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The unit-cell reduction described by Selling and used by Delone (whose early

publications were under the spelling Delaunay) is explained in a simple form.

The transformations needed to implement the reduction are listed. The

simplicity of this reduction contrasts with the complexity of Niggli reduction.

1. Introduction

The origin of crystallography was the study of minerals (Haüy,

1784). That led to the study of lattices, since it was clear that

repetition underlaid the structure of crystals. In order to

systematize the enumeration of lattices (unit cells), the

mathematical procedures of reduction were developed to

produce compact descriptions, thus providing a method

to compare pairs of lattices. Fundamentally, reduction is used

to place the lattice in an asymmetric unit of the space of unit

cells. For some applications (e.g. cell clustering by pairwise

comparison), the use of lattice reduction can be computa-

tionally time-consuming for large data sets. Of the known

reduction methods, the Selling reduction is the least time-

consuming.

Niggli (1928) and Delaunay (1933; later work used the

spelling Delone) used reduction methods developed in the

19th century by Eisenstein (1851) and Selling (1874), respec-

tively. Their original goal was to systematize the experimental

determination of Bravais lattice types. Each provided tables

of the characteristics of the reduced cells with their corre-

spondence to each of the Bravais types. The first edition of

International Tables for X-ray Crystallography originally

included a section (Henry & Lonsdale, 1952) on Delone’s

methods and Selling reduction and their use. Some later

editions have instead included only Niggli’s method.

The initial impetus for the developments by Delone and

Niggli was to determine likely Bravais lattice types based on

experimental unit cells. [Probably the best display of Niggli’s

methods is that by Roof (1967).] With time and the progress in

crystallography, researchers realized that those tables did not

always provide a simple answer due to unavoidable experi-

mental errors in cell determination. Later, simply measuring

the difference between pairs of lattices became important.

Methods have been developed to cope with the resulting

approximate cells [reviewed by Andrews & Bernstein (2014)].

Bravais lattice determination has been automated by

several methods [see the review by Andrews & Bernstein

(2014)]. However, the accumulation of databases of unit-cell

parameters, often of closely similar materials, increased the
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need for perturbation stability. At the present time, the need

is for methods that can be used to access large databases of

unit-cell parameters and for cluster analysis of substantial

numbers of images from serial crystallography. Bravais

lattice determination is no longer the only or even the most

important use of lattice-reduction methods. Now the most

pressing need is for high-performance methods for lattice

matching.

Andrews & Bernstein (2014, 1988) discussed Niggli reduc-

tion. In this article, we provide a complete description of the

reduction of Selling that can be applied in crystallography as a

time-cost-effective alternative to more complex reduction

methods. Especially in procedures for handling large numbers

of experimental data, reduction can be a significant portion of

the processing time. Loading large databases (there are now

approximately one million unit cells available) and clustering

many images from serial crystallography can be a lengthy

process.

One strong advantage of the use of Selling scalars is that

they are homogeneous. They are all dot products and of

comparable dimensions. There is another lattice representa-

tion which is also homogeneous, as seven squared lengths

forming a space called D7. For completeness, we present that

representation in Appendix A and in the supporting infor-

mation, inasmuch as literature on D7 is not easily available

elsewhere. The Selling representation as six scalars is

computationally more efficient for database work and for

clustering than the representation as seven squared lengths.

Indeed, it appears to be the most efficient choice available

when quantifying differences among any large number of

crystallographic lattices.

2. The Selling scalars

As applied to crystallography, the scalars to be reduced by

Selling’s method are the dot products of the unit cell axes, in

addition to the negative of their sum (a body diagonal).

Labeling these a, b, c and d (d = �a � b � c), the scalars are

(b � c, a � c, a � b, a � d, b � d, c � d), where e.g. b � c represents

the dot product of the b and c axes. For the purpose of

organizing these six quantities in this article, we describe them

as a vector, s, with components s1, s2, s3, . . . , s6 . For the

purpose of Selling reduction, zero is considered to be a

negative value.

3. The tetrahedron

An alternative description of the scalars, due to Bravais

(1850), is to consider the scalars as the labels of the edges of a

tetrahedron spanned by the ends of a, b, c and d (where d is

the negative sum of a, b and c as defined above). There is no

preferred ordering of the four vectors, and each possible right-

handed ordering generates the same lattice. Here, a � b is the

label of the edge between the ends of vectors a and b etc. In

the quote below, ‘opposite’ refers to a pair of edges of the

tetrahedron across the tetrahedron from each other. This is

only a formal labeling; associated with each pair of vertices,

the edge between them is labeled with the dot product of the

two vectors ending at those vertices.

4. The reduction

Delone et al. (1975) state ‘Select any positive parameter of the

tetrahedron and subtract it from the parameter standing on

the opposite edge of the tetrahedron (the tetrahedron is at all

times thought of as spatial), add it to the parameters standing

on the remaining four edges, interchange the places of the

obtained parameters on two of these four edges, converging to

one of the ends of the original edge (it makes no difference to

which), and, finally, change the sign of the positive parameter

itself being considered.’

The goal of Selling reduction is to produce a set, S, of scalars

where all elements of S are negative or zero. By ‘opposite’,

here, is meant pairs of scalars that do not have a common

element (and are on opposite edges of the Bravais tetra-

hedron):

b � c and a � d (s1 and s4),

a � c and b � d (s2 and s5),

a � b and c � d (s3 and s6).

For example, assuming that s1 is positive, the reduction step

for s1 produces:

(�s1, s2 + s1, s5 + s1, s4 � s1, s3 + s1, s6 + s1) or

(� s1, s6 + s1, s3 + s1, s4 � s1, s5 + s1, s2 + s1).

This is continued until all six scalars are negative, known to

be a ‘unique’ solution (Bravais, 1850). The reason that the

choice does not matter is that the two choices are related by

one of the reflections (below).

In the previous paragraph, ‘unique’ means that the list of

the six scalars is unique. Their arrangement is not unique. In

terms of the tetrahedron, there are 24 allowed relabelings

(reflections) of the vertices. That means that, for any reduced

cell, there are 24 reflections [permutations of the scalars

correspond to permutations of (a, b, c, d)] that are all

‘reduced’.

Finally, as a check on the process and on the correctness of

the lattice, the negative sum of the six scalars must decrease in

each reduction step.

If we define the six-dimensional space of scalars as S6 and

the full set of Selling reduction operations as matrices on S6,

then two alternative matrices per scalar being reduced are

given by:

For b � c = 0 boundary:

½�1100000=110000=100010=�1100100=101000=100001�

or ½�1100000=100001=101000=�1100100=100010=110000�:

For a � c = 0 boundary:

½110000=0�110000=010100=011000=0�110010=010001�

or ½010001=0�110000=011000=010100=0�110010=110000�:

For a � b = 0 boundary:
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½101000=001100=00�11000=011000=001010=00�11001�

or ½001010=011000=00�11000=001100=101000=00�11001�:

For a � d = 0 boundary:

½100�1100=001100=010100=000�1100=000110=000101�

or ½100�1100=010100=001100=000�1100=000101=000110�:

For b � d = 0 boundary:

½001010=0100�110=100010=000110=0000�110=000011�

or ½100010=0100�110=001010=000011=0000�110=000110�:

For c � d = 0 boundary:

½010001=100001=00100�11=000101=000011=00000�11�

or ½100001=010001=00100�11=000011=000101=00000�11�:

Note that the second of each pair is just a permutation of the

first, so we only need the first of each pair for reduction.

We include below a pseudocode implementation of

the reduction. Here, ReduceTheLargestScalar applies

the corresponding operation from the list of matrices above.

Experience has shown that Selling reduction is faster to

execute than Niggli reduction (see Fig. 1). In many applica-

tions it is important to reduce all cells before processing. A

large fraction of the cells to be considered have already been

reduced before the application is run, but reduction is so

important that the reduction methods are applied to all cells to

at least verify that they have been reduced. Even for cells that

have already been reduced, the difference in timing between

‘Niggli’ and ‘Selling’ is due to the difference in complexity for

checking whether reduction is complete. The simple pseudo-

code above can be contrasted with the more complex algo-

rithm for Niggli reduction [see Gruber (1973) and Andrews &

Bernstein (1988)]. In addition, when working in Selling space,

this same difference in complexity of reduction is reflected in a

difference in the number of boundary polytopes for the

fundamental region, which means that applications such as

clustering and cell database searching will be faster when

working with Selling-reduced cells. For example, when the cell

database program SAUC (McGill et al., 2014) is modified to

use Selling reduction, a search of half a million PDB (Protein

Data Bank) and CSD (Cambridge Structural Database) cells

for the nearest 500 cells to ðP 100 100 100 90 90 90Þ runs

in 137 s CPU time and 8 s real time on a 12-core AMD

Threadripper for Niggli reduction, but the same search runs in

52 s CPU time and 4 s real time for Selling reduction.

5. Difficulties in applying Selling reduction to the
methods of Delaunay (1933)

Of the available cell-reduction methods, Selling reduction has

the fastest performance. As X-ray detectors become faster and

data collection moves to higher and higher speeds, the

performance of data-analysis pipelines also needs to be

improved. In any system, the total system performance will

not improve until the last bottleneck is removed, and in serial

crystallography there are many bottlenecks to be addressed.

The choice of reduction method is an important parameter to

consider in this regard. As we have shown, Selling reduction as

considered by Delone has much to recommend it, yet the

coders of many current applications, especially for Bravais

lattice identification, have favored Niggli reduction over

Delone’s methods because of the issues to be discussed in the

paragraphs below. Clearly, Delone’s methods are not

completely forgotten, as Oishi-Tomiyasu (2012) used both

Niggli and Delone methods. The solution of these problems is

best dealt with algebraically by considering a lattice to be

represented by a point in a vector space. This topic will be

addressed in a forthcoming article.

First, the identification of lattice types is usually described

in terms of matching a reduced set of scalars to one of the

pictures of the 24 different Bravais tetrahedra (Delaunay,

1933) corresponding to the various lattice types (such as body-

centered cubic etc.). This is a complex step: the user must

relabel the axes of his/her own lattice picture to agree with

each of the types (equivalent to choosing one or more of the

24 reflections of his/her picture to match the orientation of

those of the 24 types that seem possible).

Second, the user must make decisions about how close to

zero each scalar is. Each zero or near zero generates additional

decisions that must be made. Further, the user may need to

make a choice as to whether a near-zero value (negative after
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Figure 1
Reduction timing for 89539 unit cells taken from the Protein Data Bank
(milliseconds). The times given are for primitive cells.



reduction) is so close to zero that another reduction should be

done with that value considered positive.

Third, several of the reflections might give similar matches

to a picture, and there may always be multiple matches (for

instance, all cubic cells will match some orthorhombic cells).

None of these issues can outweigh the performance gains of

Selling reduction over Niggli reduction in clustering and cell-

database use, but, as noted above, they need to be addressed

for other applications such as lattice identification, so we will

not have to deal with two very different views of the same

lattice in pipelines of applications. Especially when visualiza-

tion rather than just computation is involved in lattice

identification, the conversion from Niggli reduction back to

Selling reduction to gain performance can be a complex

undertaking. This will have to be addressed one application at

a time in the future.

6. Related literature

For additional literature relating to the supporting informa-

tion, see Minkowski (1905) and Buerger (1960).

APPENDIX A
A seven-space representation of lattices based on
sorted Delone reduction

We review the relationship between Niggli reduction and

Delone reduction and describe a representation due to

Delaunay (later known as Delone) of cells in a seven-

dimensional space within which the fundamental unit

including sorting is convex and equivalent to the conventional

representations.

A1. Notation

{...} an unordered ensemble

[...] an ordered list

||x|| the norm of vector x

a, b, c three cell-edge vectors giving a unit cell of a lattice

d = �a � b � c the negative of the main cell body diagonal,

the fourth vector for Delone reduction

[g1, g2, g3, g4, g5, g6] = [||a||2, ||b||2, ||c||2, 2b � c, 2a � c, 2a � b] the

G6 vector of [a, b, c]

[P, Q, R, S, T, U] = [s23, s13, s12, s14, s24, s34] = [b � c, a � c, a � b,

a � d, b � d, c � d] the Selling (Delaunay, Delone) scalars of

[a, b, c, d]

[d1, d2, d3, d4, d5, d6, d7] = [||a||2, ||b||2, ||c||2, ||d||2, ||b + c||2, ||a + c||2,

||a + b||2] = [||a||2, ||b||2, ||c||2, ||d||2, ||d + a||2, ||d + b||2, ||d + c||2] the

D7 vector of [a, b, c, d]

A2. Delone reduction

Given three cell-edge vectors a, b, c, that cell is called

Delone-reduced if the four vectors (the Bravais tetrahedron;

Delaunay, 1933) a, b, c, d = �a � b � c, numbered 1 to 4, all

form right angles or obtuse angles relative to one another. In

terms of G6 (Andrews & Bernstein, 1988), given a cell

described by [g1, g2, g3, g4, g5, g6], converting from the Selling

(1874) scalar S6 [P, Q, R, S, T, U] notation for the inner

products of Henry & Lonsdale (1952), based on Ito (1950) and

Delaunay (1933), the six doubled inner products among the

Bravais tetrahedron vectors are:

2P ¼ 2b � c ¼ 2s23 ¼ g4; ðA:1Þ

2Q ¼ 2a � c ¼ 2s13 ¼ g5; ðA:2Þ

2R ¼ 2a � b ¼ 2s12 ¼ g6; ðA:3Þ

2S ¼ 2a � ð�a� b� cÞ

¼ � 2a � a� 2a � b� 2a � c

¼ 2s14

¼ � 2g1 � g6 � g5; ðA:4Þ

2T ¼ 2b � ð�a� b� cÞ

¼ � 2b � a� 2b � b� 2b � c

¼ 2s24

¼ � g6 � 2g2 � g4; ðA:5Þ

2U ¼ 2c � ð�a� b� cÞ

¼ � 2c � a� 2c � b� 2c � c

¼ 2s34

¼ � g5 � g4 � 2g3; ðA:6Þ

equivalently

g1 ¼ �Q� R� S;

g2 ¼ �P� R� T;

g3 ¼ �P�Q� U;

g4 ¼ 2P;

g5 ¼ 2Q;

g6 ¼ 2R:

For a Delone-reduced cell, all the expressions (A.1) through

(A.6) must be zero or negative. This is equivalent to saying

that all the cell angles must be obtuse or right angles. No acute

angles are permitted.

Patterson & Love (1957) used a slightly different notation

and presented a very efficient algorithm for Delone reduction.

To a minimal extent, in the past one level of ambiguity in

presentation was removed by imposing various symmetry-

dependent orderings. We go further in this appendix by

imposing a strict ordering on the lengths of the tetrahedron

vectors ||a|| � ||b|| � ||c|| � ||d||. This ordering, while not

essential to doing the reduction, clarifies the presentation of

each cell.

A3. Converting from the G6 or E3 representation of a Niggli-
reduced cell to Delone-reduced

It is possible to achieve Delone reduction by first doing

Niggli reduction. See Appendix B Section B.1 in the
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supporting information for a summary of the Niggli condi-

tions.

Allmann (1968) presented the transformation from a

Buerger-reduced cell to a Delone-reduced cell. We restate that

algorithm in full detail and then specialize it to deal with the

Niggli-reduction conditions.

Most of the Niggli conditions are not relevant to conversion

from Niggli reduction to Delone reduction. The relevant

Niggli conditions can be stated as:

g1 � g2 � g3;

jg4j � g2 � g3;

jg5j � g1 � g2 � g3;

jg6j � g1 � g2 � g3;

and g{4,5,6} are all strictly positive or all less than or equal to

zero.

A3.1. The Niggli-reduced � � � case. If we have g{4,5,6} all

less than or equal to zero, examine each element of expres-

sions (A.1) through (A.6):

g6 � 0;

g5 � 0;

�2g1 � g5 � g6 ¼ ð�g5 � g1Þ þ ð�g6 � g1Þ � 0;

g4 � 0;

�g6 � 2g2 � g4 ¼ ð�g4 � g2Þ þ ð�g6 � g2Þ � 0;

�g5 � g4 � 2g3 ¼ ð�g4 � g3Þ þ ð�g5 � g3Þ � 0;

the Niggli reduction case of g{4,5,6} all less than or equal to zero

is already Delone-reduced. Recall that, for these ���

Niggli-reduced cells,

0 � g1 � g2 � g3 � g1 þ g2 þ g3 þ g4 þ g5 þ g6;

�g2 � g4 � 0;

�g1 � g5 � 0;

�g1 � g6 � 0:

A3.2. The Niggli-reduced + + + cases. Now consider the

remaining case of g{4,5,6} all greater than zero. For these + + +

Niggli-reduced cells,

0 � g1 � g2 � g3 � g1 þ g2 þ g3 þ g4 þ g5 þ g6;

0 � g4 � g2;

0 � g5 � g1;

0 � g6 � g1:

At least one of g{4,5,6} is minimal. It is possible for more than

one to be minimal.

A3.3. The Niggli-reduced + + +, g6 minimal case. Suppose

g6 � g4, g6 � g5. In this case consider the Bravais tetrahedron

a;�b;�cþ b; c� a: ðA:7Þ

The first two components are of lengths ||a|| and ||b|| from the

Niggli cell. Both lengths ||� c + b|| and ||c� a|| are greater than

or equal to ||c||. If either were smaller, a, b, c would not be

Niggli-reduced. There are two G6 vectors to consider, using

the shorter of the last two vectors in place of c; the remaining

vector becomes the fourth tetrahedron edge:

½g1; g2; g2 þ g3 � g4; g4 � 2g2;�g5 þ g6;�g6�;

½g1; g2; g1 þ g3 � g5; g6 � g4; g5 � 2g1;�g6�;

which are ��� vectors in this case, and the elements of

expressions (A.1) through (A.6) are

�g6; g6 � g5; g5 � 2g1; g4 � 2g2; g6 � g4; g5 � 2g3 þ g4 � g6;

�g6; g5 � 2g1; g6 � g5; g6 � g4; g4 � 2g2; g5 � 2g3 þ g4 � g6;

respectively, all of which are less than or equal to zero.

A3.4. The Niggli-reduced + + +, g5 minimal case. Suppose

g5 � g4, g5 � g6. In this case consider the Bravais tetrahedron

a; b� a;�c; c� b: ðA:8Þ

The first and third components are of lengths ||a|| and ||c||,

respectively, from the Niggli cell. jjb� ajj2 = g1 � g6 þ g2 � g2

and jjb� cjj2 = g2 � g4 þ g3 � g3. It is possible that jjb� ajj2

� g3, in which case c will replace b and the smaller of b � a

and c � b will replace c. Otherwise just the smaller of b � a

and c � b will replace c. In any of these cases, there are two G6

vectors to consider, using either the second or fourth

component in addition to a and c,

½g1;�g6 þ g2 þ g1; g3; g5 � g4;�g5; g6 � 2g1�;

½g1;�g4 þ g3 þ g2; g3; g4 � 2g3;�g5; g5 � g6�;

which are ��� vectors in this case, and the elements of

expressions (A.1) through (A.6) are

g6 � 2g1;�g5; g5 � g6; g5 � g4; g4 � 2g2 � g5 þ g6; g4 � 2g3;

g5 � g6;�g5; g6 � 2g1; g4 � 2g3; g4 � g5 þ g6 � 2g2; g5 � g4;

respectively, all of which are less than or equal to zero.

A3.5. The Niggli-reduced + + + , g4 minimal case. Suppose

g4 � g5, g4 � g6. In this case consider the Bravais tetrahedron

b� a;�b; c; a� c: ðA:9Þ

The second and third components are of lengths ||b|| and ||c||,

respectively, from the Niggli cell. The length of b� a is greater

than or equal to the length of b. The length of a � c is greater

than or equal to the length of c. Therefore the three shortest

edges of the Bravais tetrahedron will be some combination of

�b, ||c|| and the shorter of b� a and a� c, so there are two G6

vectors to consider,

½�g6 þ g2 þ g1; g2; g3;�g4; g4 � g5; g6 � 2g2�;

½�g5 þ g3 þ g1; g2; g3;�g4; g5 � 2g3; g4 � g6�;
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which are ��� vectors in this case, and the elements of

expressions (A.1) through (A.6) are

g6 � 2g2; g4 � g5;�g4 þ g5 þ g6 � 2g1;�g4; g4 � g6; g5 � 2g3;

g4 � g6; g5 � 2g3;�g4 þ g5 þ g6 � 2g1;�g4; g6 � 2g2; g4 � g5;

respectively, all of which are less than or equal to zero.

Note that in all cases for a Bravais tetrahedron, the three

shortest edge vectors are either from a���Niggli cell, or, in

the case of a Bravais tetrahedron derived from aþþþ Niggli

cell, two of the three shortest edges are from that Niggli cell

with the direction of one edge reversed, and the third of the

shortest edges is a face diagonal from a face involving the third

Niggli cell edge.

A4. The effects of perturbations

Perturbations of a cell can cause exchanges of edges with

face diagonals or body diagonals. Because a Delone cell only

has obtuse (or right) angles, the diagonals produced by sums

are closer in length to the original edges than those involving

differences. Therefore, in many cases, Delone reduction of a

cell close to

a; b; c;�a� b� c

will use the additive face and body diagonals

aþ b; aþ c; a� a� b� c; bþ c; b� a� b� c;

c� a� b� c; aþ bþ c; aþ b� a� b� c;

aþ c� a� b� c; bþ c� a� b� c

¼ aþ b; aþ c;�b� c; bþ c;�a� c;�a� b; aþ bþ c;

� c;�b;�a:

A5. The seven-dimensional Delone space D7

Consider the Bravais tetrahedron a, b, c, d = �a � b � c.

If we consider only lengths, then the total ensemble of seven

unique lengths resulting from the Bravais tetrahedron and the

additive face and body diagonals is

jjajj; jjbjj; jjcjj; jjdjj; jjbþ cjj; jjaþ cjj; jjaþ bjjf g:

Taking squares of these lengths gives a seven-vector defined

by Delone et al. (1975) in a space we call D7 for Delone seven-

space.

In Appendix B (supporting information), the necessary and

sufficient conditions for a well defined cell to be Delone-

reduced are given and the fundamental region of points in

seven-space satisfying those conditions is shown to be convex

with seven five-dimensional boundaries.
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