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Abstract

Background: Identifying genetic variation associated with plasma protein levels, and the 

mechanisms by which they act, could provide insight into alterable processes involved in 

regulation of protein levels. While protein levels can be affected by genetic variants, their 

estimation can also be biased by missense variants in coding exons causing technical artifacts. 

Integrating genome sequence genotype data with mass spectrometry-based protein level estimation 

could reduce bias, thereby improving detection of variation that affects RNA or protein 

metabolism.

Methods: Here, we integrate the blood plasma protein levels of 664 proteins from 165 

participants of the Tromsø Study, measured via TMT-mass spectrometry, with whole exome 

sequencing data to identify common and rare genetic variation associated with peptide and protein 

levels (pQTLs). We additionally use literature and database searches to prioritize putative 

functional variants for each pQTL.
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Results: We identify 109 independent associations (36 protein and 73 peptide), and use genotype 

data to exclude 49 (4 protein and 45 peptide) as technical artifacts. We describe two particular 

cases of rare variation: one associated with the complement pathway, and one with platelet 

degranulation. We identify putative functional variants and show that pQTLs act through diverse 

molecular mechanisms that affect both RNA and protein metabolism.

Conclusions: We show that, while the majority of pQTLs exert their effects by modulating RNA 

metabolism, many affect protein levels directly. Our work demonstrates the extent by which pQTL 

studies are affected by technical artifacts, and highlights how prioritizing the functional variant in 

pQTL studies can lead to insights into the molecular steps by which a protein may be regulated.
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INTRODUCTION

Blood plasma is comprised of proteins generated from cells involved in diverse processes 

including thrombosis, hemostasis, immunity, and hematopoiesis. As it contains proteins 

from a wide variety of cells, blood plasma is a source for many potential biomarkers1 which 

may provide novel drug targets if they are causally related to disease2. Genetic variation 

which affects proteins can be used to assess the casual relationship between a particular 

biomarker and disease3; additionally, the molecular function of the variant can provide 

insight into processes important to the protein’s abundance. In particular, rare variation has 

proved to be an effective route for identifying drug targets4 as rare variants can have larger, 

wide reaching effects. By examining how variants that affect one protein are associated the 

levels of other proteins5, it may be possible to identify downstream targets of the initial 

protein. Additionally, delineating whether these genetic variants may act by modulating 

RNA or protein metabolism could provide insight(s) into alterable processes involved in the 

regulation of protein levels, thus elucidating insights into targeted therapeutics.

Recent advances in protein and genotype measurement have enabled the interrogation of 

genetic variants that affect protein levels (protein quantitative trait loci, pQTLs)6–9. While 

this advance has resulted in the identification of hundreds of plasma pQTLs in human 

samples, and is leading to insights into the proteomic consequences of risk for 

cardiovascular disease10, 11, it is currently unclear how often high throughput protein assays 

are affected by technical artifacts resulting from genetic variants. This is in part because the 

majority of previous pQTL studies6–10, 12 have utilized genotyping arrays that do not 

measure all variants that could disrupt the assay. In addition, these studies have utilized 

protein assays which sometimes rely on measurements from a single epitope (i.e., aptamer 

or antibody methods) and can therefore be less robust to genetic variation that causes an 

amino acid change which affects the assay’s quantification ability than assays that measure 

the total protein or multiple epitopes. Mass spectrometry, however, can measure multiple 

peptides per protein, with each peptide acting as a separate measure analogous to a separate 

epitope. DNA sequence information can then be used to identify specific peptides with 

missense variants that would result in artifactual associations due to inaccurate peptide 

quantification. Therefore, by integrating mass spectrometry peptide and protein level 
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estimation with exome sequencing, it could be possible to identify true pQTLs and exclude 

those associated with artifactual associations, thereby improving the identification of 

variants associated with protein levels.

In this study, we utilized TMT-mass spectrometry to measure the blood plasma levels of 664 

proteins across 165 participants from the Tromsø Study who have high depth exome 

sequence data available. We identified 109 independent, significant associations between 

common and rare genetic variation with peptide and protein levels. Our subsequent analyses 

determined that, while 60 of these (48 common cis, 3 rare cis, and 9 rare trans) were true 

associations, 49 (43 common cis and 6 rare cis) were likely due to a systematic, technical 

artifact driven by the presence of missense variants in coding exons. We examined common 

and rare associations for downstream effects on other proteins, and identified associations 

affecting the complement pathway and platelet degranulation. Using a combination of 

literature and database annotations, we prioritized and described putative functional variants 

for each locus. We show that approximately half of the pQTLs could be explained by 

variants with previous experimental evidence showing influence on the associated protein’s 

level. Furthermore, we identified many putative functional variants that affect protein 

metabolism and therefore would not have been detected in studies that solely examined gene 

expression. These results illustrate the potential for pQTL studies to characterize the effects 

of rare variation, and highlight a need for high throughput studies of protein levels to take 

into account technical artifacts caused by exonic genetic variation.

METHODS

TOP Guidelines statement

The whole exome sequencing data described in this study will not be made available, as the 

consent signed by the study participants does not allow the public release of these data. The 

proteome data has been made publically available through the MassIVE and 

proteomeXchange repositories and can be accessed at MSV000082489 and PXD010203, 

respectively. Full pQTL summary statistics are available from the corresponding author upon 

reasonable request.

IRB approval

This study was approved by an institutional review committee (The Regional Committee of 

Medical and Health Research Ethics in North Norway), and all subjects gave informed 

consent.

Methods are available as Supplemental Methods.

RESULTS

Data Generation

We examined peptide and protein levels from blood plasma, and genotype data from whole 

exome sequencing of blood DNA, from 165 individuals from the Tromsø Study (Figure 1A). 

These individuals consisted of 82 cases and 83 controls that were part of an effort to identify 

predictive biomarkers for venous thromboembolism13 and had genotype data available from 
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whole exome sequencing generated as part of an ongoing study of the genetics of VTE14. To 

assess peptide and protein levels, we performed TMT-multiplexed mass spectrometry on 

blood plasma, identifying 5,608 peptides, corresponding to 664 proteins and 655 genes. Of 

the 5,608 peptides, 1,430 (25%) were present in all samples, 3,394 (61%) were identified in 

at least 50% (82 individuals), and 5,052 were identified in at least 5% (N=8) (Figure 2A). 

The identified peptides had an average length of 14.5 amino acids (range: 6 to 43) 

(Supplemental Figure 2A). We observed an average of 8.5 peptides mapping to each protein 

(range: 1 to 291) (Figure 2B); protein levels were calculated by summing these peptide 

measures. The functions of the proteins that were measured were consistent with their role in 

plasma, with the most enriched pathways (Reactome15 pathway analysis FDR q < 0.05) 

including the immune system and hemostasis (Figure 2C and Supplemental Figure 2B 

showing top level group associations, and Supplemental Table 2 showing all associations). 

From the whole exome sequencing data, we identified 501,682 genetic variants directly, and 

an additional 2,647,181 variants through imputation. Of the 3,148,863 total variants, 

2,624,979 were evaluated in common variant analyses (minor allele frequency (MAF) ≥ 

1%), and 1,690,437 were evaluated in rare variant analyses (MAF <5%) (Figure 2D). While 

most variants were in noncoding regions (intergenic or intronic), a total of 182,828 (5.8%) 

were located in UTR and exonic regions (Figure 2E). Overall, these analyses generated 

information on 664 proteins and 3,148,863 variants for genetic association analyses.

Identification of peptide and protein cis pQTLs

We first identified cis pQTLs, i.e., those located near the gene encoding the plasma peptide 

and/or protein. We identified all variation within +/− 200 kb of the corresponding gene for 

each of the 5,608 peptides and 664 proteins. We tested for association between genetic 

variants and peptide or protein levels using EMMAX, a linear mixed effects model that 

includes a kinship matrix to account for population structure and family relatedness. 

Additionally, we modeled age, sex, BMI, smoking status, cancer status at the time of sample 

collection, VTE case-control status, and the TMT-multiplex experiment as covariates (see 

Methods). We identified 148 peptides and 31 proteins with significant associations 

(Bonferroni adjusted p < 0.05) with 80 and 31 cis genetic variants, respectively. Next, we 

identified additional independent significant pQTLs for each of the 148 peptides and 31 

proteins by performing a step-wise analysis conditioned on the most significant variant, and 

found six peptides and two proteins that had a second cis genetic variant. In total, we 

identified 154 pQTLs associated with the levels of 148 peptides, and 33 pQTLs associated 

with the levels of 31 proteins (Supplemental Table 3).

Integration of peptide and protein pQTLs

As we expected that the peptide pQTLs would also be protein pQTLs for the parent protein, 

we investigated whether differences between peptide and protein pQTLs reflected technical 

artifacts introduced by genetic variants affecting the quantification process/pipeline. To 

examine the concordance between peptide and protein pQTLs, we determined the parent 

protein for all 154 peptide pQTLs and 33 protein pQTLs. We identified 67 unique parent 

proteins, of which 24 were associated with both a peptide pQTL and protein pQTL, 36 were 

only associated with peptide pQTL(s), and 7 were only associated with protein pQTL(s). For 

the 24 parent proteins with both peptide and protein pQTLs, we identified independent 
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pQTL signals by examining whether the variants were different and not in linkage 

disequilibrium (LD; r2 < 0.2). We created three classifications for each independent pQTL: 

1) those only associated with peptide levels (peptide-only pQTL), 2) those only associated 

with protein levels (protein-only pQTL), or 3) those associated with both peptide and 

protein levels (both pQTL). One of the peptide-only pQTLs (rs3742089) was associated 

with both C1L and its homologue C1LR and these were therefore considered the same 

parent protein. From this process, we obtained 91 independent pQTLs for 66 parent proteins, 

with some parent proteins being associated with multiple pQTL classes: 58 peptide-only 

pQTLs (42 parent proteins), 10 protein-only pQTLs, and 23 both pQTLs (22 parent proteins) 

(Supplemental Table 3). Using the exome sequencing data, we examined whether the 

peptides that were associated with the pQTLs (either directly or indirectly through LD with 

a polymorphic variant) affected the quantification process either by: 1) altering the sequence 

of the peptide, 2) altering the effectiveness of a trypsin digestion site, or 3) resulting in the 

association with a homologous protein, rather than the original parent protein. In total, 43 of 

the 91 independent pQTLs affected the quantification process by one of these three 

mechanisms and appeared to be technical artifacts (Supplementary Table 3). While the 

majority of artifact pQTLs were peptide-only pQTLs (39 of the 43), one protein-only pQTL 

and three both pQTLs appeared to be technical artifacts as well. After removing these 43 

technical artifacts, the resulting data set had 48 independent associations with 37 proteins: 9 

protein-only pQTLs, 19 peptide-only pQTLs (14 parent proteins), and 20 both pQTLs (19 

parent proteins) with 5 parent proteins showing multiple types of independent pQTLs. Of 

note, 32 (8 protein-only, 15 peptide-only, and 9 both) of these independent associations were 

novel pQTLs that had not been identified in a previous study (Supplemental Table 

3)6, 7, 9, 10, 16, 17.

Replication of common pQTLs

To replicate our findings, we compared our results to the recently published INTERVAL 

pQTL study18 which measured ~3000 plasma proteins using the SOMAscan aptamer 

approach. Of the 37 proteins that were associated with either a protein pQTL or a peptide 

pQTL in our final analysis, 7 were also measured in the INTERVAL study. For these 7 

proteins, we found 9 pQTLs in our study. We obtained genome-wide association statistics 

from the INTERVAL study and observed that 7 of the 9 pQTLs (78%) were associated with 

the same protein at a nominal P < 0.05. As other pQTL studies have not made their full 

association statistics available, we investigated the overlap between our pQTLs and the 

genome-wide significant findings in other large-scale plasma pQTL studies6, 7, 9, 10, 16, and 

identified ten additional replications where the sentinel variant in our study was reported as 

genome-wide significant or was in LD (r2 > 0.8) with the reported variant (Supplementary 

Table 3). Additionally, the INTERVAL study raised concerns that protein coding variants 

could affect cis QTL results; therefore, we examined whether any of the proteins associated 

with the 43 pQTLs identified in our study due to technical artifacts were also reported in the 

INTERVAL study. We identified missense or digestion variants for 7 proteins that had been 

reported as cis pQTLs in the INTERVAL study, of which 6 were reported as non-significant 

after adjusting for protein coding variants. These results provide additional support that 

these variants bias protein measurements.
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Collapsing variants to identify rare-variant cis pQTLs

To identify rare variants associated with protein levels, we tested the cumulative effects of 

sets of rare variants on peptide and protein levels. We collapsed rare variants using three 

different criteria: 1) MAF < 5%: all variants within the interval from 2kb upstream of the 

protein-coding gene to the transcription end of the gene with a minor allele frequency <5%; 

2) Deleterious: all MAF <5% variants that were annotated using SNPEff19 as having an 

effect impact of high or moderate; and 3) CADD-score: all MAF <5% variants that have a 

PHRED-scaled CADD20 score >10. For each peptide or protein, after collapsing the rare cis 
variants for their corresponding gene, we identified associations between the peptide or 

protein, and rare variation using the optimal unified test SKAT-O21 which combines a kernel 

test with a burden test. We identified 16 rare cis pQTLs (12 associations with peptides and 4 

associations with proteins), of which 10 were independent: 6 peptide-only, 2 protein-only, 

and 2 both pQTLs (Supplemental Table 4). As with common variation, we examined the 

associations for technical artifacts and found that all 6 of the peptide-only pQTLs 

overlapped a rare missense mutation; therefore, we excluded these 6 pQTLs from future 

analyses. As the threshold used for identifying common variation was MAF > 1%, some 

variants were included in both common and rare tests; we removed these associations, 

resulting in a total of 3 independent rare cis pQTLs, of which 2 were previously 

reported22, 23. Overall, while genetic variation was associated with substantial artifactual 

pQTLs in cis rare variant analysis, the significant non-artifactual associations were likely 

real as they were consistent with previous reports.

Trans rare-variant pQTLs

To identify downstream targets and pathways associated with pQTLs, and gain insight into 

the functional mechanism of the identified pQTLs, we tested for association in trans. We 

first tested all 2.6 million variants with MAF >1% genome wide for association (trans 
pQTLs) with each of the 5,608 peptides and 664 proteins; this method did not find any trans 
pQTLs at genome-wide significance (significance thresholds: peptide P < 8.91×10−12; 

protein P < 7.54×10−11). To increase our power, at each of the 655 loci encoding the 

measured proteins of this study, we performed association analyses using each of the three 

rare collapsing criteria to identify trans association with any of the peptides or proteins 

encoded at the other 654 loci. We identified 9 associations between rare variation and 

peptide levels (i.e., rare peptide-only trans-pQTLs) (Supplemental Table 5). One of the 

associations was a rare peptide-only trans-QTL between variation in FCN3, and levels of a 

peptide in the complement component C8 beta chain (C8B). FCN3 is an activator of the 

lectin complement pathway, and its pathway includes C8 in its final stages24. Notably, this 

variation was just below the significance threshold for being a rare peptide-only cis QTL for 

FCN3 (Figure 3A). We therefore examined the full established pathway of the lectin 

complement24. We observed that rare variation in FCN3 was associated with 8 other 

members of the lectin complement pathway at a nominal P < 0.05: C4a, C4b, C4BPa, C5, 

C6, C8b, C8a, and C8g (Supplemental Table 6), suggesting that the rare variation in FCN3 
was broadly associated with the levels of proteins in the complement pathway. We next 

examined the other rare trans pQTLs, identifying five loci associated with levels of 

SERPINA1 (alpha-1-antitrypsin): CD109, CFL1, CLU, HYOU1, and RARRES2 (Figure 
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3B). Of the five genes, four encode proteins involved in platelet degranulation (Reactome15 

enrichment FDR = 7.2×10−6). As alpha-1-antitrypsin is secreted into the plasma via platelet 

degranulation, these results suggest that rare variation in proteins associated with platelet 

degranulation could be important modulators of alpha-1-antitrypsin levels. The fifth gene, 

HYOU1, has not been implicated in platelet degranulation, but is upregulated in response to 

hypoxia25, an important risk factor for blood clotting26. Overall, these results suggest that 

rare variation in proteins can be associated with protein levels of downstream targets.

Identifying putative common functional variants

Due to LD, the most associated common variant (sentinel variant) may not be the causal 

variant. It is therefore necessary to examine variants in LD with the sentinel variant to 

prioritize causal variants that could be driving the association (putative functional variants: 

PFVs), and characterize the distribution of functional mechanisms underlying common 

pQTLs. Across the 48 common pQTLs, we observed an average of 151 variants in LD with 

each sentinel variant. We used a combination of database and literature searches to identify 

candidate variants at each pQTL locus (Figure 4A; see methods). For each locus, we 

categorized the strength of published evidence supporting a specific molecular mechanism 

(either proposed or validated) according to four categories ordered by strength: 1) known; 2) 

likely; 3) suggestive; or 4) unknown (see methods). Using these criteria, we selected the 

PFV at each locus as the variant with the strongest functional evidence (Supplemental Table 

7). In total, we found 18 known, 5 likely, 5 suggestive, and 20 unknown PFVs; notably, 14 of 

the 23 PFVs with known or likely evidence were not the sentinel variant. Additionally, while 

a large proportion of the sentinel variants were intronic, the majority of PFV annotations 

were intergenic and coding annotations (Supplemental Figure 3A), suggesting that PFVs 

better capture causal variation than sentinel variants. Overall, approximately half of the 48 

common pQTLs could be explained by variants previously experimentally shown to 

influence the associated protein’s level.

Examining the functionality of PFVs

To examine the relative role of common genetic variation on different stages of protein level 

regulation – from gene expression to post-translational modifications – we classified the 

PFVs by their proposed molecular mechanism of action. We found the 28 PFVs with 

suggestive or better evidence to affect a wide range of processes: 19 (68%) were involved in 

RNA metabolism (7 affected the promoter, 4 affected isoform expression, 1 created a 

transcript that underwent nonsense-mediated decay, 3 resulted in large genic deletions, and 4 

affected miRNA processing), and 9 (32%) were involved in protein metabolism (6 

associated with protein degradation, 2 altered glycosylation, and 1 affected secretion) 

(Figure 4B; Supplemental Figure 3B). We next examined if PFV functional annotation 

varied by whether the PFV affected RNA metabolism or protein levels. We observed that 

PFVs associated with protein levels directly were more often missense variants, whereas 

PFVs that affected RNA levels were primarily located in non-coding regions (Figure 4C). 

The PFVs that did not have an established mechanism (i.e., unknown) were annotated as 

both missense and noncoding variants, suggesting that some of the unknown PFVs affect 

protein levels directly, whereas others affect RNA. As variants associated with RNA 

metabolism would also be expected to be associated with gene expression (e.g., an eQTL), 

Solomon et al. Page 7

Circ Genom Precis Med. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we examined whether RNA metabolism PFVs were identified in GTEx more often than 

protein level PFVs. Excluding large deletions, we observed that PFVs which affected RNA 

metabolism (69%, 11/16) were more likely than protein PFVs (22%, 2/9) to be eQTLs 

(Figure 4D). The unknown PFVs were identified as eQTLs at an intermediate level (40%, 

8/20), consistent with this group affecting both RNA and protein levels. These results 

suggest that, while common variants that affect protein levels often work through 

mechanisms associated with RNA, and therefore can be detected through eQTL analyses, 

many common variants affect protein levels without affecting RNA levels, and act through 

molecular mechanisms that are more challenging to measure with current high throughput 

methods.

Disease associations of common pQTLs

To determine whether the 48 common pQTLs were associated with human disease, we 

examined whether the sentinel variants (or variants in LD r2 >0.8) were associated with 

GWAS loci using PhenoScanner18. A total of seven pQTLs from six proteins (C4A, CFH, 

CFHR3, ECM1, LILRA3, and MST1) were associated with 10 diseases (Supplemental Table 

8). In some cases, the relationship between the associated protein and the disease have been 

established, such as CFH for age-related macular degeneration27, or implicated, such as 

MST1 levels with inflammatory bowel disease28. For other GWAS loci, the relationships we 

identified were novel; for example, we observed that the pQTLs for C4A and ECM1 were 

associated with rheumatoid arthritis and atopic dermatitis, respectively. Overall, the 

identification of both known and novel GWAS association with 15% (7/48) of our pQTLs 

suggest that common cis pQTLs could aid in the identification of the causal genes 

underlying GWAS loci.

DISCUSSION

In this study, we leveraged TMT mass-spectrometry and deep whole exome sequencing data 

to identify 109 independent pQTLs, of which 60 (48 common cis, 3 rare cis, and 9 rare 

trans) were associated with 96 unique peptides and 30 proteins across the genome 

(Supplemental Table 9), while 49 were technical artifacts due to missense coding variants 

associated with specific peptide levels rather than the whole protein (43 common and 6 rare). 

We then utilized published papers and public databases to examine established molecular 

mechanisms underlying these pQTLs, and examined how often the mechanisms affected 

RNA or protein metabolism. We show that, while the majority of pQTLs exert their effects 

by modulating the gene’s RNA metabolism, many affect proteins directly through processes 

such as degradation, glycosylation, and translation. Our work thus not only shows the 

importance of identifying functional variation by directly assaying protein levels, but also 

highlights how identifying the causal variant in pQTL studies can lead to insights into the 

molecular steps by which the protein is regulated. Based on the types of protein mechanisms 

we describe, these results suggest that improved high throughput methods to assess variants 

that affect protein translation, modification, and degradation are needed.

It is currently unclear how often high throughput protein assays have technical artifacts 

resulting from genetic variants that affect the ability to correctly quantify peptide levels due 
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to alterations of coding sequence through missense changes, isoform usage, or cleavage 

patterns. By integrating the individuals’ genotypes within coding sequences with standard 

TMT mass-spectrometry quantification techniques, we were able to identify pQTLs that 

were likely driven by genotype induced technical artifacts, and exclude them from our 

analyses. We observed the largest impact at the level of peptide-only associations, with the 

majority of independent peptide pQTLs (39/58; 67%) being driven by technical artifacts. 

The majority of independent associations at the protein level (87% of both pQTLs and 90% 

of protein-only pQTLs), however, were unaffected. These findings illustrate the importance 

of filtering variants that affect peptide quantification, and using quantification techniques 

that measure proteins at multiple locations and are therefore more resilient to peptide based 

quantification artifacts.

Rare variation is likely to be an important contributor to variation in protein levels. By 

focusing on the proteins that we measured, we identified trans associations between rare 

variation in FCN3 and the complement cascade. FCN3 has been established as a regulator of 

the lectin pathway of complement activation29. Additionally, an individual who was 

homozygous for a rare frameshift variant in FCN3 (FCN3+1637delC, one of the rare 

variants in our study) has been reported to have a lack of serum ficolin-3 and no complement 

activation via the ficolin‐3‐mediated pathway30. Our finding thus provides additional 

evidence that rare variation in FCN3, including FCN3+1637delC, is associated with 

variation in levels of the complement pathway proteins in the general population. 

Additionally, we identified five proteins with rare variation associated with levels of alpha-1 

antitrypsin. Four of the proteins have been characterized as being involved in platelet 

degranulation, while the fifth, HYOU1, has been shown to act as an oxygen-inducible 

chaperone for proteins in the endoplasmic reticulum of macrophages31. Alpha-1 antitrypsin 

deficiency is a well-established genetic condition that predisposes an individual to chronic 

obstructive pulmonary disease, liver cirrhosis, and hepatocellular carcinoma32. While over 

120 alleles of the SERPINA1 gene have been implicated in alpha-1 antitrypsin deficiency, 

variation in genes other than SERPINA1 have not yet been described32. While the 

individuals in this study have not been found to have alpha-1 antitrypsin deficiency, the 

finding that rare variation in many genes can contribute to alpha-1 antitrypsin plasma levels 

could have implications for the genetic architecture of the disorder. Additionally, seven of 

the common pQTL associations that we identified were associated with, or in LD with, 

human diseases. Thus, both common and rare pQTLs have the potential to provide insight 

into mechanisms underlying human disease.

Due to the fact that our analyses are based on high throughput data, the novel associations 

that we identified should be further validated by replication in an independent data set. As 

many of our findings were replicated in previous work, we expect that the majority of the 

novel associations will be replicated in future studies. It is also possible that we have missed 

associations due to incomplete coverage of the exome or imputation. While we had overall 

high sequencing coverage, exome capture methods are not fully complete, and therefore 

there may be coding and non-coding variants that were not captured and thus not tested. 

Additionally, the annotation of PFVs may have been biased for missense variants as we 

relied on published literature and databases, and past protein research may have focused on 

studying missense variation. However, as the majority of the PFVs that we identified were 
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regulatory in nature, and the class of unknown variants showed annotations consistent with 

them affecting both RNA and protein metabolism, we believe that PFV annotations were 

likely not strongly biased for previously characterized missense variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study overview: 165 individuals from The Tromsø Study were followed from 1994–2013. 

Between 1994 and 1995, blood plasma and whole blood were collected; blood plasma and 

whole blood were processed and subsequently used for protein quantification by mass 

spectrometry and whole exome sequencing, respectively. These analyses identified 5,608 

peptides and 664 proteins from plasma, and 3,148,863 variants from whole blood, across all 

individuals.
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Figure 2. 
Description of protein and genotype data: (A) Cumulative distribution plot showing the 

number of peptides identified in at least N samples. 5,052 peptides were identified in at least 

8 samples (blue), 3,394 peptides were identified in at least 82 samples (red), and 1,430 

peptides were identified in all 165 samples (green). (B) Histogram showing the number of 

peptides identified for each of the 664 parent proteins. A mean of 8.45 peptides per parent 

protein were identified (dotted line). (C) Bar plot showing q-values from Reactome pathway 

analysis of the significantly enriched top level groups in the Reactome event hierarchy. The 

significance threshold of −log10(0.05) is shown by the red dotted line. (D) Histogram of the 

minor allele frequencies in this study for all 3,148,863 genetic variants identified across 

individuals. (E) Bar plot of the number of identified genetic variants within each SnpEff 

annotation. The number of variants with each annotation is also listed next to each bar.
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Figure 3. 
Pathways identified from rare variation analyses: (A) An overview of the lectin 

complement pathway showing the relationship between FCN3 (Ficolin 3; teal) and the 

complement pathway. Nominal p-values are shown for the association between rare variation 

at the FCN3 locus and levels of the complement pathway proteins. C4, C3, C5, C8, and C6 

were associated at a nominal P < 0.05 (purple), C2, C9, C7, or C5b were not associated 

(gray). (B) STRING database diagram of the five proteins associated with rare SERPINA1 

variation (each labeled with their nominal association p-value). Connections between 

proteins are colored based on their evidence (see legend and STRING documentation).
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Figure 4. 
Putative functional variant analyses: (A) Cartoon illustrating the genomic locations of 

variants with particular annotations and mechanisms, relative to the gene body of the pQTL. 

For example, indel annotated variants were only located within gene exons, but variants that 

have an underlying mechanism of “isoform” could be found in introns, exons, or the 3’ 

UTR. The three pQTLs where the PFV was a large genic deletion are not illustrated. (B) 

Stacked bar plot of the number of PFVs associated with each mechanism, subset by whether 

the mechanism affects the RNA molecule or the protein directly. (C) Stacked bar plot of the 

number of PFVs with each SnpEff annotation, subset by whether the PFVs’ mechanism 

affects the RNA molecule, the protein directly, or is unknown. (D) Stacked bar plot of the 

number of PFVs that were eQTLs in GETx, subset by whether the PFVs’ mechanism affects 

the RNA molecule, the protein directly, or is unknown.
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