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Abstract

Natural language descriptions of organismal phenotypes, a principal object of study

in biology, are abundant in the biological literature. Expressing these phenotypes as

logical statements using ontologies would enable large-scale analysis on phenotypic

information from diverse systems. However, considerable human effort is required

to make these phenotype descriptions amenable to machine reasoning. Natural

language processing tools have been developed to facilitate this task, and the

training and evaluation of these tools depend on the availability of high quality,

manually annotated gold standard data sets. We describe the development of an

expert-curated gold standard data set of annotated phenotypes for evolutionary

biology. The gold standard was developed for the curation of complex comparative

phenotypes for the Phenoscape project. It was created by consensus among three

curators and consists of entity–quality expressions of varying complexity. We use

the gold standard to evaluate annotations created by human curators and those

generated by the Semantic CharaParser tool. Using four annotation accuracy metrics

that can account for any level of relationship between terms from two phenotype

annotations, we found that machine–human consistency, or similarity, was significantly

lower than inter-curator (human–human) consistency. Surprisingly, allowing curators

http://creativecommons.org/licenses/by/4.0/
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access to external information did not significantly increase the similarity of their

annotations to the gold standard or have a significant effect on inter-curator consistency.

We found that the similarity of machine annotations to the gold standard increased after

new relevant ontology terms had been added. Evaluation by the original authors of

the character descriptions indicated that the gold standard annotations came closer to

representing their intended meaning than did either the curator or machine annotations.

These findings point toward ways to better design software to augment human curators

and the use of the gold standard corpus will allow training and assessment of new tools

to improve phenotype annotation accuracy at scale.

Database URL: http://kb.phenoscape.org

Introduction

Phenotype descriptions of organisms are documented
across nearly all areas of biological research including
biomedicine, evolution, developmental biology and pale-
obiology. The vast majority of such descriptions are
expressed in the scientific literature using natural language.
While allowing for rich semantics, natural language
descriptions can be difficult for nonexperts to understand,
are opaque to machine reasoning and thus hinder the
integration of phenotypic information across different
studies, taxonomic systems and branches of biology (1).

To make phenotype descriptions more amenable to
computation, model organism databases employ human
curators to convert natural language phenotype descrip-
tions into machine-readable phenotype annotations that
use standard ontologies (e.g. 2–5). One format used
for phenotype annotations is the ontology-based entity
(E)–quality (Q) (EQ) representation, in which an entity
represents a biological object such as an anatomical
structure, space, behavior or a biological process; a
Q represents a trait or property that an E possesses,
e.g. shape, color or size; an optional related E (RE) allows
for binary relations such as adjacency (6, 7). Among formal
representations of phenotype descriptions, EQ is the most
widely used, e.g. (8), although other formal representations
have been proposed (9–11). Further, to create entities and

qualities that adequately represent the often highly detailed
phenotype descriptions, curators create complex logical
expressions called ‘post-compositions’ by combining
ontology terms, relations and spatial properties in different
ways. In contrast to EQ expressions with single-term
Es and Qs, creating post-composed entities and qualities
(Table 1) can be a complex task, due to the flexibility in
logic expression and the different semantic interpretations
that free-text descriptions often allow. Additionally, the
varied ways in which concepts from multiple ontologies can
be combined to create post-composed expressions result in
a vast set of possible EQ combinations where consistency is
difficult to achieve. As a result, it can be expected that
EQ annotations involving post-compositions will show
variability between different curators.

To best resolve the ambiguities inherent in natural
language descriptions, human curators will often not
only use their domain expertise but also refer to external
information for deducing the original author’s intent.
Phenotype descriptions found in the literature, however, are
typically in a concise format with little or no contextualizing
information that would help with disambiguating the
intended meaning. The difficulty of disambiguation can be
exacerbated when the requisite E and Q domain ontologies
do not yet include an obviously appropriate term for a
particular annotation (12). As a consequence of this and

Table 1. Examples of EQ annotations of varying complexity from the present study

Character: state E Q RE

A sclerotic ossicles: greatly enlarged Uberon: ‘scleral ossicle’ PATO: ‘increased size’
B nasal-prefrontal contact: present Uberon: ‘nasal bone’ PATO: ‘in contact with’ Uberon: ‘prefrontal bone’
C lateral pelvic glands: absent in males Uberon: ‘gland’ and (‘part_of’ some

{BSPO: ‘lateral region’ and [‘part_of’
some Uberon: ‘pelvis’ and (‘part_of’ some
Uberon: ‘male organism’)]}) PATO: ‘absent’

‘A’ illustrates a simple EQ annotation; ‘B’ shows an EQ annotation in which the Q term relates two entities to each other; and ‘C’ provides an example of an E that does not correspond to
a term in an existing ontology but is instead a complex logical expression post-composed from multiple ontology terms

http://kb.phenoscape.org


Database, Vol. 2018, Article ID bay110 Page 3 of 17

other challenges, manual curation tends to be extremely
labor-intensive and few projects have the resources to
comprehensively curate the relevant literature. To help
address this bottleneck, text mining and natural language
processing (NLP) systems have been developed with the
goal of supplementing or augmenting the work of human
curators. Facilitating continuous improvement of these
systems, tools and algorithms requires means to compare
different systems objectively and fairly with each other and
with human curators, in particular, with respect to accuracy
of generated annotations. This raises several questions.
One, what is the reference against which accuracy is best
assessed if annotations generated for a given task show
variability between different human curators? Two, how
consistent is the result of machine annotation with that
of a human curator? Three, to what extent is machine
annotation performance limited by inherent differences
between how a machine and a human expert execute a
curation task? In particular, in contrast to human curators
who will consult external information, a software tool will
normally only use the vocabulary and domain knowledge it
is initially provided with in the form of input lexicons and
ontologies.

The variability among expert curators can be used to
provide a baseline for the performance evaluation of auto-
mated systems. Cui et al. (13) conducted an inter-curator
consistency experiment to evaluate Semantic CharaParser
(SCP), an NLP tool designed for generating EQ annotations
from character descriptions in the comparative anatomy
literature [specifically, from phylogenetic character matrices
(14)]. Characters consist of two or more character states
contrasting the variation in phenotype among a set of taxa.
Character-by-taxon matrices are used in phylogenetic and
comparative analyses to infer the evolutionary relationships
among the taxa under study and to reconstruct putative
character state evolution on the phylogeny.

To our knowledge, SCP is the first semi-automatic soft-
ware designed to generate EQ annotations. SCP works by
parsing the original character descriptions to identify E and
Q terms, matching these terms to ontology concepts and

generating logical relations and, where appropriate, post-
compositions from the matched concepts based on a set
of rules. In the experiment, three curators independently
annotated a set of 203 characters, randomly chosen from
seven publications representing extant and extinct verte-
brates for a variety of anatomical systems with an emphasis
on skeletal anatomy, corresponding to the curators’ domain
of expertise (Table 2). In the first, or ‘Naïve’, round of
annotation, curators were not allowed access to sources of
knowledge external to the character description, including
the publication from which the matrix originated. In the
second, or ‘Knowledge’, round curators were allowed to
access external sources of knowledge, such as the full
publication from which the character was drawn, related
literature and other online sources. The curators were given
a set of initial ontologies to use for curation. The new
ontology terms created during curation were added to the
‘Initial’ ontologies to create curator-specific ‘Augmented’
ontologies. At the end of the curation rounds, all curator-
specific augmented ontologies were merged to create a final
‘Merged’ ontology.

The Cui et al. (13) study was designed such that SCP
was used to annotate the same set of characters as human
curators using three sets of ontologies (Initial, Augmented
and Merged) with progressively more comprehensive
coverage, as described below. The primary findings were
as follows. The performance of SCP was significantly lower
as compared to human curators. When comparing the
performance of SCP to human curators, no statistically
significant differences were found between Naïve and
Knowledge rounds. Inter-curator recall and precision were
also not found to be significantly different between the
Naïve and Knowledge rounds. SCP performed significantly
better with Augmented versus Initial ontologies. However,
there was no significant difference in performance between
Augmented and Merged ontologies.

While useful, there were several limitations in the Cui
et al. (13) evaluation of SCP, including the lack of a gold
standard against which to measure its performance. Man-
ually annotated gold standard data sets are high-quality

Table 2. Phylogenetic studies from which characters were selected

Reference Taxonomic group No. of taxa No. of characters

Hill (31) Amniotes 80 365
Skutschas and Gubin (32) Amphibians 22 69
Nesbitt et al. (33) Birds 22 107
Coates and Sequeira (30) Cartilaginous fishes 23 86
Chakrabarty (34) Cichlid fishes 41 89
O’Leary et al. (35) Mammals 84 4541
Conrad (36) Squamate reptiles 223 363
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benchmarks for both evaluation and training of automated
NLP systems, e.g. (15–17). Another limitation was the
use of performance measures that did not fully account
for the continuum of similarity possible between semantic
phenotype annotations. While these authors recognized
that phenotypes annotated with parent and daughter terms
in the ontology bear some partial resemblance, here we
introduce semantic similarity measures that can account
for any level of relationship between the terms from two
phenotype annotations.

The present work describes the development of an
expert-curated gold standard data set of annotated phe-
notypes for evolutionary biology that is the best available
given current constraints in semantic representation.
The gold standard was developed for the annotation
of the complex evolutionary phenotypes described in
the systematics literature for the Phenoscape project
(14, 18). Unlike many published gold standards for ontol-
ogy annotation, which frequently focus on E recognition,
e.g. (19), the Phenoscape gold standard consists of EQ
expressions of varying complexity. We evaluate how well
the annotations of individual curators and the machine
(SCP) compare to those of the gold standard, using four
ontology-aware metrics. Two of these are traditional
measures of semantic similarity (20) and two are extensions
of precision and recall that account for partial semantic
similarity. In addition, we directly assessed the quality of the
gold standard with an author survey, in which the original
domain experts were invited to rank the accuracy of a
subset of the annotations from the gold standard, the
individual human curators and SCP.

Related work

Gold standard corpora are collections of articles manually
annotated by expert curators and they provide a high-
quality comparison against which to test automated text
processing systems. Funk et al. (17), for example, used the
CRAFT annotation corpus (19, 21) for the evaluation of
three concept annotation systems. Within the biomedical
sciences, a number of gold standard corpora have been
developed (22–24) and these focus on concept recognition.
Concepts are annotated at the text-string level, e.g. (19),
or, in some cases, annotations are attached at the whole-
document level, e.g. (23). Because of the effort and costs
required for manual annotation, ‘silver standard’ corpora
have also been created, in which automatically generated an-
notations are grouped into a single corpus (25, 26). As far as
we are aware, there are no published gold standard corpora
for EQ phenotypes and none for evolutionary phenotypes.

Inter-curator consistency has been used by several stud-
ies as a baseline against which to evaluate the performance

of automated curation software (27–29). Wiegers et al.
(27) measured the performance of text mining software
that identifies chemical–gene interactions from the lit-
erature by comparing the output against inter-curator
consistency on the same task. Sohngen et al. (28) evaluated
the performance of the DRENDA text-mining system
that retrieves enzyme-related information on diseases.
Most similar to the work reported here is the study
by Camon et al. (29) in which inter-curator consistency
was used as a baseline to evaluate performance of text-
mining systems to retrieve Gene Ontology (GO) terms
from the literature. In their experiment, three curators
co-curated 30 papers and extracted GO terms from the
text. In inter-curator comparisons, GO term pairs were
classified into three categories: exact matches, same lineage
(terms related via subsumption relationships) and different
lineage (unrelated terms). They found that curators chose
exactly the same terms (39%), related terms (43%)
and unrelated terms (19%) of the time. Our approach
differs in that we evaluate inter-curator consistency at
the task of phenotype (EQ) annotation and we employ
metrics that can account for partial matches between
annotations by taking advantage of both the ontology
structure and the information content (IC) from annotation
frequencies.

Methods

Source of phenotypes

Twenty-nine characters were randomly selected from each
of seven published phylogenetic studies, yielding 203
characters and 463 character states in total (Table 2).
The studies were chosen to (i) have a wide taxonomic
breadth across vertebrates, (ii) include both extinct and
extant taxa and (iii) include characters from several
anatomical systems (e.g. skeletal, muscular and nervous
systems). These objectives were intended to reduce potential
sources of systematic bias. For example, the prevailing
style of character descriptions can differ depending on
the taxonomic group of interest. Further, the curators
had varying expertise across the vertebrate taxa. The
characters and character states presented to curators were
extracted directly from the character list in each publication
[e.g. ‘Pelvic plate semicircular with anterolateral concavity.
Absent (0); present (1)’ from character 39 in Coates and
Sequeira (30)]. Thus, curators had access to the full-
character and state descriptions for each of the selected
characters, in addition to taxonomic scope and publication
source, but they—and the SCP developers—were blind to
the choice of papers and the selection of characters prior to
the experiment.
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Experimental design

The common set of character states was annotated indepen-
dently by three curators (W. Dahdul, T. A. Dececchi and N.
Ibrahim) and by SCP. The curators were randomly assigned
identifiers C1, C2 and C3 at the beginning of the study.
Curators used Phenex software (12, 37) for manually gen-
erating annotations. The annotations are complex expres-
sions made up of E, Q and, where required, an RE. The E
and RE components employ Uberon (38, 39) concepts and
may be post-composed with terms from multiple ontologies
including Uberon, Phenotype and Trait Ontology [PATO;
(40, 41)] and the Biological Spatial Ontology (BSPO) (42)
while the Q component uses PATO concepts. Curators were
free to create one or multiple EQ annotations per state,
and they were encouraged to annotate at a fine level of
detail (43). To measure the effect of external knowledge
on inter-curator consistency, two rounds of human curation
were performed. In the first (‘Naïve’) round, the character
and character state text were the only information the
curators were allowed to consult. Accessing the source
publication or any external information was not permitted.
This was intended to simulate the extent of information

available to SCP, although curators naturally use their
subject-domain expertise when composing annotations. In
the second (‘Knowledge’) round, the curators annotated
the same set of characters as in the Naïve round, but they
were free to consult the full text of the source publication
and to access any other external information. In total,
this resulted in six sets of human-curated EQ annotations
and six augmented ontologies produced by the curators
independently during the Naïve and Knowledge rounds.

Several steps were taken to promote consistency among
the human curators and between curators and SCP. First,
curators developed and were trained on a set of cura-
tion guidelines for the annotation of phylogenetic charac-
ters [the Phenoscape Guide to Character Annotation (44)].
These guidelines were also made available to SCP develop-
ers and are the basis of rules according to which SCP gen-
erates EQ expressions. Second, curators took advantage of
an interactive consistency review panel available in Phenex,
which reports missing or problematic annotations, such as a
relational Q used to annotate a character state without also
specifying an RE. Further, each curator had at least 1 year
of experience with EQ annotation prior to the experiment.
Note that each curator still performed their curation tasks

in the experiment independently from each other, and thus
there was still room for variation. For instance, for a given

character state, one curator might choose to use an imper-
fectly matching E term, while another might aim for a more
precise representation by post-composing a new term from

existing terms, and yet another might choose to add a new

single term to their Initial ontology. To avoid advantaging
SCP beyond an initial training data set, SCP developers were
not allowed to observe the human curation process during
the experiment.

The gold standard

The gold standard corpus, which consists of a unique set
of EQ annotations for each character state in the 203
character data set, was created as a consensus data set by the
three curators. After completing the Knowledge round, the
curators reviewed and discussed all the EQs in their three
separate Knowledge round curator data sets for the purpose
of developing a single gold standard data set. In assem-
bling this set of EQ annotations for the gold standard, the
curators were not limited to choosing among the individual
EQs that they had created during the experiment; instead,
they were free to modify existing annotations or create
entirely new ones. In cases where there was insufficient
information to resolve ambiguities, the curators consulted
additional published literature and other online resources.
In some cases, they also contacted domain experts to clar-
ify terminology or anatomy. Once all three curators were
in agreement, they used the Phenex curation software to
create the gold standard EQ annotations for the final gold
standard data set.

In the course of developing the gold standard, the
curators updated the best practices for EQ annotation
of characters documented in the Phenoscape Guide
to Character Annotation (44). We updated the list of
commonly encountered character categories (e.g. presence/
absence, position, size) with new categories, examples and
EQ conventions. Each phenotype in the gold standard
references one or more of the character categories from
the guide.

Ontologies

The human curators and SCP were provided with the same
initial set of ontologies: Uberon [version phenoscape-ext/15
March 2013, (38, 39)], BSPO [release 17 May 2018, (42)]
and PATO [release 03 June 2013, (41)].

In both the Naïve and Knowledge rounds, each curator
was free to provisionally add terms that they deemed
missing from any of the Initial ontologies, resulting in Aug-
mented ontologies that differed from their Initial versions.
New term requests were added as provisional terms by
using the ontology request broker in Phenex (12), which
provides an interface to the BioPortal’s provisional term
API (45). Ontology curators can subsequently resolve these
requests as mistakenly overlooked existing terms, new
synonyms to existing terms or bona fide new terms. At the
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Table 3. Augmentation of E (UBERON), Q (PATO) and spatial

(BSPO) ontologies by the three curators in both rounds of

curation (Naïve and Knowledge) and in the final Merged

ontology

Curation Human Terms added to
round curator UBERON PATO BSPO

Naïve C1 109 70 3
C2 49 32 0
C3 89 23 2

Knowledge C1 129 74 3
C2 72 52 0
C3 108 35 3

Merged 199 127 7

end of the experiment, there were six sets of Augmented
ontologies, one from each curator in each round (Table 3).
These were subsequently combined to produce a Merged set
of ontologies for which redundant classes were manually
reconciled. To test the effect of ontology coverage on
automated EQ annotation, SCP was run with the Initial
ontology, the Augmented ontologies and the final Merged
ontology. The results in each case were compared to
those obtained by the human curators, as reported in
Cui et al. (13).

Measuring similarity between annotation sources

When different ontology terms are chosen to annotate a
given character state, the selected terms may nonetheless be
semantically similar. Thus, it is desirable to use measures
of annotation similarity that allow for varying degrees of
relatedness using the background ontology and annotation
corpus (20). Here, we use four measures, two of which
are semantic similarity metrics with a history of usage in
the literature and two of which are modifications of the
traditional measures of precision and recall that account
for different but semantically similar annotations. All four
measures can be applied to both full EQ annotations and to
comparisons among E terms alone.

Semantic similarity measures between annotation
sources (e.g. different curators) were aggregated at the level
of the individual character state and across all character
states (Figure 1). Aggregation of pairwise (EQ to EQ)
annotations by character state is necessary because a
curator may generate more than one EQ annotation for
a given character state. This is illustrated by Figure 1
where Curator A generated three EQs and Curator B
generated two EQs for State i. To measure the overall
similarity between two annotation sources (e.g. Curator
A to Curator B in Figure 1, top), we first compute a
similarity score between corresponding character state pairs

Figure 1. Similarity of annotations between two curators is calculated

across multiple character states (e.g. states 1–3, bottom). First, the

maximum character state similarity is calculated at the level of a single

character state and is the best match (maximum score) in pairwise

comparisons across that state’s EQ annotations. Mean curator similarity

is then calculated as the mean of the maximum similarities across all

character state pairs.

as the best match (maximum score) among all pairwise
comparisons between EQs for the same character state
(Maximum Character State Similarity in Figure 1). We then
compute the similarity between two annotation sources
by taking the arithmetic mean of the pairwise character
state similarity scores across all character state pairs (Mean
Curator Similarity in Figure 1, bottom).

Generating subsumers for EQ annotations. We treat each EQ
annotation as a node in an ad hoc EQ ontology. Creating
the complete cross product of the component ontologies
would necessarily include all possible subsumers but would
be prohibitive. As a memory-saving measure, we developed
a computationally efficient approach to identify subsumers
for EQ annotations on an ad hoc basis, as follows.

A comprehensive ontology was created by taking the
union of Uberon, PATO and BSPO ontologies using the
‘-merge-support-ontologies’ command in the owltools soft-
ware (https://github.com/owlcollab/owltools). In order to
enable reasoning on additional dimensions (e.g. ‘part of’) in
post-compositions while identifying subsumers, we added
additional classes to the comprehensive ontology. For every
concept ‘U’ in the Uberon ontology and every object prop-
erty ‘OP’ used in post-compositions, a class of the form ‘OP
some U’ was added to the comprehensive ontology.

https://github.com/owlcollab/owltools
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Figure 2. EQ annotations are split into E, Q and RE components and also transformed into an OWL class expression. Superclasses of E, Q and RE

and the class expression are queried via ELK. E, Q and RE superclasses are combined in the form E–Q–RE. These E–Q–RE superclasses along with

the class expression’s superclasses form the subsumers of the EQ annotation for computation of semantic similarity.

First, every EQ annotation is split into individual E, Q
and, optionally, RE components (Figure 2, Step 1). Simul-
taneously, the EQ annotation is transformed into a Web
Ontology Language (OWL) class expression of the form
‘Q and inheres in some E and towards some RE’ (Figure 2,
Step 1). Next, superclasses of these individual components
and the class expression are retrieved using the ELK rea-
soner on the comprehensive ontology (Figure 2, Step 2).
Individual E, Q and RE superclasses are combined to create
superclasses of the form E–Q–RE. The combined class
expression and combinatorial E–Q–RE superclasses form
the subsumers of an EQ annotation (Figure 2, Step 3). While
it is possible that additional subsumers could be found in
the case that a class in another part of the hierarchy has
a logical definition that matches an EQ expression, it is
unlikely for these ontologies because subsuming Q terms
in the PATO ontology do not have logical definitions that
make use of Uberon entities.

Jaccard similarity. The Jaccard similarity (Jsim) between
nodes N1 and N2 in an ontology graph is defined as the
ratio of the number of nodes in the intersection of their
subsumers over the number of nodes in the union of their
subsumers (46):

Jsim(N1, N2) = |S(N1) ∩ S(N2)|
|S(N1) ∪ S(N2)|

where S(Ni) is the set of nodes that subsume Ni. Jsim
measures the distance between two EQs based on the class
structure of the ontology. The range of Jsim = [0, 1].
Jsim = 1 when the two EQs being compared are the same
and Jsim = 0 when they have no common subsumers.

Information content. Jsim measures the ontology graph dis-
tance between two nodes and thus necessarily ignores dif-

ferences in semantic specificity between parent and child
terms in different areas of the ontology graph. ‘IC’ is used
to capture the specificity of the annotations. The IC I of
a node Nj in an ontology is defined as the proportion of
annotations to Nj and all nodes subsumed by Nj in an
annotation corpus (47). Let q be the number of nodes in
the ontology. Define f (N) to be the number of annotations
directly to Nj and S(Nj) to be the set of nodes subsumed
by Nj:

I(Nj) = − log
(
p(Nj)

)

where

p(Nj) =
∑

M∈S(Nj)
f (M)

∑q
i=1 f (Ni)

.

The I of two nodes is defined as the I of the least common
subsumer (LCS) of the two nodes. If there are multiple LCSs,
the node with the highest I is used (46). I has a minimum of
zero at the root and a maximum that is dependent on the
size of the corpus

Imax = −log

(
1

∑q
i=1 f (Ni)

)

.

To obtain a normalized score In in the range of [0, 1],
we use In = I/Imax. In our analysis, the corpus for mea-
surement of In includes all human annotations from both
annotation rounds and the annotations from SCP.

Partial precision and partial recall. Precision and recall are com-
monly used to evaluate the performance of information
retrieval systems. Traditionally, these two measures do not
attempt to account for imperfect matches; information is
either retrieved or not. For ontology-based annotations,
partial information retrieval is possible because the infor-
mation to be retrieved is the semantics of the annotated
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text, rather than a particular term. To account for this,
here we use two metrics, partial precision (‘PP’) and partial
recall (‘PR’), to measure the success of semantic information
retrieval by a test curator (CT) relative to a reference curator
(CR), where a curator can be understood as either human
or software. While other variants of semantic precision and
recall are used in the literature (48, 49), the measures we
use here specifically use semantic similarity, in this case
Jsim, to quantify partial matches between annotations. In
contrast to our approach, (48) and (49) compute semantic
precision and recall by examining the superclass sets of two
annotations. Depending on the overlap among these sets,
each superclass is classified as a true positive, false positive
or false negative. These counts are then used to compute
semantic precision and recall.

PP measures the proportion of the semantics annotated
by CR that are retrieved by CT relative to the number
of CT annotations. PR, on the other hand, measures the
proportion of semantics that are retrieved by CT relative to
the number of CR annotations. Thus, both PP and PR have
a range of [0,1]. PP will decrease due to extra annotations
by CT that are dissimilar from those in CR, while PR will
decrease due to extra annotations in CR that are lacking
from CT . Both use Jsim to measure semantic similarity and
are computed at the character-state level rather than the
individual EQ annotation level. Using CR and CT as an
example, they are calculated as

PP = 1
Y

Y∑

j=1

X
max
i=1

Jsim
(
EQCR,i, EQCT ,j

)
(1)

PR = 1
X

X∑

i=1

Y
max
j=1

Jsim
(
EQCR,i, EQCT ,j

)
(2)

where i = 1..X indexes the EQs from CR and j = 1..Y
indexes the EQs from CT .

Author assessment of gold standard, curator and

machine annotations

To assess how close EQ annotations created by the different
sources came to the intent of the authors of the seven
studies from which the characters were drawn, an author
from each was invited to evaluate the relative performance
of the annotation sources. Using SurveyMonkey (www.
surveymonkey.com), we presented one author from each
study with 10 randomly selected character states derived
from their publication and asked them to rank the five dif-
ferent annotation sources (C1, C2, C3, SCP, and gold stan-
dard) for each state [Section1, Supplementary Materials].

Authors were given background material at the begin-
ning of the survey describing the EQ method of character

annotation. Authors were then asked to rank annotations
in order of preference, with the annotation that best repre-
sented the meaning of the character state ranked first. Anno-
tations were presented in random order, and the source of
each annotation could not be tracked by the author. All of
the EQ annotations for each character state generated by a
particular annotation source were presented to the authors.

We used two statistics to test for differences among
author preferences for the different annotation sources (50).
Anderson’s statistic, A, was used to test whether the overall
distribution of ranks was different in the observed (O) data
than expected (X):

A = t − 1
t

∑

i,j

(O(i, j) − X(i, j))2

X(i, j)

where t = 5 is the number of possible ranks and the
expected number of observations X(i, j) = n/t for factor
i assigned rank j and number of observations n. A was
tested against a χ2 distribution for significance with
(t − 1)2 degrees of freedom. The null hypothesis is that
all author preferences for all annotation sources will be
equally frequent.

Friedman’s statistic, F, was used to test if the mean ranks
of the different annotation sources differed from chance

Ri =
t∑

j=1

j · O(i, j)

F = 12
nt(t + 1)

t∑

i

(
Ri − n(t + 1)

2

)2

where t = 5 is the number of annotation sources, i =
1..t is the annotation source, j = 1..t is the number of
ranks that can be assigned to an annotation, obs(i, j) is the
number of times rank j was assigned to factor i and n is the
number of observations, as before. F was tested against a
χ2 distribution for significance with t − 1 = 4 degrees of
freedom.

Results

Data sets and source code

The gold standard corpus is available in NeXML
(51) (Gold_Standard-final.xml) and spreadsheet
formats (Excel: GS-categories.xls; tab-delimited:
GS-categories.tsv). The files include the full-text
character and character state descriptions, the source
study and the associated EQ phenotypes. The spreadsheet
format also contains references for each phenotype to
the character categories from the Phenoscape Guide to
Character Annotation (44). The corpus in the different

http://www.surveymonkey.com
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
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formats, as well as the ontologies and annotations generated
in its production, have been archived at Zenodo (https://doi.
org/10.5281/zenodo.1345307). The source code for the
analysis of inter-curator and SCP consistency based on
semantic similarity metrics, as well as the data and
ontologies used as input, have been archived separately, also
at Zenodo (https://doi.org/10.5281/zenodo.1218010). The
source code used to randomly select characters for the gold
standard (52) is available as part of the Phenex software
code repository, which has been previously archived at
Zenodo (https://doi.org/10.5281/zenodo.838793).

SCP is available in source code from GitHub (https://
github.com/phenoscape/phenoscape-nlp/) under the Mas-
sachusetts Institute of Technology (MIT) license. The ver-
sion used for this paper is the 0.1.0-goldstandard release
(https : //github.com /phenoscape/phenoscape-nlp/releases /
tag/v0.1.0-goldstandard), which is also archived at Zenodo
(https://doi.org/10.5281/zenodo.1246698).

Gold standard

The gold standard data set consists of 617 EQ phenotypes
annotated for 203 characters and 463 character states. In
total, these phenotypes are composed of 1096 anatom-
ical terms (312 unique concepts) from Uberon, 698 Q
terms (147 unique) from PATO and 148 spatial terms
(30 unique) from BSPO. The data set contains 339 post-
composed terms (277 anatomical and 62 Q terms) cre-
ated by relating existing terms from the same or different
ontologies.

New anatomy and Q terms were required for the com-
pletion of the gold standard annotations. From the full set
of terms individually created by the curators during the
experiment (Table 3), a total of 111 anatomical terms and
12 synonyms and 20 Q terms and 2 synonyms were added
to the public versions of Uberon and PATO, respectively.
The remaining subset of terms created by curators in the
Merged ontology were not added to the public ontology
versions either because a different term was chosen for the
gold standard annotation of a particular character, or the
term was determined to be invalid after discussion among
curators.

Using Jsim and In (see Measuring similarity between
annotation sources) to measure semantic similarity between
the four individual annotation sources (C1, C2, C3, and
SCP) and the gold standard, we examined (i) whether the
human annotations (C1, C2, and C3) showed an increase
in similarity to the gold standard between the Naïve and
Knowledge rounds and (ii) whether the machine annota-
tions (SCP) showed an increase in similarity to the gold
standard as ontologies progressed from the Initial, to Aug-
mented and to the final Merged versions.

Figure 3 shows similarity (as measured by PP, PR, Jsim
and In) between annotations derived from the curators and
the gold standard in Naïve and Knowledge curation rounds.
Based on two-sided paired Wilcoxon signed rank tests, PR
and Jsim significantly differed for C1 (PR: P=1.10×10−12,
Jsim: P = 2.06×10−10) and C2 (PR: P = 8.49×−5, Jsim:
P = 0.0002), PP significantly differed for C1 (P =
1.24×−10) while In significantly differed for C1 (P = 2.15×
10−11 between the Naïve and Knowledge rounds.

Similarity of SCP annotations to the gold standard
increased (26% average improvement across the four
metrics) after new ontology terms had been added by
human curators (detailed results are in Supplementary
Materials, Table 2). The majority of statistics were
significantly affected between the use of the Augmented
and final Merged ontologies in both annotation rounds
(Figure 4) with a few exceptions. PP and Jsim were not
affected for C1 in the Knowledge round while PR was not
affected in both rounds for C2. For C3, Jsim and PP in
the Knowledge round and PR in Naïve round were not
significantly affected. P-values for individual comparisons
are shown in Supplementary Materials, Table 2.

Consistency among human curators

We computed consistency among curators for the EQ
annotations generated for each character state. Figure 5
shows the mean inter-curator consistency scores across
three pairwise comparisons in the Naïve and Knowledge
rounds, respectively, for PP, PR, Jsim and In. The
differences between Naïve and Knowledge rounds are not
statistically significant (two-sided, paired Wilcoxon signed
rank tests, n = 463, P > 0.05 for all comparisons). These
results echo those reported by Cui et al. (13) for the same
experiment but reflect statistics that account for ontology
structure or annotation density.

To evaluate whether the absence of a difference in inter-
curator consistency between the Naïve and Knowledge
rounds was because curators made mostly the same anno-
tations in both rounds, Cui et al. (13) examined the changes
in EQ annotations. They found that curators created
substantially different EQ annotations in the Knowledge
round as compared to the Naïve round. Each curator
changed EQ annotations between these rounds for > 50%
of character states. Among the EQs that were different
between the two rounds, 29% were more complex, 33%
were less complex and 38% retained the same complexity
in the Knowledge round.

Because of the lack of significant differences between
inter-curator consistency in Naïve and Knowledge rounds
(Figure 5), we only report curator results for the Knowledge
round in subsequent sections.

https://doi.org/10.5281/zenodo.1345307
https://doi.org/10.5281/zenodo.1345307
https://doi.org/10.5281/zenodo.1218010
https://doi.org/10.5281/zenodo.838793
https://github.com/phenoscape/phenoscape-nlp/
https://github.com/phenoscape/phenoscape-nlp/
https://github.com/phenoscape/phenoscape-nlp/releases/tag/v0.1.0-goldstandard
https://github.com/phenoscape/phenoscape-nlp/releases/tag/v0.1.0-goldstandard
https://doi.org/10.5281/zenodo.1246698
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
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Figure 3. Similarity of human annotations to the gold standard in Naïve and Knowledge rounds. Shown are means across all 463 character states.

Error bars represent two standard errors of the mean. Curators C1 (as per PP, PR, Jsim and In) and C2 (as per PR, Jsim) were significantly closer to

the gold standard in the Knowledge round as compared to the Naïve round. Detailed results are shown in Supplementary Materials, Table 2.

Human–machine consistency

Using the same metrics as above, we compared the human-
generated annotations to those generated by SCP. To eval-
uate the effect of the completeness of ontologies on SCP
performance, we ran SCP separately with the Initial ontol-
ogy, each of the three (C1, C2 or C3) Augmented ontolo-
gies and the Merged ontology. Approximately 15–20%
of character state annotations made by SCP using the differ-
ent ontologies contained incomplete EQs. Incomplete EQs
refer to those statements that are only partially matched to
ontology terms, e.g. either E or Q terms are matched. In case
of post-compositions, some parts needed in the composition
are not matched to an ontology term. Human–machine
comparisons involving character states with incomplete
EQs were awarded a 0 similarity score.

We found that machine–human consistency was
significantly lower than inter-curator consistency by an
average of 35% across the four metrics (detailed results

are in Supplementary Materials, Tables 3 and 4). The
overall averages for the four scores in the human–machine
comparison (unfilled square markers in Figure 5) are
substantially lower than the averages for the comparisons
among the human curators (circle markers in Figure 5).
These comparisons are statistically significant for all four
metrics (two-sided, paired Wilcoxon signed rank test:
PP, P = 1.82 × 10−13; PR, P = 3.36 × 10−43; Jsim,
P = 7.78 × 10−18; In, P = 9.83 × 10−32).

Effect of ontology completeness on SCP–human consistency. Figure 5
shows the resulting PP, PR, Jsim and In scores comparing
SCP annotations generated with the Initial, Merged or
Augmented ontologies (plus, unfilled square and filled
square markers, respectively) to annotations from the
human Knowledge round (as noted above, no statistically
significant differences were found in SCP similarity to
human annotations between the Naïve versus Knowledge

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
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Figure 4. Effect of ontology completeness on SCP performance as measured by similarity to the gold standard. ‘Mean Augmented’ is the mean of

similarity scores from the three curator augmented ontologies; error bars show two standard errors of the mean. Significant differences in similarity

between SCP and the gold standard were found for the majority of statistics across the two rounds. Detailed results are shown in Supplementary

Materials, Table 2.

rounds). However, almost universally, the scores among the
similarity metrics increased as the ontologies progressed
from Initial to Augmented and then from Augmented to
Merged. The one exception is PP, which declined from the
Augmented to the Merged ontology. All these increases, and
the one decrease, were found to be statistically significant
with two-sided paired Wilcoxon rank sum tests at the
Bonferonni-corrected threshold of α = 0.0008 (Table 5).

Author evaluation

We received responses to survey requests from six of the
seven authors of the seven source studies (Table 2). Of the
six completed surveys, 3 authors evaluated (ranked) pheno-
types for all 10 characters; 1 author ranked 9 characters;
and 2 authors ranked 8 characters. Table 4 reports the
mean rank assigned to each curation source. The overall
distribution of ranks differed significantly among the cura-
tion sources (Friedman’s statistic, P = 0.00114), and there

were significant differences among the mean ranks of each
(Anderson’s statistic, P = 0.00133). The gold standard
had the lowest mean rank among the annotation sources,
and authors ranked the gold standard annotations first for
21 out of 55 characters, indicating that the gold standard
came closest to the meaning of the original authors more
frequently than others. SCP had the highest mean rank,
indicating that the machine annotations were farthest away
from the original authors’ intent more frequently than the
individual human curators or the gold standard.

Discussion

Gold standard

Phenotype curation is typically done manually, without
significant assistance from machines. It is difficult and
time-consuming, and across a wide variety of fields, from
agriculture to medicine, it has been found not to scale to

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
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Figure 5. Mean inter-curator consistency and mean similarity between human- and machine (SCP)-generated annotations. Error bars show two

standard errors of the mean. Inter-curator consistency results are shown for both the Naïve and Knowledge annotation rounds. SCP runs used either

the Initial, C1, C2 or C3 Augmented or the Merged ontologies. Only SCP similarity to human-generated annotations from the Knowledge round

are shown. Consistency between SCP annotations to human annotations was significantly lower than human inter-curator consistency. Across all

metrics, SCP annotation similarity to human annotations increased significantly between the use of Initial to Augmented ontologies and again from

Augmented to Merged ontologies except for PP (decreased from Augmented to Merged). Detailed results are in Supplementary Materials, Tables 4

and 5.

Table 4. Evaluation of annotations by original authors.

Authors ranked the annotations from the gold standard, the

three human curators (C1, C2 and C3) and SCP. A lower value

corresponds to an annotation deemed to be more accurate

or precise

Annotation source Mean rank

Gold standard 2.55
C1 2.62
C2 3.02
C3 3.15
SCP 3.67

the size of the task at hand (53, 54). Developing effective
machine-based methods to aid in this task, however,
requires standards against which to measure machine

performance. The corpus of annotations developed here
as a gold standard is the result of a methodical, multi-
step process. Beginning with the choice of seven papers
in the field of phylogenetic systematics that represent
phenotypic diversity across extinct and extant vertebrates,
a set of 203 characters (463 states) were randomly selected.
Three experienced curators with training and experience
in EQ annotation and research backgrounds in vertebrate
anatomy and phylogenetics independently annotated the
characters while simultaneously augmenting the initial
ontologies. After merging their individual augmented
ontologies, the three curators then discussed their annota-
tions for each character state, and in some cases referenced
external knowledge and contacted domain experts to clarify
concepts, to develop consensus annotations. We then turned
to the researchers who conceived of and described the

https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay110#supplementary-data
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Table 5. Comparison of SCP annotations using Initial, Augmented and Merged ontologies to measure the effect of ontology

completeness on SCP–human consistency. Shown are P-values from two-sided paired Wilcoxon rank sum tests

Comparison PP PR Jsim In

Initial versus Augmented ontologies 9.45 × 10−46 7.98 × 10−39 1.67 × 10−19 1.43 × 10−14

Augmented versus Merged ontologies 1.71 × 10−15 7.26 × 10−23 3.02 × 10−16 8.35 × 10−16

original character states to assess the consensus annotations
in relation to the machine-generated and individual
curator annotations. Their judgement that the consensus
annotations were on average closest in meaning to their
original representation in free text validates use of the
consensus annotations as a gold standard.

The gold standard presented here is the first of its
type for evaluation of progress in machine learning of EQ
phenotypes. It differs in a number of other ways from pre-
viously published gold standard corpora in the biomedical
sciences. Rather than ensuring that every concept in the
text of a character state is tagged with an ontology term
[as is the case for a concept-based gold standard, such as
CRAFT (19)], we focused on generating EQ annotations
that best represent the anatomical variation described in a
character. Thus, in some cases, the EQ or EQs chosen for a
particular character state may not include ontology terms in
one-to-one correspondence with concepts described in the
character. For example, the character state ‘parietal, ento-
carotid fossa, absent’ was represented in a single EQ as E:
‘entocarotid fossa’ and Q: ‘absent’. Parietal was not anno-
tated because entocarotid fossa is the focus of the character,
not the structure (parietal) that it is a part of. In addition,
the domain knowledge that entocarotid fossa is part of the
parietal is encoded in the Uberon anatomy ontology.

Similarly, in some cases, character states describing the
presence of a structure are not annotated directly in the gold
standard. This is because presence can be inferred using
machine reasoning on annotations to different attributes
(e.g. shape) of the structure (55). In the following character
state, for example ‘Hemipenis, horns: present, multi-cusped’
(36), the annotation in the gold standard consists of a single
EQ phenotype: E, ‘horn of hemipenis’, and Q, ‘multicuspi-
date’. The presence of ‘horn of hemipenis’ is inferred by the
assertion describing its shape and did not require a separate
EQ annotation.

In other cases, ‘coarse’-level annotations were used that
did not include every concept in the character state due
to limited expressivity in the EQ formalism. For example,
take the character ‘Quadrate, proximal portion, lateral
condyle separated from the medial condyle by a deep but
narrow furrow’. This relates three entities (lateral condyle
of quadrate, medial condyle of quadrate, furrow) that can-
not be expressed using the current EQ template model in

Phenex: (33). Instead, this character state was annotated
coarsely as E: ‘lateral condyle of quadrate’, Q: ‘position’
and RE: ‘medial condyle of quadrate’.

More complex annotations can be made using a less
restrictive annotation tool (e.g. Protégé) rather than the EQ
templates available in Phenex. However, allowing increased
complexity when annotating in EQ format is likely to
increase inter-curator variability. Pre-composed ontologies,
i.e. phenotype ontologies, such as used by the Human Phe-
notype Ontology (HPO) (56), could, however, potentially
decrease inter-curator variability because curators would
be more likely to choose among existing terms rather than
requesting a new one. Curators would also be aided by
having access to existing, vetted annotations when cre-
ating new ones. Finally, providing additional context for
character descriptions, such as specimen illustrations or
images, could greatly aid curators in capturing the original
intent of a character. Although most publications do include
illustrations or images for some characters, rarely is this
done for all characters in a matrix.

Finally, in some cases the gold standard annotations did
not fully represent the knowledge (explicit or implicit) of a
character due to limitations in the expressivity of OWL. For
example, in the character ‘height of the vertebral centrum
relative to length of the neural spine’, size is implicitly
compared between two structures in the same individual.
However, such within-individual comparison cannot be
fully represented using an OWL class expression (57).

Inter-curator variation

The goal of evaluating the performance of automated cura-
tion tools is to engineer and improve machine-based cura-
tion to assist human curation as effectively as possible.
Phenotype curation relies on deep domain and ontology
knowledge as well as on expert judgement. Semantics in
character descriptions can be variably interpreted, creating
an inherent inter-curator variability. Thus, to judge the
performance of automated curation tools against humans,
it is important to first understand the level of variation
between human curators as well as the sources of that
variation.

As expected, we found considerable variation among
human curators in our experiments. We observed that
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human curators achieved on average 54% of the maximum
possible consistency as measured by Jsim and 80% as
measured by In (Figure 5). This variability in inter-curator
similarity is within the range reported in previous studies
[e.g. (58)] and likely reflects the complexity of annotation
tasks requiring domain knowledge, the ability to navigate
large ontologies and experience and knowledge of anno-
tation best practices. The inter-curator variability sets a
ceiling for the maximum performance of a computational
system if we assume that the human variability is primarily
a consequence of the inherent ambiguity in how best to
capture the semantics of the phenotype statement given the
available ontologies.

Much of the observed inter-curator variation could be
assigned to a few general types of sources:

• Curators choose different but related terms. For
example, terms may be related through subsump-
tion (e.g. ‘circular’ and ‘subcircular’ in PATO) or
sibling relationships (e.g. PATO: ‘unfused from’ and
‘separated from’).

• Curators make different decisions about how to
post-compose entities. For example the E for the
character ‘lateral pelvic glands, absent in males’ was
composed differently by the three curators as ‘gland
and [part_of some (lateral region and part_of some
pelvis)]’, ‘lateral pelvic gland and (part_of some male
organism)’ and ‘male organism and [has_part some
(pelvic glands and in_lateral_side_of some multi-
cellular organism)]’.

• Curators differ in how they composed an EQ even
when choosing the same ontology terms. For exam-
ple, two differently composed annotations for the
character ‘pelvic plate semicircular, present’ were E:
‘pelvic plate and (bearer_of some semicircular)’ + Q:
‘present and E: pelvic plate + Q: semicircular’.

• Curators differ in how they added needed terms
to the ontologies. For example, in the phenotype
‘dermal sculpture on skull-roof weak’, one curator
created a new term ‘surface sculpting’ and post-
composed the E ‘surface sculpting and (part_of some
dermatocranium)’ as the ontological translation of
the E because ‘dermal sculpture’ did not exist in
the Uberon anatomy ontology. Another curator used
PATO: ‘sculpted surface’ to create a post-composed E
term ‘dermatocranium and (bearer_of some sculpted
surface)’ to represent the same E.

Human–machine variation

SCP achieved, on average, 37 and 66% consistency with
human curators using the most comprehensive (merged)
ontology, as measured by Jsim and In, respectively

(Figure 5). This shows that the performance of SCP is
significantly lower as compared to human inter-curator
performance.

Usefulness of semantic similarity for partial

matches

One of the major sources of annotation variation in either
human or machine curators stems from choosing terms that
are related to each other via subsumption or sibling rela-
tionships (see Inter-curator variation section). Comparisons
of curator annotations from this experiment show that, on
average, only 26% of character-state comparisons are exact
matches. Given that the majority of curator annotation
pairs are partial matches, the use of semantic similarity
metrics that can quantify different degrees of similarity
proves to be important.

Effect of external knowledge on inter-curator

consistency and accuracy

One of the major differences between human and machine
annotation is that humans can access external knowledge
during curation, while machines cannot, beyond the
encoded knowledge they have access to (here in the form
of ontologies). Our measures of semantic similarity agreed
with the results of Cui et al. (13) in showing that access
to external knowledge had no effect on inter-curator
consistency and did not further differentiate them from
SCP’s annotations. Further, similarity to the gold standard
was not generally increased. This was true despite the fact
that curators changed annotations considerably between
the Naïve and Knowledge rounds. Interestingly, while we
expected a general increase in complexity when curators
were at liberty to bring in additional knowledge, this was
not borne out by the data.

These results indicate that lack of access to external
knowledge is not one of the factors that contributes to SCP’s
low performance with respect to human curators. This is
encouraging because lack of access to external knowledge
during machine curation would be a challenge to remedy.

Machine performance is improved as ontologies

become more complete

Our results indicate that using more complete ontologies
can significantly improve machine performance (Figures 4
and 5). This is encouraging because ontology completeness
is continually improved through the synergistic efforts of
the ontology and curator communities.

This finding leads to specific ideas for how the curation
workflow could be optimized by alternating execution of
steps between human curators and algorithms. For instance,
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an initial round of machine curation would identify charac-
ter states in the data set for which good ontology matches
were not found. Subsequently, human curators would judge
whether the input ontology contains appropriate terms and
focus on problem areas to add missing terms accordingly.
Machines would then proceed with annotation using the
human curator enhanced ontologies. Subsequently, human
curators would review machine annotations and then either
accept, modify or re-curate them on a per-annotation basis.
In such a workflow, machines would valuably augment the
work of humans in the annotation process.

Future work

Improving reasoning over EQ annotations. One of the major chal-
lenges with EQ annotations is efficiently calculating seman-
tic similarity metrics. Specifically, for virtually all metrics,
the first step is to identify common subsuming classes.
Although in theory an OWL reasoner can perform this task,
it can only identify named classes that already exist in the
ontology. A brute-force approach in which a composite
ontology is computed as the cross product of E × Q × RE
terms (for E, Q, RE; or even only E × Q) (59) would
result in a background ontology too large even for efficient
reasoners such as ELK, and the vast majority of its com-
pound classes would not be needed as subsumers. Fur-
ther work is needed to improve this method for efficiency
(computational time and memory) of the semantic similar-
ity scoring.

Improving semantic charaParser. Cui et al. (13) identified a
number of areas of potential improvement for SCP, and
the present study further refines our understanding of
where the machine curation is encountering obstacles.
The observed shortcomings primarily fall in the areas of
E post-composition, the handling of relational qualities in
annotations and ontology searching in PATO. One way to
improve the latter would be to enable the ontology search
to locate multiple-word PATO qualities such as ‘posteriorly
directed’, which in turn would allow more meaningful post-
composed terms to be generated. As mentioned in Machine
performance is improved as ontologies become more
complete, our results show that more comprehensive input
ontologies will lead to improved performance of SCP.

Conclusions

The gold standard data set for EQ phenotype curation
developed herein is a high-quality resource that will be
of value to the sizable community of biocurators anno-
tating phenotypes using the EQ formalism. As illustrated
here, the gold standard enables assessment of how well a
machine can perform EQ annotation and the impact of

using different ontologies for that task. At present, machine-
generated annotations are less similar to the gold standard
than those of an expert human curator. The continued
use of this corpus as a gold standard will enable training
and evaluation of machine curation software in order to
ultimately make phenotype annotation accurate at scale.

Supplementary data
Supplementary data are available at Database Online.
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