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Abstract
Several behavioral and neuroimaging markers could be used to predict eventual antidepressant medication (ADM) outcomes 
in patients with major depressive disorder (MDD). However, these predictors are either subjective or complex, which has 
limited their clinical use. Thus, we aimed to identify an objective and easy-to-get marker to predict early therapeutic effi-
cacy. Forty-seven drug-naïve patients with MDD and 47 age-, gender- and education-matched healthy controls underwent 
resting-state functional magnetic resonance imaging (fMRI) scans. We calculated the variable coefficient (VC) of the global 
signal for each subject. Baseline Hamilton Rating Scale for Depression (HRSD) score and that after 2 weeks of ADM were 
assessed for patients. Although there was no difference in VC between patients with MDD and healthy controls, we found a 
significant positive correlation between the VC and the decline rate of HRSD scores in the patients. Compared with the non-
responding depression (NRD) group, the treatment-responsive depression (TRD) group had a higher VC. Receiver operator 
characteristic curve analysis revealed that the VC exhibited a good ability to differentiate TRD from NRD. In addition, the 
linear and logistic regression analyses showed that the VC was a significant predictor of the decline rate of HRSD scores 
and the antidepressant treatment response. These findings suggest that variance of the global signal may serve as a useful 
marker to help clinicians find an appropriate drug for individuals with MDD at the earliest opportunity and then further to 
facilitate personalized therapy.

Keywords  Major depressive disorder · Functional magnetic resonance imaging · Global signal · Antidepressant treatment · 
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Introduction

Major depressive disorder (MDD) is one of the most prev-
alent and debilitating psychiatric disorder (Wang et  al. 
2007). Given its significant contribution to loss of produc-
tivity, low quality of life, and suicide (Collins et al. 2011; 
Kupfer et al. 2012), MDD has become one of the biggest 
health challenges, which causes increasing social and eco-
nomic burdens (Ustun et al. 2004). Currently, antidepres-
sant medication (ADM) is the most common treatment for 
MDD (Marcus and Olfson 2010). However, only one-third 
of patients with MDD achieve remission with ADM; among 
these remitted patients, 50% experience relapse before 
they achieve recovery (Rush et al. 2006). The ADM treat-
ment development has lagged because of a lack of widely 
accepted biomarkers available to predict antidepressant 
treatment response.
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Predicting a prognosis in an early phase of antidepres-
sant treatment may facilitate an effort to find an appropriate 
drug for individuals with MDD at the earliest opportunity 
(Nakajima et al. 2010). Previous studies have demonstrated 
that early changes in joy, motivation, depressive symptoms, 
plasma catecholamine metabolites, repeated cortisol awak-
ening response, quantitative electroencephalography bio-
markers after a short time of ADM (e.g., 2 weeks) could 
predict eventual antidepressant treatment outcomes in 
depressed patients (Beck et al. 2015; Gorwood et al. 2015a, 
b; Hunter et al. 2010; Sakurai et al. 2013; Ueda et al. 2002; 
Vermeiden et al. 2015). Furthermore, evidence from neuro-
imaging studies suggests that interhemispheric asynchrony 
and disrupted network topological configurations could 
also serve as pretreatment predictors of early antidepres-
sant response in MDD (Hou et al. 2016a, b). However, these 
predictive markers are either subjective (e.g., assessment of 
joy, motivation, depressive symptoms) or complex (calcula-
tion of voxel-mirrored homotopic connectivity and network 
topological properties), which has limited their clinical use. 
Thus, an objective and easy-to-get marker is needed to pre-
dict early therapeutic efficacy and then further to guide per-
sonalized therapy.

For resting-state functional magnetic resonance imaging 
(fMRI) data, the global signal has been thought to reflect 
non-neuronal noise (e.g., physiological, movement, scanner-
related) (Chang and Glover 2009; Power et al. 2014, 2016). 
Global signal regression (GSR) has been used as a stand-
ard step during the processing of resting-state fMRI data 
(Macey et al. 2004). Recently, GSR has been considered a 
controversial topic in resting-state functional MRI analyses 
(Chai et al. 2012; Chen et al. 2012; Fox et al. 2009; Murphy 

et al. 2009; Murphy and Fox 2016; Qing et al. 2015; Saad 
et al. 2012) because the global signal has also been found to 
reflect neurobiologically important information (Power et al. 
2016; Scholvinck et al. 2010). For example, schizophrenia 
patients exhibit increased variance in the global signal (Yang 
et al. 2014); caffeine can lead to a reduction in global signal 
amplitude (Wong et al. 2012); global signal amplitude is 
related to electroencephalographic (EEG) vigilance meas-
ures (Wong et al. 2013); there are differences in global sig-
nal amplitude between the eyes open and eyes closed states 
(Wong et al. 2016). Combined, the global signal has the 
potential to be a clinically relevant marker in brain disease.

In the present study, we used resting-state fMRI data to 
investigate the relationship between the global signal and 
short-term antidepressant response in patients with MDD. 
We aimed to identify an objective and easy-to-get marker to 
predict early treatment outcome of MDD. We hypothesized 
that depressed patients with different variance in the global 
signal would show different response to treatment.

Methods

Participants

A total of ninety-four right-handed individuals were enrolled 
in the present study, including 47 drug-naïve patients with 
MDD recruited consecutively from the psychiatric outpatient 
or inpatient department of the local hospital and 47 healthy 
controls recruited from the local community via advertise-
ments. The patients and controls were well-matched in terms 
of age, sex and education (Table 1). The diagnosis of MDD 

Table 1   Demographic and 
clinical characteristics of the 
sample

The data are presented as the mean ± SD. Abbreviations: FD frame-wise displacement, HC healthy con-
trols, HDRS Hamilton Depression Rating Scale, MDD major depressive disorder
a  The data are available for 39 of 47 patients
b  The P values were obtained by two-sample t-tests
c  The P value was obtained by Chi square test

Characteristics MDD HC Statistics P value

Number of subjects 47 47
Age (years) 46.4 ± 13.5 47.0 ± 17.9 t = 0.182 0.856 b

Sex (female/male) 27/20 23/24 χ2 = 0.684 0.408 c

Education (years) 11.2 ± 3.8 11.7 ± 4.1 t = 0.657 0.513 b

FD 0.141 ± 0.066 0.149 ± 0.073 t = 0.601 0.549 b

HDRSbaseline 30.3 ± 7.1 –
HDRS2-weeks 15.0 ± 7.7
Decline rate of HDRS scores 50.4% ± 22.3%
Illness duration (months) a 23.7 ± 36.1 –
Onset age (years) a 43.4 ± 12.4 –
Episode number a 1.3 ± 0.7 –
Current episode duration (months) 5.0 ± 6.3 –
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was made according to the Structural Clinical Interview 
of the DSM-IV (SCID) (First et al. 1997), patient edition. 
The severity of depression was assessed using the 24-item 
Hamilton Rating Scale for Depression (HRSD-24) (Wil-
liams 1988). Only those patients with a HRSD-24 score ≥ 20 
were eligible for this study. Healthy controls were carefully 
screened for a current or lifetime diagnosis of any Axis I 
and II disorder using the SCID, non-patient edition. Exclu-
sion criteria for all participants were (1) the presence of 
other Axis I psychiatric disorders such as schizophrenia, 
bipolar disorder, substance-induced mood disorder, anxiety 
disorders, substance abuse or dependence; (2) a history of 
neurological diseases or other physical illness; (3) a history 
of head injury resulting in loss of consciousness; (4) the 
inability to undergo an MRI. In addition, all healthy controls 
reported no psychiatric disorders among their first-degree 
relatives. This study was approved by the local ethics com-
mittee, and written informed consent was obtained from all 
participants after they had been given a detailed description 
of the study.

The MRI scans and the baseline HRSD were completed 
1 day before the patients started to receive ADM. The ADM 
consisted of selective serotonin reuptake inhibitor (SSRIs), 
serotonin-norepinephrine reuptake inhibitor (SNRIs) and 
an agglomeration of antidepressant combinations (SSRIs, 
SNRIs or mirtazapine). After 2 weeks of ADM, the patients 
completed the HRSD again. The decline rate of HRSD 
scores is defined as (HRSDbaseline – HRSD2-weeks)/HRSD-
baseline × 100%. The detailed clinical characteristics of the 
patients are shown in Table 1, including the HDRS score, 
illness duration, onset age, episode number, and current epi-
sode duration.

Data acquisition

MRI data were acquired using a 3.0-Tesla scanner (Mag-
netom Verio, Siemens, Erlangen, Germany). Tight but com-
fortable foam padding was used to minimize head motion, 
and earplugs were used to reduce scanner noise. High 
resolution structural images were acquired sagittally using 
a 3D T1-weighted magnetization-prepared rapid gradient-
echo (MPRAGE) sequence with the following parameters: 
repetition time (TR) = 1900 ms; echo time (TE) = 2.48 ms; 
inversion time (TI) = 900 ms; flip angle (FA) = 9°; field of 
view (FOV) = 250 mm × 250 mm; matrix = 256 × 256; slice 
thickness = 1 mm, no gap; slice number = 176; and acqui-
sition time = 258 s. Resting-state functional blood-oxygen-
level-dependent (BOLD) images were acquired axially using 
a gradient-echo echo planar imaging (GRE-EPI) sequence 
with the following parameters: TR/TE = 2000/25  ms; 
FA = 90°; FOV = 240  mm × 240  mm; matrix = 64 × 64; 
slice thickness = 4 mm; no gap; slice number = 36; 240 vol-
umes; and acquisition time = 480 s. Before the scanning, 

all subjects were instructed to keep their eyes closed, relax, 
move as little as possible, think of nothing in particular, and 
not fall asleep during the scans. During and after the scan-
ning, we asked subjects whether they had fallen asleep to 
confirm that none of them had done so. All MR images were 
visually inspected to ensure that only images without visible 
artifacts were included in subsequent analyses.

fMRI data preprocessing

BOLD MRI data were preprocessed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm). The first 10 volumes for each 
participant were discarded to allow the signal to reach equi-
librium and the participants to adapt to the scanning noise. 
The remaining volumes were corrected for the acquisition 
time delay between slices. Then, realignment was performed 
to correct the motion between time points. All participants’ 
BOLD data were within the defined motion thresholds (i.e., 
translational or rotational motion parameters less than 2 mm 
or 2°). We also calculated frame-wise displacement (FD), 
which indexes the volume-to-volume changes in head posi-
tion. There were no significant group differences in mean 
FD (t = 0.601, P = 0.549) between patients with MDD 
(0.141 ± 0.066) and healthy controls (0.149 ± 0.073). Then, 
individual structural images were co-registered with the 
mean functional image. After the transformed structural 
images were removed of non-brain tissue, the individual 
whole brain masks were applied to individual functional 
images to extract the global signal, i.e., the BOLD signal 
time series averaged across all brain voxels. Finally, we cal-
culated the variable coefficient (VC = standard deviation/
mean) of the global signal for each subject. This measure 
reflects the relative amplitude of variation in the whole brain 
spontaneous neural activity during resting state (Wong et al. 
2012, 2013, 2016) (Fig. 1).

Statistical analysis

All statistical analyses were performed by using the 
SPSS19.0. A two-sample t-test was used to compare the 
VC of the global signal between patients with MDD and 
healthy controls. In patients with MDD, the association 
between the VC and the decline rate of HRSD scores was 
calculated by using Pearson correlation coefficient. Accord-
ing to the decline rate of HRSD scores, we further subdi-
vided the patients into a non-responding depression group 
(NRD, N = 26, decline rate ≤ 50%) and a treatment-respon-
sive depression group (TRD, N = 21, decline rate > 50%). 
A two-sample t-test was used to test the difference in VC 
between NRD and TRD groups. Then, receiver operator 
characteristic (ROC) curve analysis for VC was used to 
determine the cutoff value associated with optimal sensitiv-
ity and specificity for distinguishing TRD from NRD. In 
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addition, univariate linear and logistic regression analyses 
in the patient group were used to assess the predictive value 
of the VC for the decline rate of HRSD scores and the anti-
depressant treatment response (NRD or TRD), respectively. 
For these analyses, two-tailed P < 05 was considered to indi-
cate significance.

Results

There was no difference (t = − 0.640, P = 0.524) in VC 
between patients with MDD (0.0030 ± 0.0012) and 
healthy controls (0.0032 ± 0.0014). However, we found 
a significant positive correlation (Pearson correlation 
coefficient r = 0.371, P = 0.010) between the VC and 
the decline rate of HRSD scores in the patients (Fig. 2). 
Compared with the NRD group (0.0027 ± 0.0009), the 

TRD group (0.0038 ± 0.0017) had a higher VC (t = 2.834, 
P = 0.007) (Fig.  3). The ROC analysis revealed that 
the area under the curve (AUC) of the VC was 0.703 
(P = 0.018, 95% confidence interval = 0.546–0.861), 
indicating that the VC could be used to differentiate 
TRD from NRD (Fig. 4). At the optimal cutoff VC of 
0.00342, the sensitivity and specificity were 0.619 and 
0.808, respectively. In addition, the linear and logistic 
regression analyses showed that the VC was a significant 
predictor of the decline rate of HRSD scores (β = 58.519, 
t = 2.678, P = 0.010) and the antidepressant treatment 
response (odds ratio [OR], 2.034; 95% confidence inter-
val [CI]: 1.136, 3.642; P = 0.017).

Fig. 1   Illustration of the variable coefficients of the global signal for 
two individuals. Abbreviations: VC, variable coefficient

Fig. 2   Correlation between the variable coefficient of the global sig-
nal and the decline rate of HRSD. Abbreviations: HDRS, Hamilton 
Depression Rating Scale

Fig. 3   Difference in the variable coefficient of the global signal 
between the NRD and TRD groups. Abbreviations: NRD, non-
responding depression; TRD, treatment-responsive depression

Fig. 4   ROC curve using the VC to distinguish TRD from NRD. 
Abbreviations: AUC, area under the curve; NRD, non-responding 
depression; ROC, receiver operating characteristic; TRD, treatment-
responsive depression; VC, variable coefficient
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Discussion

Based on resting-state fMRI data, we investigated the 
association between the global signal variance and short-
term antidepressant response for the purpose of identifying 
an objective and easy-to-get marker to predict early treat-
ment outcome of MDD. Despite no difference in the global 
signal variance between patients and controls, we found a 
significant positive correlation between the variance and 
the decline rate of HRSD scores in the patient group. Com-
pared with the NRD, the TRD had a higher global signal 
variance. ROC analysis revealed that the global signal var-
iance exhibited a good ability to differentiate TRD from 
NRD. In addition, linear and logistic regression analyses 
showed that the global signal variance was a significant 
predictor of the early therapeutic efficacy.

BOLD signal detected by fMRI is a complex measure 
that is influenced by cerebral blood flow (CBF), cerebral 
blood volume (CBV) and cerebral metabolic rate of oxy-
gen (CMRO2) (Buxton et al. 2004). Changes in resting-
state BOLD signal may result from any factor that affects 
the interaction of the 3 physiological parameters. These 
factors also include multiple potential confounds arising 
from head motion, cardiac and respiratory cycles, arterial 
CO2 concentration, blood pressure/cerebral autoregulation, 
and vasomotion (Murphy et al. 2013). As an integrated 
reflection of the BOLD signal, the global signal is found 
to share variance with non-neuronal noise, such as head 
motion, hardware artifacts, low-frequency respiratory 
volume and cardiac rate (Chang and Glover 2009; Power 
et al. 2014, 2016). Thus, various methods have been pro-
posed to remove the global signal effects (Anderson et al. 
2011; Chen et al. 2013; Macey et al. 2004). However, in 
recent years, a growing body of evidence suggests that 
the global signal also includes a neuronal component that 
may contribute to specific cognitive and clinical states. 
For instance, Yang et al. observed increased global sig-
nal variability in schizophrenia but not in bipolar disorder 
(Yang et al. 2014). Wong et al. found that ingestion of 
caffeine decreases global signal amplitude (Wong et al. 
2012); the global signal amplitude exhibits a significant 
negative correlation with EEG vigilance measures across 
subjects in the eyes-closed condition (Wong et al. 2013); 
changes in the global signal amplitude between the eyes 
open and eyes closed states are related to changes in EEG 
vigilance (Wong et al. 2016). Chen et al. demonstrated that 
the global signal is strongly correlated with the default 
mode network components (Chen et al. 2012). Schoelvinck 
et al. reported that the spontaneous fluctuations in the local 
field potential measured from a single cortical site in mon-
keys show positive correlations with fMRI signals over 
nearly the entire cerebral cortex (Scholvinck et al. 2010). 

These findings suggest that the global signal, especially its 
variance, is tightly coupled to underlying neural activity 
that has biological significance. However, we found no 
difference in the global signal variance between patients 
with MDD and healthy controls in this study.

Previous studies have provided evidence that early drug 
response occurring within the first 2 weeks of ADM may 
predict eventual treatment outcome (Brannan et al. 2005; 
Henkel et al. 2009; Katz et al. 2004; Szegedi et al. 2003; 
van Calker et al. 2009). Many markers may serve as pre-
dictors of treatment response. For example, a prior study 
demonstrated that an increase in joy after 2 weeks of treat-
ment is strongly specific for later antidepressant response 
and remission in MDD (Gorwood et al. 2015a). Gorwood 
et al. found that motivation is the most impaired in depressed 
patients, responds best to treatment and shows the best pre-
dictive value for antidepressant treatment response in the 
Multidimensional Assessment of Thymic States (MAThyS) 
rating scales (Gorwood et al. 2015b). Early improvement 
in depressive symptoms assessed by the Hamilton Rating 
Scale for Depression (Vermeiden et al. 2015) or the 16-item 
Quick Inventory of Depressive Symptomatology (Sakurai 
et al. 2013) can also predict eventual response. Beck et al. 
reported that repeated testing of the cortisol awakening 
response between baseline and after 10 days of treatment 
is able to predict antidepressant treatment outcome after 
6 weeks of treatment (Beck et al. 2015). Furthermore, recent 
neuroimaging studies revealed that imbalanced interhemi-
spheric functional coordination and impaired network topo-
logical architecture can be used for discrimination of TRD 
and NRD, suggesting they may be neural traits underlying 
the prediction of early therapeutic outcome in MDD (Hou 
et al. 2016a, b). Likewise, an objective and easy-to-get neu-
roimaging marker, i.e., variance of the global signal, was 
found to be able to effectively distinguish TRD from NRD 
in this study. This finding is of clinical value because this 
marker can help clinicians easily identify which patients will 
ultimately respond to treatment and decide at an earlier stage 
to continue or change treatment, thereby preventing delay, 
increasing treatment compliance, and decreasing morbidity.

There are several limitations to the present study that 
should be noted. First, consistent with many previous stud-
ies on ADM effectiveness and prediction (Hou et al. 2016a, 
b; Korgaonkar et al. 2015; Li et al. 2013; Shen et al. 2015), 
different antidepressants were used in the current study, 
which may influence our interpretation. The heterogene-
ous drug regimens reflect the natural treatment course of 
MDD because medications were prescribed by treatment 
clinicians according to the physical status and depression 
severity of the patients. However, emerging evidence has 
demonstrated that different drugs may trigger antidepressant 
responses in different ways (Gideons et al. 2014). Thus, this 
study should be considered a pilot study. Further studies 
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with homogeneous patients using the same antidepressant 
are expected in the future to test the reproducibility of the 
current findings. Second, due to the absence of a placebo 
control group, we are unable to draw a definite conclusion 
about the specificity of the association between variance of 
the global signal and antidepressant response. Third, this 
study did not collect MRI data after 2 weeks, so whether 
variance of the global signal is altered with antidepressant 
treatment remains unclear. In the future, a long-term follow-
up study including MRI scans before and after treatment 
should be conducted to clarify this issue. Fourth, depression 
severity of the MDD patients was not assessed after treat-
ment for more than 2 weeks due to some patients’ refusal to 
participate or hospital discharge. This may prevent us from 
drawing a more definite conclusion on the role of the global 
signal variance in the prediction of antidepressant medica-
tion outcomes. Finally, artifacts from cardiac and respiratory 
noise are prevalent in resting-state fMRI analyses (Murphy 
et al. 2013). Thus, an advisable pre-processing step is to 
remove physiological noise from the data using simultane-
ously collected pulse and respiration data. However, physi-
ological data were not collected in this study.

In conclusion, this study found that variance of the global 
signal in resting-state fMRI data can be used to predict early 
antidepressant response in MDD. This finding may provide 
clinicians a useful approach to find an appropriate therapy 
for individuals with MDD at the earliest opportunity.
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