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Abstract

Objective: This study investigates whether quantitative image analysis of pre-treatment CT scans 

can predict volumetric response to chemotherapy for patients with colorectal liver metastases 

(CRLM).
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Methods: Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) 

combined with systemic or systemic alone) were included in the study. Patients were imaged at 

baseline and approximately 8 weeks after treatment. Response was measured as the percentage 

change in tumor volume from baseline. Quantitative imaging features were derived from the index 

hepatic tumor on pre-treatment CT, and features statistically significant on univariate analysis were 

included in a linear regression model to predict volumetric response. The regression model was 

constructed from 70% of data, while 30% were reserved for testing. Test data were input into the 

trained model. Model performance was evaluated with mean absolute prediction error (MAPE) 

and R2. Clinicopatholologic factors were assessed for correlation with response.

Results: 157 patients were included, split into training (n=110) and validation (n=47) sets. 

MAPE from the multivariate linear regression model was 16.5% (R2=0.774) and 21.5% in the 

training and validation sets, respectively. Stratified by HAI utilization, MAPE in the validation set 

was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with 

differences in median tumor response were treatment strategy, systemic chemotherapy regimen, 

age, and KRAS mutation status (p<0.05).

Conclusion: Quantitative imaging features extracted from pre-treatment CT are promising 

predictors of volumetric response to chemotherapy in patients with CRLM. Pre-treatment 

predictors of response have the potential to better select patients for specific treatments.
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Introduction

With nearly 140,000 new cases annually, colorectal cancer is the second leading cause of 

cancer-related mortality in the United States.[1, 2] The liver remains the most common site 

of metastasis and <5% of patients with colorectal liver metastases (CRLM) survive past five 

years if untreated.[3–6] Combinations of systemic and regional therapies have been utilized 

to downsize CRLM, and in patients selected for hepatic resection, up to 20% can be cured.

[7; 8] However, there is currently no method to predict response prior to chemotherapy 

administration for patients with CRLM. Identification of patients most or least likely to 

respond to a specific modality would allow a targeted approach to downsizing CRLM and 

tailored selection of treatments. In current clinical practice, response to chemotherapy is 

evaluated with radiographic criteria assessed on images obtained pre- and post-treatment 

(i.e. Response Evaluation Criteria in Solid Tumors [RECIST]).[9] Studies have explored 

imaging predictors of response with tumor morphology, early tumor shrinkage, perfusion 

CT, and MRI, but these approaches require specialized sequences or analyze tumor change 

between two distinct points in time, after initiation of treatment.[10–16] Thus, validated pre-

treatment predictors of tumor response are needed to optimize the management of CRLM.

Since contrast-enhanced CT scans are routinely obtained for staging in colorectal cancer 

patients, they are widely available for image analysis and biomarker development.[17–19] 

Radiomics is an emerging field in which medical images are converted into mineable data by 
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automated extraction of quantitative features that represent changes in radiographic 

enhancement patterns.[20] By applying radiomics to solid malignancies, imaging features 

can provide quantification of tumoral heterogeneity that is related to cell-density, necrosis, 

fibrosis and hemorrhage.[21] Quantitative image analysis on CT scans has demonstrated an 

association between tumoral heterogeneity and survival in primary colorectal cancers and 

CRLM where patients with more heterogeneous tumors tended to have improved outcomes.

[21; 22] Based on this finding, we sought to predict response to chemotherapy with 

quantitative image analysis of routine CT scans.

The main objective of our study is to evaluate whether imaging features from a single pre-

treatment CT scan can be used to predict volumetric response for patients receiving 

chemotherapy for CRLM.

Patients and Methods

Patients

Approval from the Institutional Review Board was obtained for retrospective analysis with 

waiver of informed consent. The study population was pooled from A) two previously 

published prospective trials evaluating hepatic artery infusion (HAI) plus systemic 

chemotherapy for unresectable CRLM[23; 24] and B) patients from a consecutive series 

from 2003 to 2007 previously reported on the use of neoadjuvant chemotherapy prior to 

hepatic resection.[25] Data Supplement 1 includes full inclusion and exclusion criteria: 

patients were excluded if they did not undergo a portal venous phase CT or receive the 

intended chemotherapy within each respective cohort. Inclusion in HAI trials required that 

patients have no evidence of extrahepatic metastases and be deemed to have unresectable 

CRLM by a multidisciplinary group of hepatobiliary surgeons and radiologists. In the 

second trial, the definition of unresectable CRLM was refined to include both technical 

(margin-negative resection would require resection of both portal veins, 3 hepatic veins, or 

the retrohepatic vena cava or resection would leave < 2 adequately perfused and drained 

segments) or biologic (>6 metastases in a single lobe, with 1 lesion ≥5cm or ≥6 bilobar 

metastases) considerations.

Additional clinical and laboratory variables were collected from the electronic medical 

record and a prospectively maintained Hepatopancreatobiliary Service database within our 

institution. Synchronous disease was defined as hepatic metastases within 6 months of 

primary colon cancer diagnosis. Clinical risk score (CRS) has been previously reported and 

is comprised of five factors: greater than 1 tumor, tumor greater than 5 cm, 

carcinoembryonic antigen (CEA) greater than 200 ng/mL, lymph node positive primary, and 

disease free interval less than 12 months.[26] CRS was dichotomized into low (0–2) and 

high (3–5) risk groups.

Chemotherapy Regimens

Cohort A was assembled from two previous clinical trials in which patients received 

standard HAI pump placement and infusion of floxuridine/dexamethasone (HAI FUDR) in 

combination with systemic chemotherapy.[27] Cohort A included patients that had received 
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previous systemic chemotherapy and those that were treatment naïve. All patients received 

HAI FUDR, but systemic chemotherapy varied by protocol, including irinotecan in all 

instances and oxaliplatin based on previous oxaliplatin utilization.[23; 24] Bevacizumab was 

administered to approximately half of the patients in the latter protocol.

Patients from Cohort B received first-line systemic neoadjuvant chemotherapy prior to 

hepatic resection. No patient in Cohort B had received systemic chemotherapy within the 

previous year at the time of pre-treatment imaging. Treatment regimens were not 

standardized and administered at the discretion of the primary medical oncologist. Various 

first-line combinations were employed, but included either oxaliplatin or irinotecan in all 

instances. Bevacizumab was selectively utilized.

For comparison of clinical factors associated with response, patients were grouped based on 

the three overall treatment strategies included in this study: HAI in chemotherapy naïve, 

HAI in previously treated patients, and first-line systemic chemotherapy in treatment naïve 

patients. Systemic chemotherapy regimen was defined as the specific combination of 

systemic treatment, irrespective of HAI utilization, administered to the patient during the 

study interval.

Study Design, CT Imaging, and Statistical Analysis

Chemotherapy response was measured as the percentage volumetric change of the index 

hepatic metastasis from baseline to the first follow-up CT scan obtained at approximately 8 

weeks. The index hepatic metastasis was defined as the largest lesion that could be followed 

on repeat imaging in accordance with RECIST guidelines. Routine contrast-enhanced portal 

venous phase CT was used in all measurements. Multidetector CT scanner (Lightspeed 16 

and VCT, GE Healthcare) was employed for abdominal imaging with main parameters: 

autoMA 220–380; noise index 12–14; rotation time 0.7–0.8 milliseconds; scan delay 80 

seconds. Images for selected patients were transferred from the picture archiving and 

communication system (PACS) to a workstation for image processing. The liver, tumors, 

vessels, and bile ducts were semi-automatically segmented by using Scout Liver (Pathfinder 

Technologies Inc.) and a 3D model generated. An image volume was created with the index 

tumor from the pre- and post-treatment scans.

Amongst all patients, clinicopathologic variables were assessed for an association with 

median percent volumetric response and evaluated using the Mann-Whitney U test or 

Kruskal-Wallis test where appropriate. Differences in patient characteristics between 

training and validation sets were compared using Fisher exact test or chi-square test 

depending on the number of observations. A p-value less than 0.05 was considered 

statistically significant and 95% confidence intervals were used. Analyses were conducted 

using SPSS statistical software (Version 22.0).

Quantitative Image Analysis

Quantitative image analysis was performed on the index tumor on baseline CT. A set of 272 

imaging features, representing heterogeneity, were extracted using gray-level co-occurrence 

matrices (GLCM), run-length matrices (RLM), local binary patterns (LBP), fractal 

dimension (FD), intensity histogram (IH), and angle co-occurrence matrices (ACMs).[28–
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42] Data Supplement 2 further describes feature extraction and image analysis, and Data 

Supplement 3 lists all imaging features included in this study.

Prediction Model Building & Validation

Cohort A and B patients were combined and randomly split into training and validation sets, 

stratified by HAI to ensure proportional distribution of treatment strategies. Seventy percent 

of data (n=110) were used to build the prediction model, and 30% of data (n=47) were 

reserved for validation. Based on univariate analysis, quantitative imaging features 

associated with tumor response with p-value <0.05 were initially selected. Highly correlated 

imaging features (correlation coefficient >0.75) were removed from the feature set. In the 

situation of two highly correlated variables, only the imaging feature with the strongest 

association with response was retained. The remaining features and a variable denoting HAI 

utilization were included in the final multivariate linear regression. Prediction error was 

reported as the mean absolute prediction error (MAPE), computed as the absolute difference 

between actual and predicted percent response, for both training and validation data. Figure 

1 demonstrates workflow for image segmentation, feature extraction and selection, model 

building, and evaluation.

Results

Patient Characteristics

In total, 157 patients were pooled from Cohort A (n=103) and Cohort B (n=54) for 

quantitative image analysis to predict volumetric response. Clinicopathologic factors of all 

patients and the actual volumetric response are listed in Table 1a. Representative of the 

advanced stage and unresectable nature of many patients, the majority had bilobar disease 

(84%) and multiple lesions (90%). Overall, 43 patients (27%) were chemotherapy naïve and 

received HAI and systemic therapy, 60 patients (38%) received HAI after prior systemic 

treatment, and 54 patients (34%) received systemic chemotherapy only without previous 

treatment. After randomly splitting the data into training and validation sets, Table 1b 

displays the distribution of clinicopathologic factors among patients in the respective groups. 

The only significant difference between the training and validation sets were a greater 

proportion of patients in the latter with CEA >200 (36% vs 19%, p=0.025).

Clinical Factors Related to Volumetric Response

Table 1a demonstrates the association of clinical factors and volumetric response. Among all 

patients, median percent volumetric change was −68% (range −100 to +193%). Median 

percent volumetric change was significantly different stratified by age, overall treatment 

strategy, systemic chemotherapy regimen, bevacizumab administration, and KRAS 

mutational status (p=0.001–0.007). Patients who were initially treatment naïve and received 

HAI and systemic chemotherapy had the largest median tumor response. Indicative of trial 

participants with HAI and limited previous treatment, patients that received systemic 

oxaliplatin and irinotecan had the largest median response among systemic chemotherapy 

regimens. Patients with mutant KRAS had a decreased median volumetric response 

compared to those with wild-type or unknown mutational status. There were no associations 
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between volumetric response and gender, colon or rectal primary, synchronous or bilobar 

disease, multiple lesions, tumor >5cm, node-positive primary, CEA >200, or CRS (p>0.05).

Feature Selection Results

Quantitative imaging features were evaluated for their association with response. Based on 

the univariate analysis and correlation coefficients, 30 features from the CT images in the 

training set were selected as inputs for the final multivariate regression model, Table 2. In 

Figure 2, one of the most predictive imaging features, called entropy, was chosen to illustrate 

CT appearance differences among patients with varying volumetric responses. Entropy is a 

commonly evaluated feature in the literature that describes pixel randomness within a 

grayscale image.[22] Higher entropy values, representing increased heterogeneity, were 

associated with increased volumetric response in CRLM.[43; 44] Representative CT images, 

24×24 pixel patches from the index tumor, entropy values, and responses are depicted in 

Figure 2. Entropy was calculated using the entire tumor volume.

Creation and Evaluation of Prediction Model

Combining the selected features from the training set, a multivariate linear regression was 

constructed for percentage tumor response. This prediction model was then separately tested 

with the same features extracted from the CT images in the validation cohort. The training 

and validation results of the regression models are listed in Table 3. MAPE represents the 

mean difference between the predicted responses from the model versus the actual 

radiographic responses. The MAPE for the training set was 16.5%, and for the validation set, 

21.5%. R2 value for the regression was 0.77. Figure 3a and 3b include scatterplots of 

predicted versus actual response for training and validation sets. A waterfall plot of 

prediction error for all training as well as test cases is provided in Figure 3c to illustrate the 

distribution of error over different samples. A secondary analysis of the patients in the 

validation set, stratified by HAI utilization, demonstrated a MAPE of 19.5% (n=31) for 

those patients with HAI chemotherapy and 25.1% (n=16) for patients with systemic 

chemotherapy only.

Discussion

For patients with CRLM treated with chemotherapy, pre-treatment CT image analysis 

contains predictive information for early response as measured by volumetric change. The 

magnitude of response of CRLM was also associated with overall treatment strategy, the 

type of systemic chemotherapy, age, and KRAS mutation status. This is the first study to 

predict volumetric treatment response using tumor-derived quantitative features of 

heterogeneity from routinely acquired pre-treatment CT scans. These results represent a step 

in the development of radiomics for clinical applications to improve selection of specific 

treatments for patients with CRLM.

Predicting response based on tumor enhancement patterns on a pre-treatment CT has clinical 

utility for all patients with CRLM. Radiographic response to chemotherapy will have 

different implications based on individual clinical scenario, but a pre-treatment prediction 

would be a tool for any oncologist or surgeon who treats patients with CRLM. Thus, we 
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included patients with initially unresectable and resectable metastatic disease, distributed 

evenly between the 70/30 training and validation sets. In the validation set, we observed a 

MAPE of 21.5%, which represents the mean error between the predicted response and the 

actual radiographic response. To determine whether the achieved error (21.5%) was 

clinically acceptable, the tumor was modeled as a sphere. The majority of the volume of a 

sphere lies at the surface. Considering the tumor as a sphere, the error in the radius is less 

than 8%. This means that in a tumor with a change in radius of 10 mm, we would predict a 

tumor radius change of 9.2 mm or 10.7 mm. The error is therefore within the bounds of CT 

scanner resolution and segmentation accuracy. As a true radiographic prediction from one 

distinct time point, the model displays acceptable error with a high R2 value. At present, this 

model may have the most utility at the extremes of response. Pre-treatment identification of 

patients with a very favorable or unfavorable response to treatment would assist clinical 

decision-making.

Compared to previous studies, our approach addresses the limitation of using specialized 

imaging techniques or multiple imaging time points to predict response in CRLM. Kim et al. 

identified changes in CT perfusion parameters as predictors of early tumor response using 

the pre-treatment and first post-treatment scan.[13] Early tumor shrinkage (ETS) of target 

lesions is also associated with outcomes, but both of these techniques give prognostic 

information only after the first cycle of chemotherapy.[11] Other groups have investigated 

baseline dynamic contrast-enhanced MRI to predict treatment outcome, but this requires 

imaging studies not performed in routine staging of metastatic colorectal cancer.[15] Our 

results demonstrate that quantitative image analysis of one routinely acquired pre-treatment 

CT scan holds information predictive of early response. This process may be automated in 

the future, and if validated, more widely applicable to general practice due to the ubiquitous 

use of contrast-enhanced CT.

Similar to radiographic CRLM morphology, our group hypothesized that there is a 

relationship between tumor heterogeneity on quantitative imaging and response.[10] The 

Hounsfield unit (HU) is a standard measure in CT scanning that reflects the overall atomic 

density of soft tissues being imaged. The density of CRLM will vary across patients by their 

differential uptake of iodinated contrast on contrast-enhanced CT. While each imaging 

feature of heterogeneity is weighted differently, 30 individual features served as inputs for 

the regression model. Entropy, a measure of the randomness of pixel intensity values within 

a region of interest, was one of the selected features for the model. Entropy is discriminatory 

in the literature and also can be well described in radiographic terms. For illustration 

purposes, entropy and representative pre- and post-treatment CT scans were shown in Figure 

2. Entropy showed an association between higher values and increased response. 

Heterogeneous tumors, with higher entropy, may exhibit improved vascular delivery of 

chemotherapy and viable tumor tissue. Heterogeneous tumors have already been associated 

with improved survival [22], but our results support the hypothesis that tumors with 

increased heterogeneity also have greater potential for volumetric response to chemotherapy.

Currently, HAI chemotherapy is restricted to a small group of high-volume centers. HAI has 

been shown to be most efficient when used as first-line therapy.[45] In our study, the greatest 

median response was observed in patients treated with HAI and systemic chemotherapy who 
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were chemotherapy naïve. Prior chemotherapy had been administered to a subset of HAI 

patients (n=60) in this analysis. Decreased volumetric response was expected in this group 

based on published rates of response with HAI in patients with prior chemotherapy versus 

chemotherapy-naïve.[24; 46] Nonetheless, a median volumetric response of 61% 

demonstrates the impact of HAI, especially in a previously treated population. For this 

reason, HAI utilization was included as a variable in the prediction model. An accurate pre-

treatment, radiographic predictor of response would allow better patient selection for HAI 

therapy. The potential clinical benefit is two-fold, avoiding HAI pump placement in patients 

with predicted marginal benefit, but also increasing utilization in patients with predictably 

favorable responses. At present, HAI pump chemotherapy is an expensive treatment with 

potential complications that demands close patient and physician involvement and 

commitment.[47] Developing predictors of response will aid patients in making informed 

decisions regarding their choice of specific treatments.

Since the use of HAI remains limited, we also included patients who were treated with 

systemic chemotherapy alone. In previous systemic chemotherapy studies, partial response 

was observed in 28–72% of patients.[7] Our results demonstrate that the median volumetric 

change was −66% in this subset, but the results are spread over a wide range (−100% to 

+193%). As first-line systemic chemotherapy in previously untreated patients, these findings 

are not surprising. Nonetheless, this study was not designed to directly compare different 

treatment strategies or make chemotherapy recommendations; rather, the project was aimed 

at building a prediction model based on CT enhancement patterns of pre-treatment CRLM, 

regardless of therapy. By incorporating patients in the training set with a wide range of 

treatments and responses, the prediction model was created with image analysis of CT scans 

from a population that reflects the variation encountered in actual clinical practice.

This study has several limitations. First, this was a retrospective study and these results are 

limited to patients at a tertiary center with high-volume HAI pump placement and hepatic 

resections. Second, this study only analyzed the index tumor. In CRLM, individual hepatic 

metastases may potentially show different volumetric responses to chemotherapy. However, 

given the varied number of hepatic metastases between patients, considerations regarding 

statistical analysis and the regression model influenced our decision to include only the 

index hepatic tumor. Furthermore, other clinical variables, such as KRAS mutation status, 

are important but not captured by quantitative imaging. Patients with KRAS mutation show 

decreased volumetric response (55% vs 74% median volumetric response) in our dataset. 

This mutational data was only available for 64% of patients (100/157). KRAS mutations 

have already been shown to independently predict pathologic response in resected CRLM.

[48] Since KRAS mutation status may not be known at the time of CRLM diagnosis, it was 

not included in the prediction model. As next-generation sequencing improves, these results 

indicate the future potential to combine both pre-treatment CT imaging and genomic 

variables to predict response with a high degree of accuracy. Even with these limitations, this 

study linked quantitative imaging features with clinically applicable data from prospective 

trials and a retrospective surgical series. The next steps in development include validation of 

these methods with a separate dataset from another institution or ideally a prospective trial 

of quantitative image analysis and response. Further prospective investigations accounting 
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for type and delivery of chemotherapy may allow improved prediction models with the 

potential to better select patients for specific treatments.

Conclusion

This study demonstrates that quantitative imaging features extracted from pre-treatment CT 

are promising predictors of volumetric response to chemotherapy in patients with CRLM. 

Prospective validation is required prior to using these novel imaging markers in the clinical 

setting, but should be pursued. Pre-treatment prediction of response to chemotherapy has the 

potential to better select patients for individualized treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

- Colorectal liver metastases (CRLM) are downsized with chemotherapy

- Predicting the patients that will respond to chemotherapy is challenging

- Heterogeneity and enhancement patterns of CRLM can be measured with 

quantitative imaging

- Prediction model constructed that predicts volumetric response with 20% 

error

- Quantitative imaging holds promise to better select patients for specific 

treatments
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Figure 1. 
Quantitative imaging workflow for prediction of tumor response. On the pre-treatment CT 

image, segmentation is performed to outline the index tumor. Quantitative imaging features 

are extracted from this region. 70% of the data (n=110) was used to construct a prediction 

model, and 30% (n=47) of the data reserved for validation.
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Figure 2. 
Representative CT images of 3 patients. Entropy was one of the 30 selected features in the 

final multivariate regression model and represents pixel randomness in a gray-scale image. 

Higher entropy values were associated with improved response.

Creasy et al. Page 15

Eur Radiol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3a. 
Scatter plot for training data, predicted versus actual volume reduction.
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Figure 3b. 
Scatter plot for test data, predicted versus actual volume reduction.
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Figure 3c. 
Waterfall plot of individual training and test set error.
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Table 1.

Clinical factors associated with response, and comparison of training and validation set.

1a. Comparison of volumetric response according to clinical 
factors

1b. Comparison of Training and 
Validation set

All Patients Training Validation

Demographics/Characteristic Total, Value=157 Actual Volume Reduction p Value=110 Value=47 p

N (%) Median (Minimum, Maximum) N (%) N (%)

Age 0.007 0.107

 ≤60 years old 98 (62) −62.7% (−93.4, +192.7) 64 (58) 34 (72)

 >60 years old 59 (38) −73.6% (−100.0, +187.4) 46 (42) 13 (28)

Sex 0.375 0.164

 Male 90 (57) −67.9% (−97.2,+46.0) 59 (54) 31 (66)

 Female 67 (43) −64.7% (−100.0, +192.7) 51 (46) 16 (34)

Site of Primary 0.082 0.807

 Colon 135 (86) −69.4% (−100.0, +187.4) 95 (86) 40 (85)

 Rectum 22 (14) −47.8% (−88.8, +192.7) 15 (14) 7 (15)

Synchronous 133(85) −66.8% (−100.0, +192.7) 0.671 93 (85) 40 (85) 1.000

Bilobar 132(84) −66.8% (−100.0, +37.4) 0.608 92 (84) 40 (85) 1.000

Multiple Lesions 141 (90) −66.8% (−100.0, +37.4) 0.655 98 (89) 43 (91) 0.779

Node-positive primary 114(73) −67.9% (−97.3, +192.7) 0.881 80 (73) 34 (72) 1.000

Largest tumor >5cm 65 (41) −70.0% (−91.1, −13.0) 0.590 43 (39) 22 (47) 0.382

CEA >200 38 (24) −67.0% (−88.8, −7.4) 0.898 21 (19) 17 (36) 0.040

Clinical Risk Score, n=152 0.403 0.902

 0–2 34 (22) −65.6% (−100.0, +187.4) 24 (23) 10 (22)

 >3 118 (78) −68.3% (−97.3, +37.4) 82 (77) 36 (78)

T reatment Strategy 0.001 0.917

 HAI, chemotherapy naive 43 (27) −74.1% (−97.3, −21.0) 31 (28) 12 (26)

 HAI, previous treatment 60 (38) −61.1% (−93.4, +37.4) 41 (37) 19 (40)

 Systemic only, chemotherapy 
naive

54 (34) −65.6% (−100.0, +192.7) 38 (35) 16 (34)

Systemic Chemotherapy Regimens* 0.001 0.483

 Oxaliplatin 40 (25) −54.8% (−100.0, +192.7) 28 (25) 12 (26)

 Irinotecan 50 (32) −63.0% (−93.4, +37.4) 38 (35) 12 (26)

 Oxaliplatin and Irinotecan 67 (43) −72.6% (−97.3, −15.5) 44 (40) 23 (49)

Bevacizumab 39 (25) −52.5% (−93.4, +46.0) 0.005 24 (22) 15 (32) 0.226

KRAS mutational status 0.006 0.092

 Mutant 30 (19) −55.4% (−89.4, +37.4) 22 (20) 8 (17)

 Wild type 70 (45) −74.2% (−97.3, +46.0) 54 (49) 16 (34)

 Unknown 57 (36) −64.7% (−100.0, +192.7) 34 (31) 23 (49)

Abbreviations: CEA, carcinoembryonic antigen; KRAS, Kirsten rat sarcoma viral oncogene homolog; FU, Fluorouracil
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*
Note: all patients that received both Oxaliplatin and Irinotecan had concurrent HAI
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Table 2.

Selected Features for Model

RECIST Slice Normalized Intensity Feature (5 features)
Skewness
Entropy

LBP (127 features)
L4 (frequency of 3rd bin of ULBP)
L9 (frequency of 8th bin of ULBP)
L13 (frequency of 12th bin of ULBP)
L19 (frequency of 18th bin of ULBP)
L20 (frequency of 19th bin of ULBP)
L25 (frequency of 24th bin of ULBP)
L27 (frequency of 26th bin of ULBP)
L31 (frequency of 30th bin of ULBP)
L32 (frequency of 31st bin of ULBP)
L40 (frequency of 39th bin of ULBP)
L51 (frequency of 50th bin of ULBP)
L52 (frequency of 51th bin of ULBP)
L53 (frequency of 52nd bin of ULBP)
L55 (frequency of 54th bin of ULBP)
L62 (frequency of 2nd bin of RI-LBp)
L95 (4th frequency co-efficient of RI-ULBP Fourier spectrum)
L103 (12th frequency co-efficient of RI-ULBP Fourier spectrum)
L113 (22nd frequency co-efficient of RI-ULBP Fourier spectrum)

RECIST Slice Shape Feature (7 features)
Compactness

Intensity features at original Scale (5 features)
Entropy

GLCM (19 features)
G7 (Sum variance)

RLM (11 features)
R8 (Short run low gray-level emphasis)

FD (54 features) [36,37]
F51 Maximum of lacunarity of FD
F54 Average of lacunarity of FD

Intensity features at normalized scale (5 features)
I3 (Skewness)

ACM1 (19 features)
ACM15 (Inverse difference moment)
ACM17 (Sum variance)

ACM2 (19 features)
ACM217 (Cluster prominence)
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Table 3.

Prediction model results from 70/30 training (n=110) and test (n=47) sets.

Value Training MAPE Training R2 Test MAPE

All Patients N=157 (110/47) 16.5% 0.774 21.5%

HAI N=103 (72/31) 14.8% 0.547 19.6%

Systemic N=54 (38/16) 19.8% 0.844 25.1%

MAPE: mean absolute prediction error
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