac, exponential, gamma), as well as the order and dependency 

between stochastic events (Coulon et al., 2014). These aspects are described in more details 

in Section 3.1.

A caveat of correlation functions to mention upfront is that it reveals the stochastic kinetics 

of RNAs without any distinction of whether different statistics occur in different portions of 

the time traces. We are currently extending the fluctuation analysis technique to circumvent 

this limitation and analyze transcriptional kinetics in a time-dependent manner.

Another difficulty with this approach is that correlation functions reflect all types of 

fluctuations in a given set of signals, including technical ones (bleaching, tracking errors, 

etc.) and biological ones that are not necessarily the object of the study (eg, cell cycle 

kinetics). Some of these aspects are specifically discussed in Sections 2.5 and 4.3.

2. COMPUTING AND AVERAGING CORRELATION FUNCTIONS

2.1 Single Correlation Functions

Calculating the numerator of Eq. (1) can be done in several ways. Let us first put aside the 

mean subtraction of the signals and simply discuss the calculation of R(τ) = 〈a(t)b(t + τ)〉

2.1.1 Iterative Method—The simplest method is to compute iteratively all the time-

delay points. Specifically, if a0 … aN–1 and b0 … bN–1 are the values of the signals a(t) and 

b(t) at the N measured time points t ∈ {0, Δt, …, (N – 1)Δt}, then
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R(iΔt) = 1
N − i ∑

q = 0

N − i − 1
aqbq + i (3)

An important point here is that, as signal b(t) is shifted relatively to signal a(t), one should 

only use the N – i pairs of time points that overlap between the two signals and discard the 

overhanging ends (Fig. 1D). We refer to this as overhang trimming.

2.1.2 Multiple-Tau Algorithm—If an experiment is meant to probe a broad range of 

timescales, one does not need the same absolute temporal resolution for fast and slow 

processes. For instance, if the correlation function at 20-s delay is described with 1-s 

resolution, it could be described at 500-s delay with 25-s resolution instead of 1-s resolution 

to still maintain the same relative resolution. This concept is behind the multiple-tau (or 

multi-tau) algorithm (Wohland, Rigler, & Vogel, 2001). It consists in down-sampling the 

signals (ie, reducing their temporal resolution) progressively as the correlation function is 

computed from small to large time delays, yielding a somewhat uniform spacing of the time-

delay points of the correlation function on a logarithmic scale, ie, a somewhat constant 

relative resolution (Fig. 1E). In addition, reducing the resolution at long delays has the 

advantage of reducing the sampling noise (cf Section 4.2), which is naturally stronger for 

slower processes. Interestingly, this algorithm comes originally from the hardware 

correlators built in the 1980s and used to calculate autocorrelations in real time, while a 

signal is being acquired and without having to store it entirely (Schatzel, 1990).

Although we implement it differently here, this algorithm is useful in cases where a broad 

range of timescales need to be observed.

The principle of the multiple-tau algorithm is to choose a resampling frequency parameter m 
and to do the following:

i. Compute R(iΔt) as in Eq. (3) for i = 0, 1, 2, …, 2m – 1

ii. When i = 2m, down-sample the signals by a factor of 2 as follows:

• N N
2  where ⎿·⏌ denotes the integer part

•
aq

a2q + a2q + 1
2  and bq

b2q + b2q + 1
2  for q ∈ {0, 1, …, N – 1}

• then Δt ⟵ 2Δt and i ⟵ m

iii. Compute R(iΔt) as in Eq. (3) for i = m, …, 2m – 1 and go to step (ii). Note that, 

even if the length of the original signal is not a power of 2, all the time points 

will be used initially for the first 2m time-delay points. Only at long delays, 

when down-sampling occurs, one time point at the end is occasionally lost. For 

instance, if N = 37, it will assume the values 37 1 lost 18 9 1 lost 4 2 1. This 

loss of a few time points is generally not a problem since significant effects only 

occur at the very end of the correlation function.
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2.1.3 Fourier Transforms—A very fast and convenient way of computing a correlation 

function is to use Fourier transforms. Thanks to the Wiener–Khinchin theorem (Van Etten, 

2006)

R(τ) = ℱ−1[ℱ[a(t)]ℱ[b(t)]] (4)

where ℱ[ ⋅ ] and ℱ−1[ ⋅ ] are the forward and inverse Fourier transforms and the bar denotes 

the complex conjugate. In practice, for discrete and finite signals, using the fast Fourier 

transform (FFT) algorithm (and its inverse form FFT–1) translates Eq. (4) into 
1
N FFT−1 FFT a0…aN − 1 FFT b0…bN − 1  The FFT algorithm is very efficient and makes the 

computation of the correlation function orders of magnitude faster (execution time grows as 

N log(N), as opposed to N2 for Eq. 3).

However, using Fourier transforms as such is not ideal since it wraps the nonoverlapping 

ends of the signals when shifting them—referred to as overhang wrapping. Indeed, FFT 

implicitly treat finite signals as infinite periodic signals, hence correlating not only a0 … 

aN–1–i with bi … bN–1 but also aN–I … aN–1 with b0 … bi–1. A way around is to extend both 

signals1 by padding N zeros at their ends and to normalize the result of the FFT–1 by |N – i| 
instead of N. Another advantage of this method is that, while the two halves of a cross-

correlation function (at positive and negative delays) have to be computed independently if 

using Eq. (3), the Fourier approach provides both halves directly. More explicitly, the 

computation can be done as follows:

R 0, Δt, …, (N − 1)Δt
positive delays

, −NΔt, …, − Δt
negative delays

=
FFT−1 FFT(a0, …, aN − 1, 0..0

N
)FFT(b0, …, bN − 1, 0..0

N
)

[N, N − 1, N − 2, …, 1, 0, 1, …, N − 2, N − 1]

(5)

where products and divisions are taken term by term. Eq. (5) gives the exact same result as 

the iterative method of Eq. (3), but runs for instance >80 times faster on a 1000 time point 

signal. Down-sampling may then be performed a 

posterioriatdifferentdelaystomimictheresultofthemultiple-taualgorithm.

Even though computation time is generally not an issue when calculating a few tens of 

correlation functions on signals with hundreds of time points, the much better efficiency of 

this technique based on FFTs is useful when computing measurement errors on correlation 

functions using the bootstrap technique (Section 2.6).
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2.2 Mean Subtraction of Fluorescence Traces

As developed in this section and the following one, when going from theory to practice, two 

important considerations arise from the application of Eq. (1) to signals of finite duration, 

both coming from an inaccurate estimation of the mean of the signals. As illustrated in Fig. 

2 on simulated time traces, these effects become apparent when comparing the correlation 

function calculated on a long signal with that obtained by averaging the correlation functions 

calculated on a partition of the same signal. The former corresponds to an ideal case (ie, 

close to the theoretical situation of an infinite signal), while the latter emulates what happens 

in practice when we only have a set of finite—and short—time traces that are all obtained in 

the same experimental conditions.

Here, we explain why correlation functions computed on finite signals have, in many cases, 

an arbitrary and unknown vertical offset. It is first important to realize that, if we subtract 

two arbitrary constants ca and cb from the signals a(t) and b(t), then 〈(a(t) – ca)(b(t + τ) – 

cb)〉 equals 〈(a(t)b(t + τ)〉 up to a constant value that depends on ca, cb, 〈a(t)〉, and 〈b(t)〉. 
Hence, when computing the covariance function M(τ) = 〈δa(t)δb(t + τ)〉, an inaccurate 

estimation of the means of the signals would simply result in a vertical offset of the curve.

Taking finite-duration time traces of an infinite signal may imply random over- or 

underestimation of its mean due to sampling error, especially if some of the underlying 

fluctuations are at frequencies slower or in the same order as the duration of the measured 

time traces. In the example of Fig. 2A, the signal shows fluctuations as slow as a few tens of 

minutes, making the estimated mean on each 20-min-long portions (black lines) deviate 

from the true mean (gray line). As a result, the autocovariances of each portion are shifted 

toward the x-axis (loosely speaking, traces appear less variable than they should). This leads 

to an average autocovariance that, although having an accurate shape, is offset vertically by a 

constant value when compared to the autocovariance of the (virtually) infinite signal (Fig. 

2B).

Fluctuations at slow temporal scales are ubiquitous in biological data (especially for in vivo 

transcription, eg, cell cycle, cell growth and mobility, response to cell culture passages and 

media changes, etc.). It is hence almost impossible to rule out this phenomenon, making 

experimental correlation functions always defined up to an unknown offset value. Solutions 

to this issue include (i) a technique to minimizes this phenomenon, presented in the next 

section, (ii) offsetting back the correlation funtions directly, in cases of a good separation 

between fast and slow timescales leading to a clearly identifiable baseline (Section 2.5), 

and/or (iii) performing time-lapse imaging at multiple temporal resolutions, including very 

slow ones, and to paste together the correlation functions from different timescales.

2.3 Averaging Methods

The second consideration resulting from the finiteness of experimental time traces is that 

biases may arise depending on how the average correlation functions is computed. The 

intuitive and classical way to calculate G(τ) from a set of traces (noted aj(t) and bj(t) with j ∈ 
[0…n – 1]) is to average together individual correlation functions
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G(τ) = 1
n ∑

j
G j(τ) = 1

n ∑
j

δa j(t)δb j(t + τ)
a j(t) b j(t)

(6)

However, as illustrated in Fig. 2D and E (in which aj(t) = bj(t) for simplicity), the inaccurate 

estimation of the mean of the signals results in an incorrect weighting of the individual 

correlation functions when averaging them together. Namely, traces that have, by random 

chance, a low mean will be artificially given a high weight because of the normalization by 

〈aj(t)〉 〈bj(t)〉. In extreme cases, these may completely dominate the average (Fig. 2E), and 

even in nonextreme cases, this bias gives more importance to traces with a lower signal (eg, 

with fewer and/or shorter transcription events), hence influencing the result of the analysis.

A solution to both this issue and the one described in the previous section can be found if the 

amount of fluorescence measured per single molecule can be assumed identical between 
traces (ie, same experimental procedure, same imaging conditions, uniform coat protein 

levels between cells, uniform illumination over the field of view, etc.). In this case, rather 

than estimating the means of the signals individually on a trace-by-trace basis, the solution is 

to estimate them once globally: a = 1
n ∑ j a j(t)  and b = 1

n ∑ j b j(t) , and to use the same 

values on all the traces:

G(τ) = 1
nab ∑

j
a j(t) − a b j(t + τ) − b (7)

In this case the correlation function computed from a set of short and finite time traces is 

much closer to what is expected for infinite signals (Fig. 2C and F). This solution, however, 

only works well if the fluorescence-to-RNA conversion factor is truly identical between 

traces (although possibly unknown). In practice, even if this factor is only expected to be 

roughly similar, with small trace-to-trace variations, the use of global means is also 

preferable (Eq. 7).

To summarize, as depicted on the decision chart of Fig. 3, the experimenter’s knowledge on 

the fluorescence-to-RNA conversion factor is what should guide the choice between using 

trace-by-trace vs global estimates of the means of the signals (Eqs. 6 and 7), and using 

correlation functions G(τ) vs covariance functions M(τ). In the latter case, global mean 

estimates should also be used:

M(τ) = 1
n ∑

j
a j(t) − a b j(t + τ) − b (8)

2.4 Correct Weighting of Time-Delay Points

The above description assumes that all the traces aj(t) and bj(t) have the same duration. 

When this is not the case, correlation functions can still be averaged together, but particular 
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care should be taken to assigning the correct weight to the different time-delay points of 

each correlation functions: For a given delay τ, each correlation function should be given a 

weight proportional to the number of pairs of time points used in its computation (this 

number decreases as τ becomes larger due to overhang trimming; see Section 2.1). Let us 

take an example where traces a0(t) and b0(t) have 100 time points each (at t = 0, Δt, 2Δt, …, 

99Δt) and traces a1(t) and b1(t) have 50 time points each, and let us consider for simplicity 

that the multipletau algorithm (Section 2.1) is not used. In this case, G0(τ) and G1(τ) should 

have, respectively, a weight of 100 and 50 at τ = 0, a weight of 99 and 49 at τ = Δt, …, a 

weight of 51 and 1 at τ = 49Δt, …, a weight of 40 and 0 at τ = 60Δt, …, and a weight of 1 

and 0 at τ=99Δt. This generalizes into a weight of

N j − i if positive and 0 else, for G j(iΔt) (9)

where Nj denotes the number of time points of traces aj(t) and bj(t). This weighting applies 

to all three formulations of Eqs. (6)–(8) and should also be used in the computation of the 

global means a and b. When using the multiple-tau algorithm (Section 2.1), the weight in 

Eq. (9) should be replaced by N j − i /max 2 log2(i/m) , 1 , where ⎿·⏌ denotes the integer 

part, and the values of Nj and Δt should be used before resampling.

2.5 Baseline Correction and Renormalization

Transcriptional time traces often carry many types of biological fluctuations, reflecting 

distinct phenomena and possibly occurring at multiple timescales (transcription initiation, 

RNA synthesis, gene bursting, cell cycle, etc.). Experimenters may want to focus on one or a 

few aspects of this kinetics and ignore or minimize the rest. To achieve this, in addition to 

choosing an appropriate sampling rate and time trace duration that encompass the timescales 

of the phenomenon of interest, one may also take advantage of potential timescale separation 

and scaling properties of the correlation functions.

As an example, in our earlier work (Coulon et al., 2014), we were interested in the kinetics 

of RNA transcription and splicing from a few seconds to a few hundreds of seconds. Slower 

kinetics of both biological and technical nature (such as cell cycle dynamics, gene 

activation/inactivation, or bleaching and imaging artifacts; see Section 4.3) were present, but 

with a clear timescale separation. Indeed, the correlation functions showed unambiguously a 

fast dynamics (up to ~4 min and with shapes fully consistent with what was expected for 

RNA transcription and splicing), followed by a plateau with a very slow decay (Fig. 4C). As 

explained in Section 2.2, the presence of such slow dynamics implies that the calculated 

correlation functions are defined up to an unknown vertical offset, even if the global mean 

estimation methods (Section 2.3) is used to minimize this artifact. In the case where a 

baseline is clearly visible at a certain time delay, if one only wants to focus on phenomena 

faster than this timescale, then the baseline may be brought to 0 by offsetting the correlation 

function vertically (eg, by subtracting from G(τ) its average value observed in the range |τ| ∈ 
[4…6 min]; Fig. 4D). This correction removes an artifactual/unwanted degree of freedom, 

which will turn out useful for both the computation of the standard error on the correlation 

functions (next section) and for fitting the data to mathematical models (Section 3.2).
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When the slower dynamics decays too fast to make a clear plateau, the safest solution, 

although not ideal, is to include this phenomenological decay in the fit of the data (Lenstra et 

al., 2015). Finally, we are currently extending the fluctuation analysis technique to be able to 

separate source of fluctuations occurring at similar or overlapping timescales, eg, as when 

transcription initiation is highly nonstationary and undergoes rapid changes such as in a 

developing organism (Bothma et al., 2014) or during gene induction (Lenstra et al., 2015).

More anecdotal, in certain cases, another unwanted degree of freedom can be eliminated by 

rescaling the correlation functions: Focusing on postinitiation dynamics in our earlier study 

(Coulon et al., 2014), data collection/analysis was biased toward cells showing an active TS, 

hence making irrelevant any measure of transcription initiation rate. In addition, we realized 

through modeling that (i) whatever the postinitiation dynamics, varying the initiation rate 

simply rescales vertically all three correlation functions (autocorrelations and cross-

correlation) by the same multiplicative factor, and that (ii) an important part of the 

correlation functions in our case was the precise shape of the cross-correlation Gcross(τ) 

around τ = 0. Hence, normalizing all three correlation functions by the same value Gcross(0) 

eliminates this extra degree of freedom (Fig. 4D). Importantly, the normalization should be 

performed after averaging, as to avoid introducing inappropriate weights among the different 

correlation functions (Fig. 4A).

2.6 Uncertainty, Error Bars, and Bootstrapping

Having a measure of uncertainty or confidence interval on a correlation function is crucial. 

As discussed further in Section 4.2, fallacious features or regularities may appear simply due 

to low sampling (ie, insufficient amount of data), hence misleading data interpretation. 

Calculating the uncertainty on a correlation function is however not trivial. Even though 

Computing 〈a(t)b(t + τ)〉 consists in taking a temporal average, one should not use the 

standard deviation (or the standard error) of a(t)b(t + τ) as a measure of uncertainty. Indeed, 

data points from a time trace are not independent. Only time points separated by a delay 

longer that the slowest process involved could be considered independent. But since this 

slowest process is often unknown and likely longer than the measured time traces, the safest 

solution is to consider independent only data points from distinct traces (ie, distinct cells) as 

independent. Note, however, that methods have been proposed to estimate the uncertainty on 

the correlation function from a unique time trace (Guo et al., 2012).

In the very simple case where correlation functions are computed completely independently 

and then simply averaged together (ie, the method of Eq. 6) without any of the weighting 

described in Section 2.4 and without baseline correction or renormalization of Section 2.5, 

then the standard error can be computed directly as the standard deviation of the individual 

Gj(τ), divided by n. But in any other case (global mean estimation, traces of different 

durations, baseline correction, etc.), a bootstrapping technique has to be used (Fig. 4B). If 

one has a pool of n time traces (possibly multicolor traces, eg, aj(t) and bj(t)), it consists in:

i. selecting, at random and with replacement, a sample of n time traces within this 

pool (hence some traces will be selected more than once and some will not be 

selected),
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ii. performing the whole computation of the correlation function from the beginning 

(including computation of the mean, if estimated globally) and until the end 

result (including weighting, baseline correction, etc.),

iii. reiterating steps (i) and (ii) many times (typically ≥ 1000), and

iv. computing, at each time-delay τ, the standard deviation (not the standard error) 

over all the correlation functions obtained in step (ii).

The standard deviation of the sampling distribution (Fig. 4E, estimated at step (iii)) is 

directly the standard error of the correlation function (Fig. 4F). Confidence intervals can also 

be computed by taking percentiles instead of standard deviations at step (iv) (eg, for a 90% 

confidence interval, take the 5th and the 95th percentiles).

On a technical note: In Eqs. (7) and (8), a j(t) − a b j(t + τ) − b  cannot be rewritten as a 

a j(t)b j(t + τ) − ab in order to precompute 〈(aj(t)bj(t + τ)〉outside of the bootstrap loop; 

whence the advantage of a fast routine for computing correlation functions, such as the one 

based on FFT described in Section 2.1.

Finally, since baseline correction and normalization (if any) are included in the bootstrap 

loop, the correlation function will be clamped at 0 and at 1 at specific time delays, resulting 

in small error bars at these regions. This can be used at places where one needs to 

concentrate statistical power on specific features of the correlation functions, as we did in 

our transcription/splicing study (Coulon et al., 2014) to focus on the shape of the cross-

correlation around τ = 0.

3. INTERPRETATION OF CORRELATION FUNCTIONS

A complete discussion of how to model correlation functions is clearly out of the scope of 

this chapter—at the very least because every experimental system and every biological 

question is different. Here, we give the reader an introduction to different possible options 

one can take to extract mechanistic information from correlation functions. We also aim at 

providing a basic understanding of what affects the shape of a correlation function in rather 

simple mathematical terms.

3.1 A Primer for Correlation Function Modeling

Transcriptional signals a(t) and b(t) can be viewed as sums of contributions ap(t) and b p(t)

from n individual RNAs occurring at times tp

a(t) = ∑
p

ap t − tp and b(t) = ∑
p

b p t − tp (10)

When transcription initiation tp occurs at random with a constant rate k over time, it is said 

to follow a (homogeneous) Poisson process. In this case, the covariance function can be 

written simply as the mean of all the covariances of individual RNAs, multiplied by k
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M(τ) = k ∑
p = 0

n − 1 Mp(τ)
n (11)

where Mp(τ) is the covariance function between ap(t) and b p(t). (Note that, since ap(t) and 

b p(t) are square integrable signals, this covariance has a slightly different formulation, ie, it 

uses a temporal sum Mp(τ) = ∫ −∞
∞ ap(t)b p(t + τ)dt instead of a temporal average.)

This equation is central for understanding what correlation functions can reveal and is the 

basis for further derivations. Here, we present how Eq. (11) can be used in three different 

manners.

3.1.1 Understanding the Geometry of the Correlation Functions—As an 

illustration, let us consider the very simple example shown in Fig. 5A. Here, the 

fluorescence time profile of each RNA is a rectangular function of duration Xp (ie, 

ap(t) = b p(t) = 1 for t ∈ [0, Xp] and 0 elsewhere). The dwell time Xp of the RNA at the TS 

(which includes elongation and a potential retention at the 3′ end of the gene) is a random 

variable following a probability distribution with density P(x) and a mean μ. In this case, the 

autocovariance of each RNA—only described for τ ≥ 0 since an autocorrelation is always 

symmetrical—is the triangle function Mp(τ) = X p − τ for τ ≤ Xp and 0 elsewhere (Fig. 5A). 

From Eq. (11), one can understand simple geometrical properties of the covariance function 

M(τ), such as that it starts at M(0) = kμ (or, if using a correlation function, G(0) = 1/kμ) with 

a tangent that crosses the τ-axis at τ = μ (Fig. 5B). Hence, the first few points of the 

correlation function already reveal two key parameters of the system: the transcription 

initiation rate k and the average dwell time μ of the RNA at the TS.

This approach does not impose a simplistic description of the fluorescence time profiles of 

RNAs as in the example above. For instance, using more realistic time profiles, we took a 

similar approach in our previous work on transcription and splicing (Coulon et al., 2014) and 

were able to show that a key measurement for our study (ie, the fraction of RNAs that are 

spliced before being released) is given by a simple geometrical feature of the correlation 

functions: the change of slope of the cross-correlation at τ = 0.

To develop further the example of Fig. 5, one can also show that the way M(τ) deviates from 

its tangent at the origin reflects the shape of the distribution P(x) of dwell times: if narrowly 

distributed (Fig. 5B), then M(τ) follows its tangent closely and makes a marked angle when 

approaching 0; if broadly distributed (Fig. 5C), this angle is smoother, making M(τ) deviate 

more from its tangent. This can even be generalized by realizing that, in theory, the curvature 

of the correlation function directly yields the full distribution kP(τ) = d2M(τ)
dτ2 . However, in 

practice, differentiating experimental data is problematic since it amplifies the noise, so 

much that only global features of the distribution can be generally extracted (eg, mean, 

variance, possibly skewness, etc.).
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3.1.2 Analytical Expressions from Mechanistic Models—Even though a lot can 

be understood from the geometry of the correlation functions without making any strong 

assumption, it is also useful to take the opposite approach by assuming a given mechanistic 

model to assess if the predicted shape of the correlation functions can reproduce that of 

experimental data. In this context, one can derive analytical expressions of correlation 

functions from a given description of the underlying transcriptional kinetics. For a detailed 

example, the reader can refer to the supplementary derivations of Coulon et al. (2014). 

Briefly, we assumed different mechanistic models by describing the timing between specific 

events (eg, elongation through the MS2 and PP7 cassettes, removal of an intron, release of 

the RNA from the TS) with interdependent time distributions. We were able to express the 

analytical form of the correlation functions as convolutions between these distributions. As 

an illustration, on the simple example of Fig. 5, this approach yields

M(τ) = kH( − τ) * H( − τ) * P(τ) (12)

defined over τ ≥ 0, where H(x) is the Heaviside function (ie, 1 if x ≥ 0 and 0 elsewhere) and 

where ⋆ denotes the convolution product.

This approach has several notable advantages over a simulation approach, especially for data 

fitting purposes: it is very fast to compute (once one has an analytical expression) and gives 

an exact result, hence allowing a proper parameter exploration in the fitting procedure. It 

also reveals which aspects of the kinetics affect the different parts of the correlation curves. 

However, this approach is rather mathematically cumbersome and does not offer a lot of 

flexibility: small modifications to the underlying mechanistic assumptions can sometime 

require one to rederive the equations from the beginning.

3.1.3 Hybrid Monte Carlo Approach—A much simpler alternative to the analytical 

method described earlier is to calculate Eq. (11) through a Monte Carlo approach. Indeed, no 

matter how elaborate the description of the fluorescence time profiles and the underlying 

mechanistic model (eg, with complicated fluorescence time profiles and intricate 

interdependent random variables), the correlation function M(τ) is always simply the 

average of individual correlation functions Mp(τ). It can hence be computed numerically 

from a set of individual time profiles that were randomly generated from the assumed 

mechanistic model. To explain this in different terms, one could perform a full Monte Carlo 

simulation by (i) drawing randomly all the transcription initiation times and (ii) all the 

fluorescence time profiles of individual RNAs, then (iii) summing them up as in Eq. (10) to 

obtain a simulated time trace, and finally (iv) computing its correlation function. This 

approach has the disadvantage of giving a rather noisy result, hence imposing to run many 

(or very long) simulations to reach a good converge. Instead, the hybrid method described 

here consist in only performing step (ii) a number of times, to compute individual 

correlation functions for each time profile generated, and to average them as in Eq. (11). 

This approach yields a much more precise estimate of the correlation function M(τ) than the 

full simulation approach. Fig. 5D shows a comparison between the two methods where both 

curves were obtained in similar amount of computation time. The precision of the result 
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depends of course on the number of individual time profiles generated, but a few hundreds 

already give rather precise results (eg, the hybrid curve in Fig. 5D is generated from 100 

time profiles). This hybrid approach is both easy to implement (no mathematical derivation) 

and very flexible (the model can be modified easily), making it an attractive alternative to 

the analytical approach presented earlier for fitting experimental correlation functions.

All what we just discussed in this section derives from Eq. (11), which assumes that the 

random transcription initiation events tp occurs homogeneously over time. This is often not 

the case in reality since transcriptional activity may be time dependent, for instance if the 

gene of interest is induced over time, is cell cycle dependent, or switches stochastically on 
and off (bursting). Mathematically, taking this into account modifies Eq. (11)—we are 

currently working on analytical models that include these types of fluctuations. However, as 

explained in Section 2.5, if these fluctuations are slow compared to the timescale of single-

RNA transcription, one can get rid of them and the assumption of homogeneous initiation 

events is then appropriate.

3.2 Data Fitting and Model Discrimination

Whether generated analytically or from the hybrid method described in the previous section, 

correlation functions predicted from a given mechanistic model should be compared 

quantitatively with experimental ones. This allows both discriminating between competing 

models and obtaining numerical values for the underlying physical parameters.

Since auto- and cross-correlation functions may carry information on different aspects of the 

transcriptional kinetics, one should predict all of them simultaneously from a given model 

and set of parameters, and fit them globally at once to the experimental correlation 

functions. Making sure to use the standard errors calculated as in Section 2.6 and to only 

include the relevant time-delay points (ie, up to the plateau if using baseline subtraction as in 

Section 2.5), one may use a regular nonlinear least square fit. It consists in minimizing

χ2 = ∑
τ, G

Gexp(τ) − Gtheo(τ) 2

σ Gexp(τ) 2 (13)

where Gtheo(τ) and Gexp(τ) are the theoretical and experimental correlation functions, σ[·] 

represents the standard error, and where the sum is taken over all relevant time-delay points 

and auto-/cross-correlation functions.

One important note is that a fit should always be examined visually before putting trust in 

the results. Especially when fitting multiple correlation functions at once (auto- and cross-

correlations) with only a few parameters, one should ensure that certain features in the 

curves (whether real or artifactual) do not dominate the fit, hence preventing the most 

relevant parts from being reproduced accurately. It is hence advisable to know what part of 

the curves reflect what aspect(s) of the underlying processes, and to always use judgment 

when considering the result of a fit.
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To discriminate between models, one cannot directly compare their χ2 values. Indeed, if two 

competing models fit equally well the experimental data, the simplest one is more plausible 

and should be preferred. A simple way to take this into account is to find the model that 

minimizes the Bayesian information criterion (Konishi & Kitagawa, 2008)

BIC = χ2 + NparamlogNpts (14)

where Nparam and Npts are, respectively, the number of parameters in the model and the 

number of time-delay points used in the fit. Importantly, when deciding between models one 

should not blindly rely on the BIC. The effect of experimental perturbations should be 

assessed and complementary measures other than correlation functions should be used to 

validate or discriminate further between the retained models (see Section 4.5).

4. COMMON ISSUES AND PITFALLS

Fluctuation analysis is a powerful technique, but to apply it successfully, one needs to be 

aware of a number of potential difficulties and pitfalls. Section 2 focused on how to compute 

correlation functions properly as to avoid certain biases and artifacts. This section describes 

other potential issues pertaining to the design of the experimental system, the imaging 

conditions, and the interpretation of the resulting correlation functions.

4.1 Location of the MS2 and PP7 Cassettes

It is essential to have data analysis considerations in mind from the design stage of a project. 

Indeed, choices on the position and length of the MS2 and PP7 DNA cassettes to be inserted 

in the gene(s) of interest will crucially determine what can be concluded from the data. Poor 

design may make the analysis difficult and/or the interpretation ambiguous. Even though the 

focus of this chapter is on data analysis, a brief discussion how to design the experimental 

system is important here.

Design choices essentially concern the position and length of the MS2 and PP7 cassettes. 

These should be inserted in noncoding regions: 5′- and 3′-untranslated regions (UTRs) and 

introns. A translatable version of the PP7 cassette can also be used to place loops in open 

reading frames (ORFs) (Halstead et al., 2015). Every application being different, no general 

advice can be given and the best strategy is necessarily case specific. In this regard, it is 

advised to make computational predictions and/or simulations (Section 3) to understand how 

choices in the design will affect the ability of the approach to reflect the phenomenon of 

interest and/or to discriminate between competing hypotheses. From an analysis point of 

view, one should consider:

• signal intensity: the possibility to have a bright and easy to track TS,

• measurement sensitivity: the ability to detect subtle fluctuations coming from 

single RNAs, and

• temporal resolution: setting up the limit on the timescale that can be probed on 

the underlying processes.
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The length of the cassettes, for instance, impacts the number of fluorophores per RNA 

molecule, hence enhancing both sensitivity and signal intensity for given imaging 

conditions. Another factor, the number of labeled RNAs simultaneously present at the TS 

may improve its brightness but will impair in return the possibility of detecting single-RNA 

contributions. In practice, single-RNA sensitivity is not necessary to apply fluctuation 

analysis, but the more one sees fluctuations due to the finite and low number of RNAs, the 

better the method will work. Finally, the time it takes for a single cassette to be transcribed 

and the time each labeled RNA dwells at the TS—both related to intensity and sensitivity—

will also impact on the temporal resolution of what the data reflect.

To illustrate these points, let us give two simple examples. First, to observe the fluctuations 

of transcription initiation rates over time (eg, bursting, regulatory coupling between genes), 

placing a cassette in the 5′ UTR will result in a strong signal (most nascent RNAs are 

labeled), but will mask fluctuations that are faster than the dwell time of transcripts at the TS 

(which comprise elongation and transcript release times). Placing the cassette in the 3′ UTR 

will have the opposite effect: the signal will be weaker because only the polymerases passed 

the cassette in the 3′ UTR will have a labeled RNA, but the resulting shorter dwell time will 

allow resolving faster fluctuations of initiation rate. However, in this latter case, any process 

occurring during elongation (eg, pausing, variable elongation rates) will also affect the 

measurement, making it more difficult to interpret. Placing the cassette in an intron toward 

the 5′ end of the gene minimizes this problem while potentially keeping the advantage of a 

short dwell time (if the intron is spliced rapidly). In all cases, the dwell time includes 

unknown factors (eg, release or splicing times) that need to be taken into account for the 

analysis.

Another instructive example is the measure of elongation kinetics. In this case, placing the 

two MS2 and PP7 cassettes in both UTRs will reflect the time to elongate throughout the 

gene body, but without resolving the many potential pauses and variations in elongation rate 

along the gene. On the contrary, placing both cassettes directly around a given sequence of 

interest will reveal the instantaneous elongation rate and polymerase pausing kinetics over 

this particular sequence. Although much more revealing, this latter case is more difficult to 

implement. Indeed, in the former case, the long distance between the two cassettes will 

make the time-delay measurement rather precise, while, in the latter case, because the delay 

between the two signals is comparable with the time to elongate through a single cassette 

(ie, when the signal ramps up as the loop are being transcribed), the precision of the 

measurement will crucially depend the length of the cassette (ie, the steepness of the ramps). 

Specifically, if the cassettes are shorter, the results are more precise, hence imposing a 

compromise with measurement sensitivity. Also, the less the RNA dwells at the TS after 

passing both cassettes, the better the stochastic delay between the two cassettes can be 

resolved, imposing here another compromise with signal intensity.

Finally, in addition to data analysis considerations, another factor to take obviously into 

account is the risk of affecting endogenous processes. When choosing the location of the 

MS2 and PP7 cassettes, one should ensure not to disrupt functional sequences in the UTRs, 

introns, and ORFs (Bentley, 2014; Porrua & Libri, 2015). Length of the cassettes has also 

been observed to affect whether the modified RNAs behave like the endogenous ones 
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(decay, nuclear export, aggregation, etc.). We have not yet reached a consensus for good 

practice since it seems context dependent. It is hence advised to perform single-molecule 

RNA FISH (see Section 4.5) to compare the statistics of endogenous and modified RNAs 

(levels, localization, number at TS, etc.) and ensure that both behave similarly.

4.2 Interpreting Single (or Too Few) Traces

When gathering experimental data to be analyzed through fluctuation analysis, it is often 

tempting to interpret the data and draw conclusions based on an insufficient amount of data. 

Typically, one should not interpret the correlation function of a single time trace. Indeed, 

sampling noise—ie, the finitesize effects coming from the low number of stochastic events 

in a time trace (even if in the hundreds)—leads to features in the correlation function that 

only reflect the randomness of these events (Fig. 6). Because sampling noise produces 

smooth shapes in a correlation function, it does not look like what we are used to call 

“noise” and often produce oscillations or “bumps” in the correlation curves that only result 

from a lack of data. For instance, a single correlation function may show a bump at a certain 

time delay, not because there is a regularity at this timescale in the underlying biological 

process, but simply because, by random chance, there happens to be one in this particular 
trace (Fig. 6). Redoing the analysis on a different time trace obtained on the same 

experimental system may or may not show this feature. Only if this feature is present in 

multiple traces and is still present when averaging a number of correlation functions can it 

be considered a regularity (Fig. 6). To ensure that an averaged correlation function is 

sufficiently converged and that a given feature is statistically significant, the best way is to 

compute error bars (standard errors or confidence intervals; Section 2.6). Remember that 

nonoverlapping standard errors do not necessarily imply high significance, and that a 

standard error is only expected to overlap with the true, fully converged value in <80% of 

the cases.

4.3 Technical Sources of Fluctuations

Correlation functions reflect all types of fluctuations in the observed signals. On the positive 

side, this has the advantage of revealing multiple biological processes at once. On the other 

hand, any technical source of fluctuation will also show up in a correlation function. We 

present here the most common types for MS2/PP7 transcriptional time traces, how to 

identify them and, when possible, how to correct for them:

• Bleaching: Inherent to any fluorescence microscopy experiment is the bleaching 

of fluorophores over time. The result is that the fluorescence intensity of the 

whole nucleus—and, with it, of the TS—will decay throughout an experiment. If 

not corrected, bleaching results essentially in an artifactual slow decay (typically 

exponential) in the correlation functions. It is important here to understand that, 

in microscopy setups where the whole nuclear volume is illuminated (eg, in 

widefield microscopy and to some extant in confocal microscopy when acquiring 

a z-stack), all the fluorophores will bleach equally fast in a nucleus regardless of 

being bound or not to an RNA. Hence, the relative fluorescence lost by every 

single RNA is statistically the same as for the whole nucleus. From this 

observation, it is possible to correct time traces for bleaching prior to any 
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computation. In practice, this requires the total integrated fluorescence of the 

nucleus to be much higher than that of the TS—typically doable in mammalian 

cells (Coulon et al., 2014), but not in yeast cells (Lenstra et al., 2015). To 

perform this correction, sometime referred to as detrending, one needs to: (i) 

isolate the image of the whole nucleus (cropping the time-lapse movie around the 

nucleus may be sufficient as long as no other nuclei are in the resulting picture, 

otherwise a masking procedure of the outside of the nucleus can be used); (ii) 

compute the standard deviation of the pixel fluorescence intensities for each 

image separately, throughout the course of the time-lapse movie; (iii) ensure that 

the resulting time course is smooth as to avoid adding extra unwanted 

fluctuations; and (iv) divide the transcriptional time trace by this time course. 

The rational behind using the standard deviation is that the mean of a microscopy 

imaging often includes factors such as the autofluorescence of the media (which 

has its own bleaching kinetics), the digital offset of the camera/detector, etc., all 

of which have a negligible spatial standard deviation. Hence the mean of the 

pixel fluorescence intensities will be affected by these extra factors, while the 

standard deviation will not.

Acceptable levels of bleaching to be corrected using this technique can be empirically up to 

a 50–60% attenuation between the first and last frames of a time-lapse movie. More would 

lead to a strong difference in signal-to-noise ratio between the beginning and the end of the 

time traces, which may become problematic.

• Nonhomogeneous illumination of the field: Often in microscopy setups, 

illumination is not uniform and tends to be stronger in the center of the field of 

view and dimmer toward the edges. Hence, not only bleaching rate will be 

different for different cells, but more importantly, if a cell moves within the field 

and gets closer and further from the center, this will result in global fluctuations 

of the observed nuclear intensity and TS intensity that are not due to the 

transcriptional activity. As long as the spatial inhomogeneities in illumination are 

larger than a cell nucleus, the detrending procedure described earlier solves this 

problem by correcting for fluctuations in total nuclear brightness.

• Measurement noise: Many factors contribute to inexact measurements of TS 

fluorescence intensity. This includes Poisson noise of photon collection, current 

noise in the detectors, numerical inaccuracies in the fitting of the TS, etc. All of 

these have essentially white noise statistics, ie, the error made at a given time 

point is statistically independent form the error made at all the other time points. 

The advantage of white noise is that it will show up only in autocorrelation 

functions (not cross-correlations) and only at the time-delay point τ = 0. All the 

rest of the correlation functions are unaffected. This noise cannot be corrected 

without destroying additional information in the signal. Hence the simplest way 

to deal with it is to discard the first point (τ = 0) of any autocorrelation function, 

knowing that it is inaccurate.

• Tracking errors: Transcriptional time traces are generated from the time-lapse 

images by detecting the TSs, localizing and fitting them with Gaussians, and 
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generating trajectories by connecting detections across different frames. 

Whichever software is used (eg, ours is available at http://larsonlab.net/), this 

process is not error free. Incorrect spot detection and/or the presence of another 

object in the vicinity of the tracked TS can result in inaccurate tracking. One can 

distinguish two situations: (i) a brief jump (eg, one frames) away from and then 

back to the TS, or (ii) a single jump away from the TS that does not come back 

(or does so after a certain number of frames, eg, ≥5 frames). In the former case, 

one-frame tracking errors have a similar effect as the measurement noise (if they 

are truly one frame long). That is, they make inaccurate the first point (at τ=0) of 

correlation functions (both auto- and cross-correlations in case the two channels 

are tracked simultaneously). Practically, a few of these errors are acceptable per 

trace. But if too numerous or if one needs a precise measure of the cross-

correlation around τ=0, they should be corrected in the tracking procedure. In the 

cases where the tracking errors are long (case (ii)), the corresponding portions of 

the traces can be kept as such only if the TS is actually inactive (ie, showing no 

fluorescence signal) during this time period, and the inaccurate detections yield a 

signal close to background. In any other case (eg, the tracking jumps to a nuclear 

structure yielding a nonnull measured signal, or the tracking stays on the nuclear 

background while the TS is actually active), it is critical to avoid including such 

portions of a time trace. Two simple options are to adjust the tracking procedure 

as to avoid these inaccurate portions (possibly requiring manual user 

intervention), or to trim the traces to only keep the part where tracking is 

accurate (see Section 2.4 for dealing with traces of various lengths, and Section 

4.4 for the biases this may cause). Note that if this type of inaccurate tracking 

occurs in the middle of long and otherwise good time trace, one can split the 

trace in two parts and treat them as two different traces.

• Volumetric imaging: Nuclei often being ≥10 μm thick in the z-axis direction, the 

whole nuclear volume is not always covered by the z-stack acquisition. Hence, a 

TS may diffuse in and out of the imaged volume through the course of the 

experiments, resulting in fluctuations in the measured intensity that are not due 

to transcriptional events. It is critical to ensure on all time traces that the TS does 

not reach the edge of the imaging z-range. Otherwise, these portions of the traces 

should be excluded (as described earlier for the long tracking errors). If not taken 

into account, this type of fluctuations can completely mask the transcriptional 

kinetics by adding a strong and short-scale decay to all the correlation functions. 

Along the same lines, choosing an inappropriately large Δz step between z-

planes can have a similar effect. Appropriate values depend on the optical setup 

but are typically ~0.5 μm for a widefield microscope.

A general note on technical fluctuations is that they are not always simple to identify and 

may be mistaken for biological ones. A good way to confirm if a certain feature in 

correlation functions is of technical nature is to change the imaging conditions (eg, 

illumination, step and range of the z-stack, time step, coat protein level, etc.) and see if the 

feature is affected.
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4.4 Biased Selection of Data (Cells, TS, Part of Traces)

When acquiring and analyzing data, one tends to bias the selection of fields of view and/or 

cells based on how the TS appears. Also, the procedure described in the previous section to 

exclude portions of traces where tracking is inaccurate (likely when the TS is not or weakly 

active) introduces a bias in the result—ie, transcription appears more frequent than it is in 

reality. This is acceptable if the only conclusions drawn from the data are about the 

postinitiation kinetics of single-RNA synthesis (Coulon et al., 2014). But in this case, it is 

not possible to make any statement on the frequency of transcription (eg, initiation rate, 

bursting kinetics, etc.) based on this data alone. To do so, one has to image and analyze cells 

regardless of their activity, and to generate traces where periods of transcriptional inactivity 

are indeed measured as such and hence included in the analysis (Lenstra et al., 2015). This is 

more demanding in terms of image analysis and may require extensive manual user 

intervention during the tracking procedure.

4.5 Validation by Complementary Measurements

Finally, an important point is that—as holds for any technique—fluctuation analysis should 

not be used alone. In certain cases, two distinct mechanistic scenarios about the underlying 

biological process may produce rather similar correlation functions. Not only perturbation 

experiments should be performed to ensure that the correlation functions are affected as 

expected, but additional techniques should also be used to corroborate the findings.

A relevant technique to use in this context is single-molecule RNA FISH (Femino, Fay, 

Fogarty, & Singer, 1998). It consists in hybridizing fluorescently tagged DNA 

oligonucleotides onto an RNA of interest in fixed cells, leading to the visualization of single 

RNAs in the cell and allowing the absolute quantification of nascent RNAs at each TS. This 

technique is also much more amenable to high-throughput acquisition and analysis, giving 

an unbiased view of the processes under study. Although it does not give access to 

dynamics, it provides a very complementary picture to fluctuation analysis of MS2/PP7 time 

traces. It can be performed on a gene already tagged with MS2 or PP7 (by designing oligos 

against the MS2/PP7 repeats) to validate/complement the conclusions obtained through the 

live cell approach (Lenstra et al., 2015), or it can be used to observe other genes easily (only 

requiring to design new oligos) to show how the conclusions of the live-cell measurements 

can be generalized (Coulon et al., 2014).

5. CONCLUSION

Fluctuation analysis is a powerful method for extracting mechanistic information from 

complex transcriptional time traces, obtained by MS2 and PP7 RNA labeling, where many 

RNAs are synthesized simultaneously, each one having its own stochastic transcriptional 

kinetics, and with potentially multiple biological processes occurring at different timescales. 

The added value of acquiring multicolor data on a given experimental system is often 

significant since one can calculate both auto- and cross-correlation functions, hence 

revealing much more information than an autocorrelation alone.
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Implementing this technique is however not always trivial. As we have seen, calculating and 

interpreting correlation functions correctly requires a good knowledge and understanding of 

the technique and there are a number of mistakes one can make. A general advice is that, 

when using fluctuation analysis to interpret experimental data, one should always run 

numerical simulations. Whether the purpose is

– to troubleshoot the computation of correlation functions (Section 2),

– to estimate the effect of potential technical artifacts (Section 4.3),

– to have an intuition on what the correlation function may reveal for a given 

experimental system (Section 4.1),

– to test rapidly if a hypothetical mechanistic model is consistent with 

experimental observations,

– to verify the result of mathematical predictions (Section 3.1),

– or to assess whether the fitting procedure is able to discriminate properly 

between mechanistic models and to recover the underlying parameters (Section 

3.2),

it is always a simple and easy tool to use, with many benefits. It provides a set of time traces 

to experiment with, where the underlying mechanisms at play are fully known and can be 

changed freely. To generate simulated signals, one can either use the Gillespie algorithm 

(Gillespie, 1976) or a more general Monte Carlo approach by drawing random events with 

the desired statistics and combining them as in Eq. (10).

Fluctuation analysis is a general technique. Its use is not restricted to transcriptional time 

traces. We can anticipate its future application to other related types of data, upstream and 

downstream of transcription. This includes, for instance, the simultaneous measurement of 

transcription (by MS2 or PP7 labeling) and imaging of complexes/enzymes recruitment at a 

given locus (transcription factors, Pol II, enhancers, etc.), as well as the time course of 

protein synthesis observed from a single RNA in the cytoplasm (Morisaki et al., 2016; Wu, 

Eliscovich, Yoon, & Singer, 2016). In many contexts, this powerful analysis technique will 

help to dissect complex biological mechanisms, by building upon basic concepts of signal 

theory.
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Fig. 1. 
Transcriptional time traces and correlation function. (A) The MS2 and PP7 RNA-labeling 

technique consists in inserting, in one or two gene(s) of interest, two DNA cassettes (MS2 

and PP7; here at two different locations in the same gene). They produce stem-loop 

structures in the nascent RNAs, which are bound by an MS2 or PP7 coat protein (MCP and 

PCP) fused to a fluorescent protein (eg, GFP and mCherry, respectively). (B) The 

transcription site (arrow) appears as a bright diffraction-limited spot in the nucleus in both 

fluorescence channels. (C) Recording its intensity fluctuations then yields a signal that is 

proportional to the number of nascent RNAs on the gene over time. (D) Using this signal as 

an example, the computation of a correlation function (here the covariance function) consists 

in shifting one signal relatively to the other and calculating the covariance between the 

values of the overlapping portions of the two signals as a function of the time-delay shift 

(Eqs. 1 and 2). (E) To analyze fluctuations at multiple timescales in a signal, computing the 

correlation function with the multipletau algorithm yields a somewhat uniform spacing of 

the time-delay points on a logarithmic scale (simulated data as in Fig. 2A). Panels (B) to 
(D): Data from Coulon, A., Ferguson, M. L., de Turris, V., Palangat, M., Chow, C. C., & 

Larson, D. R. (2014). Kinetic competition during the transcription cycle results in stochastic 
RNA processing. eLife, 3. http://doi.org/10.7554/eLife.03939.
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Fig. 2. 
Biases due to the finiteness of time traces. (A) Shown is a portion of a signal used to 

illustrate the effect of inaccurate mean estimation. This 1000-min-long signal is partitioned 

into a set of 20-min-long signals. The true mean of the signal (ie, calculated on the long 

trace) is shown in gray and the inaccurate means of individual short traces are shown in 
black. (B) The autocovariance M(τ) of the entire signal shown in (A) is close to the expected 

curve (red circles vs gray curve). When averaging the autocovariances computed on each 

one of the 20-min-long traces, the resulting autocovariance deviates from the expected curve 

by a constant offset (green circles). (C) Performing the same calculation using a global 

estimation of the mean of the signals (ie, once over all the short signals) resolves the issue. 

(D) Another long signal is shown and partitioned into small sections to illustrate another 

artifact that may arise when averaging correlation functions G(τ). (E) The average (green 
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circles) of the autocorrelation functions obtained on the 20-min-long sections of the signal 

shown in (D) deviates from the expected curve. This is due to an inaccurate weighting of the 

individual curves that occurs when averaging autocorrelation functions G(τ). As illustrated 

by the inset, the section that has a very low mean in (D) dominates the average. (F) As in 

(C), estimating the mean globally over all the signals solves the weighting problem. Both 

examples shown are simulated signals (A: Gaussian noise shaped in the Fourier domain, D: 

Monte Carlo simulation of transcription with Poisson initiation, distributed transcript dwell 

time and additive Gaussian noise). The “truth” curves in gray in (B), (C), (E), and (F) are the 

theoretical curves for both simulated situations.
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Fig. 3. 
Decision chart for averaging method. To avoid introducing biases, the most appropriate 

method for averaging individual correlation functions depends on the experimenter’s 

knowledge of the fluorescence-to-RNA conversion factor, ie, the amount of fluorescence 

units that corresponds to a single, fully synthesized RNA.
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Fig. 4. 
Flowchart for computing correlation functions with standard errors. (A) From a given set of 

time traces, one should first compute the average correlation function as appropriate (cf Fig. 

3) and then perform the corrections described in Section 2.5 if needed. This yields a 

“corrected” correlation function. (B) To obtain the standard error by the bootstrap method, 

one should perform, at least 1000 times, the exact same computation as in (A), using each 

time a random sample of the time traces (same number of traces as the original set, and 

randomly drawn with replacement). This yields an estimate of the sample distribution, which 

standard deviation is the standard error on the correlation function calculated in (A). 

Intermediate results of the calculations are shown using a set of experimental time traces 

from Coulon et al. (2014) as an example. Shown are the average correlation function (C) 

before and (D) after baseline correction and renormalization, (E) multiple average 

correlation functions (as in D) resulting from the bootstrap loop, and (F) the average 

correlation function with standard errors.
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Fig. 5. 
Principle of correlation function modeling. Although illustrated on a simplified single-color 

situation, the principle for modeling correlation functions presented here is general and 

holds for more complex descriptions. (A) Considering that the fluorescence time profile 

ap(t) recorded at the TS for a single nascent RNA is a rectangular function (rising when the 

MS2 cassette is transcribed and dropping when the RNA is release), then the covariance 

function Mp(t) of this time profile is a triangle function. (B and C) When transcription 

initiation is considered homogeneous over time, the covariance function M(τ) can be 

understood as the average between individual correlation functions of single RNAs (Eq. 11). 

On the example of (A), if the dwell time Xp of individual RNAs is distributed, then the 

shape of M(τ) reveals information about initiation rate and dwell time distribution (mean, 

variability, etc.). (D) Several methods can be used to predict correlation functions from a 

given mechanistic scenario. As an alternative to a full Monte Carlo simulation approach, 

giving rather noisy results, and to analytical expressions, sometime difficult to derive, the 

hybrid approach described in Section 3.1.3 is both simple and precise. In this example, the 

hybrid method was performed over 100 single-RNA time profiles, and the simulation was 

performed over a signal that comprises 500 RNAs. The total computation time was similar 

in both cases. The analytical expression used is Eq. (12).
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Fig. 6. 
Convergence when averaging correlation function. Single correlation functions are often 

misleading since their shape can show features that may look like regularities but are only 

due to the lack of data. Averaging multiple correlation functions together reduces this noise 

and allows one to calculate error bars. The more correlation functions are averaged together 

the more these spurious features disappear, leaving only the true regularities. The examples 

shown are simulated traces that are 100 data points eac
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