
Characterization of the concentration-response curve for 
ambient ozone and acute respiratory morbidity in 5 U.S. cities

Vaughn Barry, PhD1, Mitchel Klein, PhD1, Andrea Winquist, MD PhD1, Howard H. Chang, 
PhD2, James A. Mulholland, PhD3, Evelyn O. Talbott, DrPH4, Judith R. Rager, MPH4, Paige 
E. Tolbert, PhD1, and Stefanie Ebelt Sarnat, ScD1

1Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, 
Georgia, USA

2Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory 
University, Atlanta, Georgia, USA

3School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 
Georgia, USA

4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 
Pittsburgh, Pennsylvania, USA

Abstract

Although short-term exposure to ambient ozone (O3) can cause poor respiratory health outcomes, 

the shape of the concentration-response (C-R) between O3 and respiratory morbidity has not been 

widely investigated. We estimated the effect of daily O3 on emergency department (ED) visits for 

selected respiratory outcomes in 5 U.S. cities under various model assumptions and assessed 

model fit. Population-weighted average 8-hr maximum O3 concentrations were estimated in each 

city. Individual-level data on ED visits were obtained from hospitals or hospital associations. 

Poisson log-linear models were used to estimate city-specific associations between the daily 

number of respiratory ED visits and 3- day moving average O3 levels controlling for long-term 

trends and meteorology. Linear, linear-threshold, quadratic, cubic, categorical, and cubic spline O3 

C-R models were considered. Using linear C-R models, O3 was significantly and positively 

associated with respiratory ED visits in each city with rate ratios of 1.02-1.07 per 25 ppb. Models 

suggested that O3-ED C-R shapes were linear until O3 concentrations of roughly 60 ppb at which 

point risk continued to increase linearly in some cities for certain outcomes while risk flattened in 

others. Assessing C-R shape is necessary to identify the most appropriate form of the exposure for 

each given study setting.
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Introduction

Short-term exposure to ambient ozone (O3), a strong oxidant, has been shown to be 

consistently associated with poor respiratory health outcomes (1, 2). The U.S. 

Environmental Protection Agency’s most recent Integrated Science Assessment for O3 

reported that the overall evidence supported a causal relationship between ambient O3 

exposures and increased respiratory morbidity (3). However, the shape of the O3 and 

respiratory morbidity concentration-response (C-R) function has not been systematically 

evaluated.

Past studies that have examined the C-R function for acute O3 health effects have focused on 

the association between O3 and daily all-cause mortality (4–11). Most of these mortality 

studies described a linear C-R relationship, although some suggested non-linear C-R 

functions with J-shapes or other curvilinear shapes with flattened slopes at high O3 levels. 

However, the O3 C-R function for mortality may differ from that for morbidity for several 

reasons. First, it is possible that exposure magnitudes needed to induce health effects vary by 

the specific outcome type. For example, higher O3 levels may be necessary to cause death 

while lower O3 levels may be sufficient to cause substantial morbidity. Second, the adverse 

effect of O3 on the respiratory tract might be stronger than the adverse effects of O3 on other 

anatomical systems that might contribute to all-cause mortality. Third, mortality data are 

more likely to represent outcomes in older populations compared to morbidity data, which 

can represent outcomes in people of all ages (12). Children are particularly susceptible to 

O3-induced respiratory distresses like asthma but are less likely to die (13); and, due to 

underdeveloped respiratory and immune systems, children may be more susceptible to 

health effects at low O3 levels compared to adults (14). The ability to assess air pollution 

health effects across the life span might be particularly important, because age can be related 

to both personal exposure to ambient O3 and susceptibility to specific types of disease. 

Children might spend more time outside than adults and their exposure is likely greater than 

adults at the same ambient concentrations due to breathing more air per unit of body weight 

than adults (15). Children are also disproportionately affected by asthma while chronic 

obstructive pulmonary disease (COPD) symptoms typically do not appear until at least 40 

years of age (16). Both differences in personal exposure and differences in specific disease 

types could lead to differences in O3-morbidity C-R functions by age.

A linear relationship between the log of daily respiratory event counts and daily 

concentrations of O3 (and other pollutants) is often assumed. Because a linear C-R function 

assumes a constant slope, the regression parameter represents the average change in the log 

event count per unit change in O3 concentration, which makes it easy to interpret. The 

parameter estimate can be interpreted as the average relative risk of the outcome per unit 

change in O3 concentration, which is assumed to be constant across all O3 concentrations. In 

many cases, the assumption of linearity is made for ease of interpretation of a single 
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parameter estimate summarizing the overall effects. However, if the C-R relationship is truly 

nonlinear but modeled as linear, the relative risk for a given change in O3 concentration may 

be over- or under-estimated, depending on the absolute O3 concentration. Inaccurate 

estimates may have intervention and policy implications (17). Evaluating whether to model a 

potentially non-linear C-R relationship as linear ideally requires an examination as to the 

extent of the error this would lead to in the estimates at various O3 levels.

As part of the Emory University-Georgia Tech Southeastern Center for Air Pollution and 

Epidemiology (SCAPE), we conducted a multi-city study of air pollution and acute 

morbidity (18–20). Here, we use data from this study to evaluate the O3 C-R function shapes 

for acute respiratory morbidity outcomes. Specifically, we 1) estimated the effect of daily O3 

on the number of respiratory emergency department (ED) visits in five U.S. cities under 

various model assumptions, for respiratory ED visits overall and for ED visits for specific 

types of respiratory disease and 2) examined the consistency of the results across the five 

cities, for all ages combined and for children and adults separately. Each city’s data spanned 

a recent multi-year period and encompassed a broad range of O3 levels.

Materials and Methods

The study used data for five U.S. metropolitan areas: 20-county Atlanta, Georgia 

(2002-2008); 7- county Birmingham, Alabama (2002-2008); 12-county Dallas-Fort Worth, 

Texas (2006-2008); 3-county Pittsburgh, Pennsylvania (2002-2008); and 16-county St. Louis 

Missouri-Illinois (2002-2007). The estimated population of the five metropolitan areas using 

county-level data from the 2010 U.S. Census ranged from 1.1 million people in Birmingham 

to 6.3 million people in Dallas.

Year-round estimated daily 8-hour maximum O3 concentrations in parts per billion (ppb) 

were obtained by fusing observational data from available network monitors with pollutant 

concentration simulations from the Community Multi-Scale Air Quality (CMAQ) emissions-

based chemical transport model at 12x12 km grids over each city. These daily fields were 

then spatially averaged in each metropolitan area using population weighting (21–23). The 

temporal resolution of CMAQ O3 concentrations was the same as the monitors: both were 

hourly observations used to calculate daily 8-hour maximums. Daily temperature and dew-

point data were obtained from the National Climatic Data Center for measurements made at 

automated surface observing stations at the major airport in each city.

Individual-level data on ED visits were obtained directly from hospitals or from hospital 

associations for each city (18–20). Data were not available from any Veterans 

Administration hospitals nor from the one children’s hospital in Birmingham. International 

Classification of Diseases, 9th revision [ICD-9] codes representing the primary reason for 

the ED visit were used to identify ED visits for specific respiratory health outcomes, 

including asthma [493, 786.07], upper respiratory tract infection (URI) [460-466, 477], 

COPD [491-492, 496], and a combined respiratory disease (RD) group that included visits 

for asthma, URI, COPD, plus pneumonia [480-486], and bronchiolitis [466.1, 466.11, 

466.19]. Patient-level data were aggregated by day to obtain daily counts of ED visits for 

each outcome for each city for all ages as well as for children (those ≤18 years at time of ED 
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visit) and adults (those >18 years at time of ED visit) separately. The data were used in 

accordance with our data use agreements with the hospitals and hospital associations. The 

Emory University Institutional Review Board approved this study.

Poisson log-linear models were used to estimate associations between 3-day moving average 

(of lag days 0-2) O3 concentrations and ED visits for each respiratory outcome in each city, 

using various functions of concentrations and controlling for long-term trends and 

meteorology. Standard errors were scaled to account for Poisson overdispersion. Models 

controlled for flexible time trends specified using cubic splines with monthly knots; and 

indicator variables for day of week, federal holidays, individual hospital’s participation, and 

season. Models also included cubic terms for same-day (lag 0) maximum temperature, 2-day 

moving average of minimum temperature (lags 1-2), and 3-day moving average of mean dew 

point temperature (lags 0-2). The models also included terms for the interaction between 

season and the lag 0 maximum temperature cubic polynomial terms, and terms for the 

interaction between the season and weekday/holiday terms. The temporal metric for O3 

concentration (3-day moving average of lag days 0-2) and control variables were chosen a 
priori and based on previous research (18). The model can be represented in the form:

E(Yt) = e
∝ + ∑δAPt + ∑ f (time − varying covariates)

t

where Yt represents the daily count of ED visits on day t, APt denotes the level of 3-day 

moving average O3 (of lag days 0-2) on day t, and f(time-varying covariates)t represent the 

control variables.

To examine the O3 C-R shape for each outcome in each city, six different approaches for 

modeling O3 concentrations were considered: 1) linear C-R models, in which O3 

concentration was included in the model as a continuous linear variable; 2) linear-threshold 
C-R models, in which O3 was modeled as having no effect at concentrations less than or 

equal to a threshold and a linear effect at concentrations greater than the threshold. The 

threshold was determined for each city and outcome by the O3 level that maximized the log 

likelihood of the model. Specifically, for each city and outcome, thresholds ranging from the 

minimum observed ozone concentration for that city through 50 ppb by 1 ppb increments 

were considered in individual models and the O3 concentration from the model with the 

largest log likelihood was chosen as the threshold for that city and outcome; 3) quadratic C-
R models, in which both linear and quadratic terms for O3 concentration were included; 4) 

cubic C-R models, in which linear, quadratic, and cubic terms for O3 concentration were 

included; 5) categorical C-R models, in which the effects of quintile-based categories of O3 

concentration (25 to <35, 35 to <45, 45 to <60, and ≥60 ppb) relative to the lowest quintile 

of O3 (<25 ppb) were determined; and 6) cubic spline C-R models, in which O3 was 

modeled as a cubic spline with knots at 30 and 50 ppb, corresponding to the approximate 

25th and 75th O3 percentiles across cities. Cubic spline C-R models included cubic, 

quadratic, and linear terms for O3 concentration as well as terms that allowed the cubic term 

to vary at the knot points.
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The Akaike Information Criteria (AIC) value was obtained for each model and was used to 

compare model fit between models with various O3 effect specifications, with the lowest 

AIC representing the best model fit for a given respiratory outcome in a given city. Rate 

ratios (RRs) and 95% confidence intervals (CIs) from linear and threshold models were 

calculated for each city and outcome per 25 ppb increase in O3 concentration; 25 ppb 

represents the average interquartile range of O3 levels among the 5 cities. Chi-square tests of 

heterogeneity were conducted to determine whether RRs from the linear models varied 

significantly across cities for any respiratory outcome (24). RRs and confidence intervals 

from the categorical and cubic spline models were plotted and AICs were used to compare 

results among outcomes, approaches, and cities. The referent O3 level in the cubic spline 

plots was 20 ppb which roughly corresponded to the 10% percentile for each city.

Secondary analyses included stratifying analyses by age group (children ≤18 years vs. adults 

>18 years) among four cities: age-specific models were not examined for Birmingham 

because data were not available from the one children’s hospital in that city. Age-specific 

models also did not examine COPD as an outcome because nearly all ED visits for COPD 

occurred among adults. Preliminary analyses examined 3 age groups: ≤18 years, 19-64 

years, and ≥65 years. Because there were fewer respiratory-related ED visits among adults 

≥65 years compared to other ages (e.g. in Atlanta, 55% of asthma ED visits were among 

children, 40% among adults 19-64 years, and 5% among adults ≥65 years) and because 

general C-R shapes were similar for both the 19-64 and ≥65 year age groups, the two adult 

categories were combined. As O3 concentrations are impacted by ambient nitrogen dioxide 

(NO2) and temperature, sensitivity analyses also examined the effect of O3 in cubic spline 

models that additionally adjusted for estimated daily 1-hour maximum NO2 concentrations 

as a 3-day moving average. Finally, sensitivity analyses testing the robustness of the 

temporal metric for O3 and meteorological control variables were run for the RD and asthma 

models. These models examined different lag structures for O3 (same day, lagged 1 day, 

lagged 2 days, and lagged 3 days) and temperature. To further test for residual confounding, 

a model designed to show no association examined the association between tomorrow’s O3 

levels (O3 lag negative-1 day) and same day respiratory morbidity while also controlling for 

O3 3-day moving average. This check is based on the understanding that if covariate control 

is adequate, there should be no association between future O3 levels and the outcome (25).

We used these data in accordance with our data use agreements with the hospitals and 

hospital associations from which the data were received. The study was approved by the 

Emory University Institutional Review Board which granted exemption from informed 

consent requirements, given the minimal risk nature of the study and the infeasibility of 

obtaining informed consent from individual patients for the large number of ED visit and 

hospitalization records examined in this study.

Results

The five cities each contributed 1096 to 2557 days to the analysis (Table 1). There were 

wide-ranging O3 levels across days: nearly 20% of days had O3 concentrations <25 ppb and 

11% of days had O3 concentrations >60 ppb (Table 1). Of the five cities, Pittsburgh had the 

widest range of O3 levels (3.9 ppb to 106.3 ppb). O3 levels varied by season with higher O3 
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concentrations occurring on summer days and lower concentrations on winter days 

(Supplemental Table 1). Counts of respiratory disease ED visits ranged from 68 visits per 

day in Birmingham to 448 visits per day in Dallas (Table 2). On average, 56% of respiratory 

disease ED visits were due to URI (range=42-61% across cities), 19% of visits were due to 

asthma (range=16-25% across cities), and 6% of visits were due to COPD (range=5-10% 

across cities). Half of ED visits for asthma occurred among children 18 years and younger 

(52%) while nearly all COPD visits occurred among adults (99%) (Table 2).

We first compared RRs for a 25 ppb increase in O3 from models for each health outcome in 

each city that assumed a linear C-R function for O3 (Table 3). In linear C-R models, O3 was 

positively associated with ED visits for all outcomes in each city (with the exception of the 

association between O3 and COPD in Birmingham), with no statistically significant 

heterogeneity in associations across cities. Specifically, for RD ED visits, associations were 

statistically significant in each city with rate ratios of 1.02-1.05 per 25 ppb increase in O3 

(Table 3). Additionally, associations were statistically significant for asthma ED visits in 

four cities and for URI ED visits in three cities. For COPD ED visits, associations were 

generally positive but not significant, likely due in part to lower power resulting from 

smaller daily ED visit counts for COPD. O3 had a stronger detrimental effect on ED visits 

for asthma compared to URIs in St. Louis (RR=1.07 for asthma vs. 1.01 for URI, p-value for 

difference=0.012).

Results of linear-threshold C-R models were similar to results of linear C-R models (Table 

4). Above the identified threshold, O3 was positively associated with ED visits for all 

outcomes in each city, with RRs per 25 ppb increase in O3 concentrations above the 

threshold (Table 4) that were similar to the RRs per 25 ppb increase in O3 concentrations in 

linear C-R models (Table 3). O3 threshold analyses tended to either show a threshold at the 

lowest observed O3 level in the city or alternatively, showed thresholds around 25 ppb. For 

example, for the overall RD outcome, thresholds of 10 ppb were identified in Birmingham 

and Dallas which effectively demonstrated no threshold since the lowest observed O3 levels 

in each city were 9.4 and 9.2 ppb, respectively. However, evidence of thresholds of 24, 24, 

and 26 ppb were identified in Atlanta, Pittsburgh, and St. Louis despite similar minimum 

observed O3 levels as Birmingham and Dallas. A threshold of 40 ppb was identified in St. 

Louis for the COPD outcome.

In categorical models for each city, there was generally an increasing risk of an RD, asthma, 

or URI ED visit with increasing O3 level relative to the reference level of <25 ppb (Figure 

1). Rate ratios comparing days with ≥60 ppb O3 to days with O3 ≤25 ppb in the various 

cities ranged from 1.03-1.08 for RD, 1.04-1.11 for asthma, and 1.02-1.09 for URI. However, 

for COPD ED visits, risk did not generally increase by O3 level in three cities and 

corresponding rate ratios were not significant in any city at any O3 level.

Regression coefficients for quadratic terms in quadratic models were generally not 

significant (p-values >0.05 in 16 out of 20 quadratic city-specific respiratory outcome 

models) nor were coefficients for cubic terms in cubic models (p-values>0.05 in 15 of 20 

models). Because cubic spline models did not impose a distribution assumption, rate ratios 

from cubic spline models were plotted to aid in visualizing the C-R function shape (Figure 
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2). The cubic spline curves were largely consistent with results from the categorical models 

in Figure 1, although provided more detail on specific shapes. RR plots from cubic spline 

models typically illustrated the increasing risk of respiratory ED visits with increasing O3 

although plots from all 5 cities showed a flattening of RD ED risk at higher O3 levels (i.e. 

>60 ppb) (Figure 2).

To compare model fit among the approaches for each city-outcome combination, AICs are 

presented in Table 5, with the lowest AIC for each city-outcome presented in bold. The 

approach yielding the best fit for O3 varied by city and by outcome. Among the 5 cities and 

4 respiratory outcomes, linear models fit best or equally as well as any other model 

approaches in n=7 instances, cubic spline models in another n=7, cubic models in n=3, 

quadratic in n=2, and categorical in n=1 instance. Although there was some suggestion of O3 

thresholds (e.g. of 24-26 ppb for RD) in some cities (Table 4), linear C-R models fit as well 

as or better than threshold C-R models as determined by AICs (Table 5). Linear C-R models 

also fit better than categorical C-R models in all cases except for RD and URI outcomes in 

Dallas. Comparing the linear fit to the fit of approaches with flexible terms resulted in mixed 

findings. Cubic spline or cubic C-R models described the O3-RD shape better than the linear 

approach in all five cities (cubic spline in 3 cities and cubic in 2 cities). However, best fitting 

models for the more specific respiratory outcomes varied by city. For example, for asthma, 

linear C-R models fit best in 2 cities, cubic spline C-R models fit best in another 2 cities, and 

a quadratic C-R model fit best in 1 city. Best fitting C-R models also varied by outcome 

within the same city. For example, a linear C-R model best described the O3-asthma 

relationship in St. Louis while a cubic C-R model best described the St. Louis O3-URI 

relationship. Cubic spline plots generally reflected the C-R function identified by the lowest 

AIC (Figure 1). Cubic spline plot shapes generally did not differ substantially between city 

as evidenced by overlapping confidence interval bands.

In secondary analyses, we assessed whether C-R curves varied by age for all cities (except 

Birmingham due to data missing from the children’s hospital). Smaller ED counts created 

more uncertainty around all estimates in age-specific analyses. However, results still 

suggested that C-R shapes for several outcomes may have differed between children and 

adults. The risk of a respiratory-related ED visit at lower O3 levels (<40 ppb) was often 

greater for children compared to adults as represented by a steeper slope at low O3 levels in 

children-specific cubic spline RR plots compared to adult-specific plots (Supplemental 

Figure 1). Differences in C-R shapes between children and adults were most visible for 

asthma ED visits. The risk of an asthma ED visit at lower O3 levels was greater for children 

compared to adults in all 4 cities. The data additionally suggested that children may be more 

impacted by very low O3 levels (<30 ppb) compared to adults. For example, the risk of a 

respiratory-related ED visit in Atlanta and St. Louis began at 20 ppb among children but the 

same risk did not occur in adults until O3 levels of 30 or 40 ppb. The same phenomenon was 

evident for asthma in Dallas, Pittsburgh, and St. Louis and for URI in Atlanta and 

Pittsburgh.

Sensitivity analyses that examined results from models that additionally adjusted for NO2 

found that the C-R shape in each city for each outcome was nearly identical to the shapes 

generated in the models that did not adjust for NO2. Sensitivity analyses that considered 
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various temporal definitions for O3 and meterological measures demonstrated a robust 

model: associations and C-R shapes were similar when O3 was modeled as either same day, 

lag 1, lag 2, lag 3, or as a moving average of 3 days. Models that considered O3 lagged -1 

day, showed no O3-morbidity associations with future O3 levels, as expected.

Discussion

We found positive significant relationships between O3 and respiratory health outcomes 

across five U.S. cities. This finding was consistent across all C-R modeling assumptions. 

Linear and semiparametric models most often fit best. Depending on the specific city and 

respiratory morbidity outcome examined, we found either no threshold or thresholds of 

roughly 25 ppb which correspond to typical O3 background levels in the U.S. (26). Results 

suggested that although risk of respiratory-related ED visits typically increased with 

increasing O3 levels, the risk among children aged 18 years and younger was higher 

compared to adults at low O3 levels (<40 ppb).

For the RD outcome which encompassed ED visits for asthma, URI, COPD, pneumonia, and 

bronchiolitis, semi-parametric models best represented the relationship in all five cities. 

These semiparametric RD models described a linearly increasing RD risk with increasing 

O3 up until about concentrations of 60 ppb at which point risk “flattened” out at O3 levels 

above 60 ppb (e.g. suggesting that O3 levels of 80 ppb confer the same RD risk as 60 ppb). 

However, in our study, each city had only approximately 10% of days on which O3 

concentration was above 60 ppb and this likely led to uncertain results at high O3 

concentrations; confidence intervals were wide at O3 concentrations above 60 ppb making it 

unclear whether this plateau in risk at high O3 levels truly occurs. Moreover, for the RD 

outcome specifically, the observed plateauing of risk at higher O3 concentrations may have 

simply been a reflection of this outcome being a combination of specific respiratory sub-

outcomes with differing C-R shapes. For example, in Dallas, the C-R shape for URI was 

linear through O3 concentrations of 90 ppb while the C-R shape for asthma suggested a 

decreasing risk beginning at O3 concentrations of 60 ppb. When combined into the overall 

Dallas-specific RD outcome, risk naturally averaged (or “flattened”) out at O3 

concentrations ≥60 ppb.

Considering the specific outcomes of asthma and URI, the observed leveling off of risk at 

high O3 levels was not consistent across cities. Southern cities (Atlanta, Birmingham, and 

Dallas) all showed a flattened asthma ED risk at O3 concentrations ≥60 ppb, but asthma ED 

risk in Pittsburgh and St. Louis continued to increase through O3 concentrations of 90 ppb. If 

flattening of risk at high O3 levels was due to a biologic reason, we would expect similar 

patterns across cities for the same outcome. This was not the case here suggesting the 

importance of other factors. For example, this could reflect different population behavior 

patterns in relation to exposure to ambient O3 across cities. People in the southern cities 

may be less likely to go outside on days with high O3 concentrations due either to awareness 

of air pollution through smog alerts or because of associated high temperatures; days with 

high O3 concentrations tend to also be days with high temperature in the summer (although 

not exclusively), people may have naturally chosen to decrease their time outside on those 

days resulting in an overall less exposed population to high O3 concentrations. In addition, 
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residents of Pittsburgh and St. Louis may have less access to air conditioning compared to 

their southern counterparts and thus more exposure to O3 through open windows on hot 

summer days (https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?

src=bkmk). Previous research has shown that increased prevalence of air conditioning is 

associated with a decreased effect of PM25 (27, 28). Finally, it is possible that there was 

more exposure measurement error at certain parts of the O3 distribution (e.g. above 60 ppb) 

and/or alternatively, that O3 in some cities was measured more accurately than in other 

cities. These scenarios could cause more uncertainty (i.e. wider confidence intervals) in the 

C-R functions which could result in different C-R shapes across cities.

Given that C-R patterns across cities for URI did not match those for asthma (e.g. linear 

shape observed for O3-URI in Dallas, despite high air conditioning prevalence in Dallas) 

suggests complexity in factors that dictate C-R shape. For example, differences in C-R 

shapes may vary within city across outcomes if different pollution mixtures exist at different 

ambient O3 levels with some mixtures being more likely to cause poor asthma outcomes as 

opposed to URI, COPD, or pneumonia outcomes. Thus overall heterogeneity in O3 C-R 

functions across cities may be caused by a complex array of factors, such as O3 exposure 

ranges, behaviors, or other pollutant compositions. Population susceptibility may also play a 

role. As just one assessment of susceptibility, we examined C-R functions across cities by 

age. Steeper slopes at O3 concentrations below 60 ppb reflect overall stronger associations 

for children compared to adults that we have previously observed for asthma (18); the linear 

C-R curves observed in overall analyses for asthma in St. Louis were driven by children. 

Mixed results on C-R shape observed here suggest the need for assessment of the C-R 

function specific to the study region, population, and outcome of interest. Similar to the 

uncertainty we found when assessing the effects of O3 concentrations above 60 ppb, 

associations at very low O3 concentrations were challenging to interpret. Each city 

experienced only 10% of days on which O3 concentrations were below 20 ppb which limited 

our ability to assess whether a threshold existed at very low O3 concentrations (i.e. down to 

zero). Because short-term exposure to O3 can impact the respiratory system by causing 

declines in pulmonary function and increases in inflammatory response, it is biologically 

plausible that there is no threshold (29). However, the shape of the C-R function for the 

respiratory outcomes we examined may or may not be linear at low O3 levels. It is possible 

that an increased risk of having a respiratory-related ED visit or hospitalization may occur at 

the very lowest O3 levels but that the steepness of the risk increases around 8-hour 

maximum O3 concentrations of 20 ppb as the severity of the health outcome may be driven 

by the specific concentration and exposure duration experienced. Our results are specific 

only to the ranges of ozone levels that the 5 cities experienced during the time periods. It 

would be speculative to infer the dose-response for ozone values both above and below the 

ozone levels we observed.

The shapes of the cubic spline plots generally represented the C-R function identified as the 

best fitting model by the AIC. Both cubic spline plots and AICs provide useful information 

that can be used to determine the shape of the C-R function and make modeling decisions. 

Although cubic and cubic spline functions best modeled the O3-RD relationship in all five 

cities as determined by the lowest AIC, choosing to model the relationships as linear - at 

least until O3 concentrations of 60 ppb - is not unreasonable given the shape of the cubic 
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spline plots. The effect of O3 on health outcomes is often assumed to be linear and linear 

models may give similar results as semi-parametric models for particular O3 levels but 

determining what the specific levels are for a certain location and health outcome requires 

investigating the shape of the C-R function early on in the analysis. AICs and plots based on 

cubic spline models may help assess this. Cubic splines do not impose distribution 

assumptions and may give better estimates of measures of association at particular pollutant 

concentrations (9, 30–35).

There are several limitations to this analysis. First, while AICs are commonly used to 

determine best shape (32, 36), it is unclear whether a small difference in AICs between 

models translates to a meaningful difference in practice. Second, there were differences in 

power across O3 concentration ranges which likely resulted in uncertainty in the C-R 

function shape at higher O3 levels (>60 ppb) in some cities for certain outcomes. Third, 

imprecision in the measurement of O3 could affect C-R function assessment (37). We used 

O3 estimates from monitors that were then fused with spatial concentration estimates and 

based on population weights to reduce the impact of exposure measurement error (38). 

Fourth, metropolitan-level O3 estimates were used rather than a finer spatial resolution (like 

county level). However, because O3 is a secondary pollutant shown to have little spatial 

variability, results likely are not significantly impacted by aggregating counts over the 

geographical area (21, 39, 40).

We assessed the shape of the O3 and respiratory morbidity relationship measured by ED 

visit counts in five U.S. cities using several C-R modeling assumptions. O3 was positively 

associated with respiratory ED visits overall as well as with ED visits for asthma and URI in 

all models. C-R functions were typically linear up until O3 concentrations of 60 ppb at 

which point some cities and outcomes suggested a flattening out of risk at O3 concentrations 

≥60 ppb while others suggested a continually linear relationship through O3 concentrations 

of 90 ppb. Confidence intervals at ozone concentrations ≥60 ppb were wide. Assessing C-R 

shape is necessary to identify the most appropriate form of the exposure to be used in the 

model for the specific city, population, and outcome of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rate ratios and 95% confidence intervals from categorical C-R models. O3 categories are 

<25 ppb (reference), 25 to <35 ppb, 35 to <45 ppb, 45 to <60 ppb, and ≥60 ppb.
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Figure 2. 
Rate ratios and 95% confidence intervals from cubic spline C-R models. Rate ratios use O3 

of 20 ppb as reference.a The best fitting model across all six O3 modeling approaches, as 

determined by AIC, is also listed on each figure for comparison purposes.
a20 ppb and 60 ppb correspond to 10th and 90th O3 percent
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