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Abstract Dysregulated lipid metabolism induces an inflammatory and immune response leading to atherosclerosis.
Conversely, inflammation may alter lipid metabolism. Recent treatment strategies in secondary prevention of
atherosclerosis support beneficial effects of both anti-inflammatory and lipid-lowering therapies beyond current tar-
gets. There is a controversy about the possibility that anti-inflammatory effects of lipid-lowering therapy may be ei-
ther independent or not of a decrease in low-density lipoprotein cholesterol. In this Position Paper, we critically in-
terpret and integrate the results obtained in both experimental and clinical studies on anti-inflammatory actions of
lipid-lowering therapy and the mechanisms involved. We highlight that: (i) besides decreasing cholesterol through
different mechanisms, most lipid-lowering therapies share anti-inflammatory and immunomodulatory properties,
and the anti-inflammatory response to lipid-lowering may be relevant to predict the effect of treatment, (ii) using
surrogates for both lipid metabolism and inflammation as biomarkers or vascular inflammation imaging in future
studies may contribute to a better understanding of the relative importance of different mechanisms of action, and
(iii) comparative studies of further lipid lowering, anti-inflammation and a combination of both are crucial to identify
effects that are specific or shared for each treatment strategy.
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1. Introduction

Dyslipidaemia and inflammation are closely interconnected key drivers
of atherosclerosis.1 Dysregulated lipid metabolism induces an inflamma-
tory and immune response in atherosclerosis, whereas the beneficial
effects of low-density lipoproteins (LDLs) lowering on cardiovascular
outcomes are associated with decreased inflammation. However, the
controversy on anti-inflammatory effects of lipid-lowering therapy has
created a large confusion around the mechanism by which these drugs

exert beneficial actions. In particular, whether the improved cardiovascu-
lar outcome of statins solely reflects a decrease in LDL cholesterol, or
whether lipid-independent anti-inflammatory actions prevail has been a
matter of debate for a long time. In this regard, there is a discrepancy be-
tween the results obtained in experimental and clinical studies. Since
novel treatment strategies in secondary prevention of atherosclerosis ar-
gue for beneficial effects of both further lipid-lowering2 and anti-inflam-
mation,3 it is crucial to clarify whether further lipid-lowering therapy
leads to a sufficient anti-inflammatory response, and whether adding
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specific anti-inflammatory therapy can achieve additional risk reduction
on top of the most efficient lipid lowering.

The recent introduction of proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitors represents an opportunity to deepen our un-
derstanding on the role of lipids on the immune and inflammatory
responses in atherosclerosis. Likewise, the beneficial effects of IL-1b
blockade3 provided the proof of concept for anti-inflammation as a ther-
apeutic strategy in cardiovascular disease. In addition, recent post hoc
analyses point to inflammatory biomarkers for the prediction of cardio-
vascular outcomes in patients treated with PCSK9 inhibitors.4,5 These
findings have initiated a debate on whether personalized medicine can be
anticipated based on either basal levels or changes in lipid levels and in-
flammatory biomarkers in response to lipid-lowering and/or anti-
inflammatory treatments.

Thus, it is important to critically interpret and integrate the results
obtained in both clinical and experimental studies to conclude on possi-
ble mechanisms behind these observations and to provide arguments for
the design of future studies. This Position Paper will provide an overview
of anti-inflammatory effects of lipid-lowering drugs, aiming to clarify the
relation and the relevance of lipid-dependent and lipid-independent anti-
inflammatory effects observed. In addition, this Position Paper underlines
the mechanistic insights that translate into the observed outcomes and
provides a consensus statement on how to identify the anti-
inflammatory response to lipid lowering therapy.

2. Dyslipidaemia and immunity—
cause or consequence?

Increased LDL levels are a well-recognized cause of inflammation in ath-
erosclerosis. However, the fact that immune cells may also affect lipid
metabolism in atherogenesis is less well known and may have been
overlooked.

2.1 Lipid-induced immune responses
Modified LDL (mLDL) increases the endothelial expression of adhesion
molecules, chemokines, as well as costimulatory and pro-inflammatory
molecules, such as CD40 and nuclear factor-jB (NF-jB),6,7 which will
promote the recruitment of inflammatory cells into the vascular wall.
LDL accelerates monocyte to macrophage differentiation8 and this mac-
rophage activation involves innate immune receptors, which are strong
inducers of inflammation and have an established impact on atheroscle-
rosis.9 For example, certain components of mLDL activate pattern rec-
ognition receptors, such as toll-like receptors (TLRs), triggering
proinflammatory signals.10 These TLRs in addition prime the NLRP3
inflammasome through its activation by cholesterol crystals.11 Also,
cholesterol-loaded smooth muscle cells acquire pro-inflammatory prop-
erties.12 Importantly, LDL also accumulates in circulating monocytes elic-
iting a pro-migratory phenotype, supporting that the pro-inflammatory
paradigm induced by LDL appears both locally in the vascular wall and
systemically in the circulation.13 B cells are involved in atherogenesis al-
though their role is still not clear, with some data suggesting a protective
action and others supporting a pro-atherogenic function, probably
depending on the specific B-cell subset.14

In addition to innate immune cells, there is also evidence for an effect
of lipids on adaptive immune responses. For example, stimulation of hu-
man CD4þ T cells with lysophosphatidylcholine enhances the expres-
sion of interferon-c and CD40L, a molecule that binds to its receptor
CD40 triggering the release of multiple inflammatory mediators.15

Lipoprotein-derived lysophosphatidic acid enhances atherosclerosis by
releasing chemokine CXCL1 from endothelium to recruit monocytes,
and oxidized LDL increases metalloproteinase-9 (MMP-9) expression
and NF-jB activity in human macrophages.7 These data provide an es-
sential mechanism by which lipids activate genes involved in immune
responses in atherosclerosis.

High-density lipoprotein (HDL) has been said traditionally to induce
atheroprotection. Bone marrow and splenic reservoirs of leucocytes ac-
celerate atherosclerosis after myocardial infarction by liberating haema-
topoietic stem cells and progenitor cells.16 Conversely, HDL suppresses
proliferation of these haematopoietic stem cells and myelopoiesis with
anti-atherogenic effects mediated by ABCA1 (ATP-binding cassette
transporter-1) and ABCG1 (ATP-binding cassette sub-family G mem-
ber-1).17 Importantly, the benefits of HDL can be lost in hypercholester-
olaemia18 and also in other conditions, such as chronic kidney disease.19

In addition, despite these reported benefits, recent data suggest that ex-
treme high HDL may be associated with high mortality in the general
population.20 Thus, more studies are needed to ascertain the mecha-
nisms underlying these findings.

Dietary lipid modifications can also influence the immune response. In
humans, NF-jB activity in circulating leucocytes is enhanced after a fat-
enriched meal.21 Accordingly, low-fat diet reduces high-sensitivity C-re-
active protein (CRP) levels,22 and Mediterranean diet decreases the
expression of pro-inflammatory and prothrombotic genes.23 Also,
monocyte cholesterol content increases following oral fat ingestion,
showing a pro-inflammatory phenotype, comprising increased CD11c/
CD18 expression.24 Then, besides LDL, triglyceride-rich particles, in-
cluding cholesterol remnant particles, may equally contribute to pro-
inflammatory changes.

In summary, lipid metabolism has profound effects on both innate and
adaptive immunity via multiple mechanisms.

2.2 Inflammation modifies lipid
metabolism
Both innate and adaptive immune processes regulate lipid metabolism
(Figure 1). Several innate immune cytokines accelerate hepatic steatosis
by influencing fatty acid biosynthesis and oxidation.25 Thus, subacute in-
flammation enhances the expression of sterol regulatory element-
binding proteins (SREBPs),26 the master regulators of lipid biosynthesis.
Innate immune cytokines can also influence lipoprotein lipase in adipose
and muscle tissue27,28 leading to dysfunctional triglyceride clearance and
increased plasma very-low density lipoprotein (VLDL) levels. Also, TLR
activation inhibits cholesterol efflux by suppressing LXR (liver X
receptor)-mediated induction of ABCA1 expression, thereby inhibiting
reverse cholesterol transport.29

The adaptive immune system can also influence lipoprotein metabo-
lism. The interaction between the costimulatory molecule LIGHT (lym-
photoxin-related inducible ligand) on T cells, and lymphotoxin b
receptor (LTbR) on hepatocytes decreases hepatic lipase activity,
impairs VLDL and LDL turnover, increasing plasma lipids.30 Similarly, en-
hanced hepatic inflammation due to impaired T regulatory cell (Treg)
responses alters the expression of several lipid metabolism-related
genes including sortilin-1 (Sort-1), lipoprotein lipase, hepatic lipase, and
phospholipid transfer protein resulting in hypercholesterolaemia.31 In
this regard, low Treg numbers or decreased Treg/effector T cell ratios
are associated with cardiovascular disease.32 In adddition to these effects,
during acute infections and sepsis, HDL gets dysfunctional and promotes
inflammation.33,34
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..Interestingly, other chronic inflammatory diseases show increased tri-
glycerides, small dense LDL, and lipoprotein (a) (Lp(a)), and decreased
HDL levels.27 In addition, a dysregulated intestinal microbiome with en-
hanced permeability of the intestinal barrier affects metabolic diseases35

and atherosclerosis,36 being associated with increased LDL, VLDL, and
total cholesterol, and with more extensive atherosclerosis in the apoE-/-
mouse model.37 Also, intestinal inflammation may be associated to a de-
crease in trans-intestinal cholesterol efflux, increasing blood lipid
levels.38

Altogether, these data indicate that the inflammatory and immune re-
sponse affects lipid metabolism, establishing a vicious circle that pro-
motes atherogenesis.

2.3 Effects of anti-inflammatory therapies
on lipids and cardiovascular risk
Anti-inflammatory therapies show a varied range of effects on lipids and
cardiovascular risk. First, non-steroidal anti-inflammatory drugs are

associated with an increased risk of cardiovascular events.39,40

Glucocorticoids, the other widely used anti-inflammatory drugs, have
been associated with increases in HDL/total cholesterol ratio,41 but also
with enhanced VLDL and triglyceride production.42 Nevertheless, they
show no effect on cardiovascular risk in secondary prevention.43

Anti-TNF therapy may lead to an increase in HDL without LDL
changes,44 or to a modest rise in total cholesterol,45 although these
effects may depend on the drug used. The impact of these changes on
cardiovascular risk may be more complex, as anti-TNF therapies have
been linked with a decreased number of cardiovascular events in rheu-
matoid arthritis patients. However, these results come mainly from ob-
servational studies,46 and large randomized clinical trials are needed to
confirm this effect.

Another biologic therapy, tocilizumab, an IL-6 receptor blocker,
increases total cholesterol, LDL, and triglyceride levels, but shifts HDL
particles towards an anti-inflammatory composition.47 In contrast, the
Canakinumab Antiinflammatory Thrombosis Outcome Study
(CANTOS) demonstrated that IL-1b blockade with canakinumab

Figure 1 Mechanisms through which inflammation may promote dyslipidaemia. Inflammation enhances SRBEPs (sterol regulatory element binding pro-
teins). The interaction of co-stimulatory molecule LIGHT (lymphotoxin-related inducible ligand) with LTßR (lymphotoxin ß receptor), and the impairment
of Tregs (T regulatory cells) responses decrease the expression of several lipases. TLR (Toll-like receptor) activation reduces reverse cholesterol transport
through a suppression of ABCA1 expression. Finally, dysregulation of intestinal microbiome increases lipid levels via an enhanced permeability of the intesti-
nal barrier.

12 J. Tu~nón et al.
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150 mg every three months reduces the incidence of nonfatal myocardial
infarction, nonfatal stroke, or cardiovascular death [hazard ratio (HR)
0.85, 95% confidence interval (CI) 0.74–0.98; P = 0.021] without affecting
lipid levels, except for a mild increase in triglycerides.3

Methotrexate has been associated with both, unfavourable and bene-
ficial lipid changes and an improved macrophage cholesterol handing.48,49

Regarding its effect on cardiovascular risk, the Cardiovascular
Inflammation Reduction trial (CIRT) testing low dose methotrexate
against placebo in secondary prevention has been discontinued earlier
than scheduled (https://www.forbes.com/sites/larryhusten/2018/05/21/
nih-halts-large-cardiovascular-inflammation-reduction-cirt-trial/#4cc3a12
c5b5f) but the results are still pending.

Finally, in a study including 532 patients with stable coronary artery
disease, colchicine reduced the incidence of acute coronary syndrome,
out-of-hospital cardiac arrest, or noncardioembolic ischaemic stroke
(HR 0.33, 95% CI 0.18–0.59; P < 0.001).50 This effect is now being
tested in two large clinical trials: the LoDoCo2 (http://www.anzctr.org.
au/TrialSearch.aspx?searchTxt=LoDoCo2&isBasic=True) and the
COLCOT studies (https://clinicaltrials.gov/ct2/show/NCT02551094).

Thus, studies of anti-inflammatory treatments have generated contra-
dictory results in terms of their effects on lipids. Although the hetero-
geneous patient populations and different inflammatory targets studied
preclude a definite conclusion, monitoring of lipid levels appears to be
crucial in studies of anti-inflammation in cardiovascular prevention.

3. Statins and immunity: current
status

3.1 Experimental data
In in vitro studies statins inhibit the expression of adhesion molecules in
both endothelial cells and monocytes,51 as well as LDL-induced endo-
thelial nitric oxide synthase down-regulation.52 In addition, statins reduce
NF-jB activation, and chemokine and MMP expression53,54 and promote
the expression of anti-inflammatory and cytoprotective molecules in
endothelium.55

Statins also modulate the adaptive immune response by inhibiting the
expression of major histocompatibility class II required for antigen pre-
sentation to effector T cells56 and divert T cell differentiation to Tregs,
that supress pro-inflammatory responses of other immune cells and
counteract pro-inflammatory IL-17-producing T cell differentiation
(Th17).57 Statins also up-regulate the expression of Kruppel-like factor 2
(KLF2) in mouse and human T cells, diminishing interferon-c expres-
sion,58 as KLF2 controls the expression of molecules essential for naive
T cell recirculation and maintenance of T cell quiescence.

3.2 Evidence in humans
Further proof of concept for anti-inflammatory effects of statins was pro-
vided by studies of patients scheduled to elective carotid endarterec-
tomy randomized to either statins or no lipid-lowering therapy.59

Plaques from patients under statins exhibited reduced NF-jB activity,
decreased macrophage and T cell infiltrates, and less expression of
proinflammatory mediators.59 Moreover, statins diminish plasma levels
of CRP, cytokines, and adhesion molecules60,61 and decrease microparti-
cle shedding from inflammatory cells.62

The anti-inflammatory effects of statins have been postulated to con-
tribute to their clinical benefits. Accordingly, statins are especially effec-
tive when associated to a diminution in CRP levels.63 Furthermore, it has

been suggested that statins may be more effective in patients with high
CRP levels.61,64,65 However, this could be due to the higher cardiovascu-
lar risk of these patients and discordant data also exist.66 Also, mendelian
randomization analyses suggest that CRP concentration itself is unlikely
to be a causal factor of coronary artery disease.67 Thus, at present, CRP
determination is not advised as its contribution to the existing methods
of cardiovascular risk assessment seems to be small.68

The immunomodulatory effects of statins are also supported by data
on clinical outcomes. Statins decrease the cytotoxicity of natural killer
cells, and the incidence of coronary vasculopathy and rejection with dy-
namic impairment after a cardiac transplant.69 Other studies have also
found a lower incidence of coronary artery disease and intimal thickening
without reducing the incidence of cardiac rejection.70 Conversely, in
patients with kidney transplantation, there are no consistent data con-
firming this immunomodulatory effect.71,72

In addition, imaging vascular inflammation by techniques such as PET
(positron emission tomography) using FDG (18F-fluorodeoxyglucose)
has evidenced that statins achieve a decrease of vascular inflammation
consistent with the reduction of the cardiovascular risk observed in clini-
cal trials.73 This is relevant, as a lack of reduction in arterial FDG uptake
by anti-inflammatory therapies has been associated with an absence of
clinical benefit.74

In conclusion, both experimental and clinical data support that
statins have anti-inflammatory and immunomodulatory properties.
Nevertheless, a legitimate question is whether these actions could be, at
least in part, independent of their lipid-lowering effects.

3.3 Lipid-independent anti-inflammatory
and immunomodulatory effects of statins
Some intermediate compounds of the mevalonate pathway that is
blocked by statins to decrease cholesterol synthesis, are implicated in
post-translational modifications of key proteins75 involved in important
cell functions. Among them, small G proteins75 play a role in cell signal
transduction, and their blockade in atherosclerotic cells might interfere
with atherogenesis irrespective of the inhibition of cholesterol synthe-
sis.75 In this regard, statins have anti-inflammatory effects in vitro in the ab-
sence of changes in lipid concentrations.53 In animal models, they have
stronger anti-inflammatory effects than diet modification in spite of less
decrease in cholesterol levels.76 Moreover, they reduce inflammation in
models of inflammatory disorders likely unrelated to lipids.77–79

In humans, however, data are less clear. In the Atorvastatin in
Rheumatoid Arthritis (TARA) trial, atorvastatin modestly decreased in-
flammation, with a diminution of -0.5 (95% CI -0.75 to -0.25) in the dis-
ease activity score, when compared with 0.03 (95% CI -0.23 to 0.28) in
the placebo group (P = 0.004),80 an effect that could be lipid-
independent. However, in another study ezetimibe, that decrease LDL
through a different mechanism, achieved also a mild but significant reduc-
tion in the activity score of -0.55 ± 1.01 (P = 0.002) that was similar to
that obtained by simvastatin (-0.67 ± 0.91; P = 0.002).81 Accordingly,
PCSK9-antibodies reduce the pro-inflammatory changes in circulating
monocytes, coinciding with a marked decrease in monocyte-cholesterol
content.13 Then, LDL lowering may be the predominant factor explain-
ing anti-inflammatory effects in humans. In fact, risk reduction of major
vascular events is similar in statin and non-statin therapies [0.77 (95% CI
0.71–0.84) and 0.77 (95% CI 0.75–0.79) per 38.7 mg/dL LDL decrease,
respectively; P < 0.001 for both].82

Thus, although basic research suggests that statins have lipid-
independent anti-inflammatory effects, this seems difficult to confirm in
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humans. This discrepancy may reflect the biodistribution of statins. In
this regard, a nano-particulate formulation statin packaged in HDL par-
ticles exerts potent anti-inflammatory effects in plaques, as it delivers the
statin into the plaque macrophages directly.83,84 In contrast, oral statins
in equal doses hardly affect plaque inflammation, illustrating that the first-
pass clearance of statins by the liver precludes a strong anti-
inflammatory effect in vivo.

4. Non-statin LDL-lowering drugs
and inflammation

The relationship between lipids and inflammation is supported by the
observation that non-statin lipid-lowering drugs also have anti-
inflammatory effects. In this regard, ezetimibe also diminishes plaque in-
flammation in models of atherosclerosis.85 Accordingly, in patients at
high cardiovascular risk, ezetimibe reduces plasma levels of inflammatory
markers.86 Similarly to data reported with statins, achievement of both
CRP and LDL prespecified targets in patients receiving ezetimibe and
statin combination therapy is associated with better outcomes than
reaching only LDL target levels.87 Then, non-statin LDL-lowering drugs
also show anti-inflammatory properties despite working through differ-
ent mechanisms, suggesting that lipid reduction plays a key role in these
effects. In this regard, recent data show that lipid reduction is associated
to a modulation of the inflammatory response irrespective of the lipid-
lowering therapy used.88 Specifically, the reduction obtained in CRP lev-
els with statins and with their combination with ezetimibe is proportional
to the reduction observed in LDL levels.88

5. PCSK9 inhibition

5.1 PCSK9: an endogenous inhibitor of the
LDL receptor
PCSK9 mediates intracellular degradation of the hepatic LDL receptor
(LDLR).89 Once secreted by the hepatocyte, PCSK9 binds to the extra-
cellular EGF-A domain of the LDLR, leading to the internalization of the
LDLR-PCSK9 complex through clathrin-coated pits.90 In addition,
PCSK9 could also enhance LDLR degradation by an intra-cellular path-
way not requiring PCSK9 secretion.91 In this regard, the S127R PCSK9
gain-of-function variant leads to autosomal dominant hypercholestero-
laemia without PCSK9 secretion.92

PCSK9 monoclonal antibodies block the extracellular PCSK9 pathway
reducing LDL, triglyceride, cholesterol and Lp(a) plasma levels, and in-
creasing HDL and ApoA1 levels.2 These data translate into a decrease in
the incidence of cardiovascular events in secondary prevention2 (http://
www.acc.org/latest-in-cardiology/clinical-trials/2018/03/09/08/02/od
yssey-outcomes).

5.2 PCSK9 and inflammation
The fact that the recently developed PCSK9 inhibitors do not reduce
plasma CRP13 has lead to the idea that they may not have anti-
inflammatory effects (Figure 2). However, many data indicate that these
drugs share anti-inflammatory actions with other lipid-lowering drugs.
Even more, PCSK9 itself could have pro-inflammatory effects.

The transcriptional regulation of PCSK9 suggests that it may have a
role in inflammation. PCSK9 expression is induced by hepatocyte nuclear
factor-1a (HNF-1a), which regulates the expression of acute phase pro-
inflammatory proteins.93 Also, lipopolysaccharide induces early hepatic

and renal PCSK9 mRNA expression in mice,94 as well as in endothelial
and vascular smooth muscle cells.95 Finally, TNFa increases PCSK9 ex-
pression in vitro in cultured macrophages.96 In humans, plasma PCSK9
concentrations increase in sepsis,97 trauma,98 and in acute coronary syn-
dromes. Furthermore, they are positively associated with white blood
cell count, fibrinogen,99 and CRP100 in coronary patients. To date, there
are no data reporting the effects of anti-inflammatory molecules on
PCSK9 levels.

While PCSK9 expression in macrophages is debatable, data suggest
that it modulates LDLR expression in these cells, either through a para-
crine101 and/or autocrine mechanism102 and also stimulates the expres-
sion of scavenger receptors (principally LOX-1) and ox-LDL uptake in
these cells.96 Furthermore, PCSK9 silencing reduces oxLDL-induced cy-
tokine expression in THP-1 derived macrophages through NF-jB inhibi-
tion103 and decreases TLR4 expression and NF-jB activation in oxLDL-
treated macrophages.104 Conversely, overexpression of human PCSK9
in lipopolysaccharide-stimulated macrophages promotes the expression
of pro-inflammatory markers, while inhibiting anti-inflammatory mole-
cules.102 Similarly, PCSK9 overexpression in TNFa-primed macrophages
enhances the expression of scavenger receptors.96 Bone marrow trans-
plantation from mice expressing human PCSK9 (hPCSK9tg) in apoE
knockout mice generated a chimeric model expressing hPCSK9 only in
macrophages.102 Interestingly, despite not modifying lipid levels, trans-
planted animals showed a LDLR-dependent increased number of Ly6Chi

inflammatory monocytes within atherosclerotic lesions and spleens, and
a reduction of LDLR expression in macrophages.102 Furthermore,
PCSK9 decreases ABCA1 expression, thereby reducing cholesterol ef-
flux in macrophages at least partly in a LDLR-dependent manner.105 In
addition, human recombinant PCSK9 induces the expression of mono-
cyte chemoattractant protein-1, IL6 and other pro-inflammatory cyto-
kines in both THP-1 derived and human primary macrophages.106

Altogether, these data suggest that PCSK9 may locally regulate athero-
sclerotic plaque inflammation. Accordingly, the ATHEROREMO-IVUS
study found that circulating PCSK9 levels were positively associated with
the extent of necrotic core in atheroma, independently of LDL levels in
patients with acute coronary syndrome.107 Moreover, PCSK9 inhibition
with alirocumab in APOE*3 Leiden.CETP mice, decreases macrophage
and necrotic core content and increases vascular smooth muscle cells
and collagen content.108

Regarding the effects of PCSK9 inhibition on inflammation in humans,
it reduces Lp(a) levels,109 a molecule that circulates bound to PCSK9 in
plasma,110 and promotes inflammation and oxidative stress and coagula-
tion. Also, PCSK9-antibody therapy markedly reduces monocyte inflam-
matory phenotype in patients with familial hypercholesterolaemia,
without any change in plasma hsCRP concentration.13 A similar lack of
effect on hsCRP levels has been described in large cardiovascular out-
comes trials.4 This emphasizes the potential for anti-inflammatory effects
without reduction in the liver-derived acute phase reactant hsCRP.111

5.3 PCSK9 and septic shock
Beyond its lipid-lowering action, as lipopolysaccharide circulates bound
to LDL, up-regulation of hepatic LDLR by PCSK9 inhibition has been sug-
gested to result in increased lipopolysaccharide clearance (Figure 2), a de-
creased inflammatory response, and improved survival following sepsis
in mice112,113 although, in a recent study, PCSK9 inhibition failed to re-
duce LPS-induced mortality in mice.114 Importantly, humans with PCSK9
loss-of-function variants also exhibit improved clinical outcomes during
septic shock.115 Finally, enhanced plasma PCSK9 levels during sepsis are
associated with multiple organ failure.97 Based on these results, clinical
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..trials are planned to assess the effect of PCSK9 inhibition outcomes dur-
ing sepsis.

5.4 Vascular actions of PCSK9
PCSK9 is expressed in many other tissues than the liver, including ath-
erosclerotic plaques,101,116 and vascular areas of low shear stress, that
are prone to develop atherosclerosis.95 PCSK9 expression is found
mainly in vascular smooth muscle cells,101 and to a lesser extent in endo-
thelial cells.95 PCSK9 deficiency reduces neointimal formation following
injury of the carotid artery in mice beyond cholesterol lowering by de-
creasing vascular smooth muscle cell migration and proliferation rate.117

Recent epidemiological studies have demonstrated that plasma
PCSK9 levels are associated with carotid atherosclerosis118 indepen-
dently of LDL. However, other data challenge the idea of a lipid-
independent effects of PCSK9 inhibitors. For instance, plasma PCSK9 lev-
els have not proven consistently to predict cardiovascular
events.100,119,120 Moreover, in the GLAGOV trial a linear relationship
was found between the regression of atheroma and the decrease of LDL
achieved with evolocumab.121 Finally, the risk reduction observed with
PCSK9 inhibitors in clinical trials, seems to be fully explained by the

decrease of LDL achieved, suggesting that the anti-atherosclerotic bene-
fit of this therapy is directly related to LDL reduction.122

However, inflammation may affect the response to PCSK9 inhibition
as suggested by very recent post hoc analyses of PCSK9 trials.4 First,
patients with high CRP at baseline obtain greater benefit with PCSK9
inhibitors.4 Second, patients with persistent high CRP levels after initiat-
ing treatment with statins and PSCK9 inhibitors have a worse prognosis.5

Although the risk reductions obtained in these trials seem to be fully
explained by the decrease in LDL cholesterol, a more marked beneficial
response to PCSK9 inhibition may hence be predicted in patients with
high inflammatory levels.

Consensus statements

(1) Lipid reduction is associated with modulation of the inflammatory and
immune responses irrespective of the lipid-lowering therapy used.
Despite decreasing cholesterol through different mechanisms, most
lipid-lowering therapies, including dietary interventions, share anti-
inflammatory, and immunomodulatory properties. This observation

Figure 2 Role of PCSK9 in sepsis and inflammation. Hepatic PCSK9 expression is induced by TNFa hepatocyte nuclear factor-1a (HNF-1a) and lipopoly-
saccharide (LPS). Once in the plasma, PCSK9 binds to the LDL receptor facilitating LDL degradation in lysosomes, thus decreasing clearance of LDL-bound
LPS. Extracellular PCSK9 also enhances the expression of pro-inflammatory markers, decreases macrophages in atheroma, and the expression of LDLR and
ABCA1 in these cells. It also forms a complex with Lp(a). The intracellular function of PCSK9 in inflammation remains unknown. GNB, gram-negative bacte-
ria; mab, monoclonal antibody.

Lipids and inflammation 15
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.provides strong evidence that lipid lowering per se causes alterations in
inflammation and immunity. Some lipid-lowering drugs also directly tar-
get lipid-independent pathways to reduce inflammation in experimental
and exploratory studies. However, a contribution of these effects to
cardiovascular outcomes is unclear, and further studies are required to
address this question. However, regardless of the mechanism involved,
an anti-inflammatory response to lipid-lowering may be of clinical im-
portance to predict the effect of treatment.

(2) Using surrogates for both lipid metabolism and inflammation as bio-
markers in future studies may contribute to a better understanding
of the relative importance of different mechanisms of action. Given
the strong association between inflammation, lipids and atheroscle-
rosis, assessment of the inflammatory response to lipid-lowering
interventions could be helpful to establish optimal dose and type of
lipid-lowering therapy in cardiovascular prevention. There is still an
unmet need for new biomarkers and further validation of existing
biomarkers that more closely reflect the inflammatory activity in ath-
erosclerosis before such approach can be implemented.123 In this re-
gard, at present, CRP determination is not adviced as it adds small
value to the existing methods of cardiovascular risk assessment.68

Also, imaging vascular inflammation by techniques such as PET show
promise to assess the anti-inflammatory effect of lipid-lowering ther-
apies. Furthermore, we raise the notion of lipid monitoring in studies
of anti-inflammatory therapies.

(3) Comparative studies of further lipid lowering, anti-inflammation and a
combination of both will be crucial to identify effects that are specific or
shared for each treatment strategy. Current experimental and clinical
research evidence discussed in the present Position Paper can be used
to design a head-to-head comparison of the potential beneficial effects
of additional anti-inflammation or lipid lowering therapies or the combi-
nation of both regimens to current medical standards in secondary pre-
vention. In this context, personalized medicine could be anticipated
based on predictive factors for a beneficial response to lipid lowering
and/or inflammatory levels in secondary prevention.
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RJ, Öhrvik J, Hamsten A, de Faire U. Circulating proprotein convertase subtilisin/
kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of
established risk factors. Circulation 2016;133:1230–1239.

120. Ridker PM, Rifai N, Bradwin G, Rose L. Plasma proprotein convertase subtilisin/
kexin type 9 levels and the risk of first cardiovascular events. Eur Heart J 2016;37:
554–560.

121. Nicholls S, Puri R, Anderson T, Ballantyne C, Cho L, Kastelein J, Koenig W,
Somaratne R, Kassahun H, Yang J, Wasserman S, Scott R, Ungi I, Podolec J, Ophuis
A, Cornel J, Borgman M, Brennan D, Nissen S. Effect of evolocumab on progression
of coronary disease in statin-treated patients: the GLAGOV randomized clinical
trial. JAMA 2016;316:2373–2384.

122. Ference BA, Cannon CP, Landmesser U, Lüscher TF, Catapano AL, Ray KK.
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