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Abstract
Background.  Despite extensive efforts on the genomic characterization of gliomas, very few studies have reported 
the genetic alterations of cerebellar glioblastoma (C-GBM), a rare and lethal disease. Here, we provide a systematic 
study of C-GBM to better understand its specific genomic features.
Methods. We collected a cohort of C-GBM patients and compared patient demographics and tumor patholo-
gies with supratentorial glioblastoma (S-GBM). To uncover the molecular characteristics, we performed DNA and 
mRNA sequencing and DNA methylation arrays on 19, 6, and 4 C-GBM cases, respectively. Moreover, chemical 
drug screening was conducted to identify potential therapeutic options for C-GBMs.
Results.  Despite differing anatomical origins of C-GBM and S-GBM, neither histological, cytological, nor patient demo-
graphics appeared significantly different between the 2 types. However, we observed striking differences in mutational 
patterns, including frequent alterations of ATRX, PDGFRA, NF1, and RAS and absence of EGFR alterations in C-GBM. 
These results show a distinct evolutionary path in C-GBM, suggesting specific therapeutic targeted options. Targeted-
drug screening revealed that C-GBMs were more responsive to mitogen-activated protein kinase kinase (MEK) inhibi-
tor and resistant to epidermal growth factor receptor inhibitors than S-GBMs. Also, differential expression analysis 
indicated that C-GBMs may have originated from oligodendrocyte progenitor cells, suggesting that different types of 
cells can undergo malignant transformation according to their location in brain. Master regulator analysis with dif-
ferentially expressed genes between C-GBM and proneural S-GBM revealed NR4A1 as a potential therapeutic target.
Conclusions.  Our results imply that unique gliomagenesis mechanisms occur in adult cerebellum and new treat-
ment strategies are needed to provide greater therapeutic benefits for C-GBM patients.

Key Points

1.	 Distinct genomic profiles of 19 adult cerebellar GBMs were characterized.

2.	 MEK inhibitor was highly sensitive to cerebellar GBM compared with supratentorial GBM.

3.	 Master regulator analysis revealed NR4A1 as a potential therapeutic target in cerebellar GBM.
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To understand the molecular mechanisms influencing 
oncogenesis, progression, and response to specific can-
cer therapies, researchers have published systematic 
analyses of genomic and transcriptomic datasets from 
patient tumors and deposited results in publicly access-
ible archives such as The Cancer Genome Atlas (TCGA). 
Glioblastoma (GBM) was in the vanguard of those gen-
omic studies and represents one of the most extensively 
studied cancers to date.1,2 Yet, nearly all studies have 
focused on the most sought-after gliomas that originate 
in the supratentorial region of the brain and have omitted 
the small fraction (0.9%) of adult GBMs located within the 
brain’s infratentorial region, such as cerebellar glioblas-
tomas (C-GBMs).3 Owing to the rarity of samples, only a 
few characteristics of C-GBMs have been described using 
immunohistochemistry, PCR amplification, and various 
sequencing methods.4–6 Although these sample sizes were 
small, they indicated that specific tumorigenic mecha-
nisms, including immunonegativity for epidermal growth 
factor receptor (EGFR) prevail in C-GBMs. Recently, 17 
diffuse cerebellar gliomas (DCGs) were characterized by 
next-generation sequencing (NGS), and they shared simi-
lar molecular characteristics with H3 K27M-mutant midline 
gliomas, including oligodendroglial differentiation as well 
as H3 K27M mutations.7 However, GBMs are notorious for 
their intertumoral heterogeneity, by showing various gen-
etic alterations across tumor samples.1 This high level of 
intertumoral heterogeneity emphasizes the importance 
of personalized therapies in GBM. Therefore, we addition-
ally characterized the molecular mechanisms of C-GBM 
by performing sequencing and analyses of targeted-, 
whole-exome, and mRNA data, as well as methylation 
arrays in a total of 19 C-GBM cases. In addition to reveal-
ing genetic features of C-GBMs, chemical drug screening 
was conducted on C-GBM patient-derived cells to examine 
therapeutic responses. We also compared C-GBM with the 
most common supratentorial glioblastomas (S-GBMs), by 
systematically reviewing clinical information in 853 GBM 
cases to identify whether C-GBMs are demographically 
and pathologically different from S-GBMs or not.

Materials and Methods

Patients and Specimens

Our study was approved by the institutional review boards of 
Samsung Medical Center (#2016-08-031) and Seoul National 
University Hospital (#H-1404-056-572). We retrospectively 

reviewed all patients who were diagnosed with either cere-
bellar or supratentorial GBMs and underwent craniotomies 
at Samsung Medical Center from 1996 to 2016. Clinical infor-
mation such as sex, age, postoperative treatment modality, 
and survival time was collected. Tumor location was con-
firmed from preoperative magnetic resonance (MR) images. 
All cases were histologically confirmed as primary GBM by 
experienced pathologists. We received clinical information, 
MR images, and genetic profiles of the SNU001, SNU002, 
and SNU006 cases from Seoul National University. In total, 
176 S-GBM and 19 C-GBM patients underwent sequencing. 
Among the 19 C-GBM cases, genomic DNA was extracted 
from 10 fresh-frozen tumor samples, and in 9 cases gen-
omic DNA was isolated from formalin-fixed paraffin wax-
embedded tumor samples. The isolated genomic DNA was 
subjected to exome sequencing and DNA methylation array 
analyses. Total RNA from 6 tumor samples was isolated and 
then processed for RNA sequencing.

Data Generation from DNA and RNA Sequencing

Using data from whole-exome and targeted-DNA sequenc-
ing, we detected single-nucleotide variants and indels and 
estimated copy number in C-GBM samples. RNA sequencing 
data were used to determine gene expression, GBM subtype, 
and gene fusion events. Detailed methods are described in 
the Supplementary material. The sequencing data have been 
deposited in the European Genome-phenome Archive (acces-
sion number: EGAS00001002517) for controlled access.

Master Regulator Analysis

Master regulator analysis was performed using the R pack-
age RTN, following the main vignette.8 The list of transcrip-
tion factors was downloaded from Fantom5 (http://fantom.
gsc.riken.jp/5; Accessed August 7, 2018) and used as an 
input to construct the transcriptional network.

Topological Data Analysis

We built topological representations of gene expression 
data using the Mapper algorithm, as implemented by 
Ayasdi.9 The output of Mapper is a low-dimensional net-
work representation of the data, where nodes represent 
sets of samples with similar global transcriptional profiles 
as measured by correlation of the expression levels of the 
genes with the highest variance across samples (SD  >  1 
was used as cutoff).

Importance of the study
Only a few studies have reported the molecular char-
acteristics of adult C-GBM, a subtype comprising 1% 
of glioblastoma cases located within the infratentorial 
brain region due to its rarity. By identifying genomic 
profiles from 19 adult C-GBM samples, we revealed the 
genetic intertumoral heterogeneity in C-GBM as well as 

distinct genomic characteristics from those of S-GBMs, 
emphasizing the need of individualized therapies for 
C-GBM patients. Furthermore, we performed chemical 
drug screening to examine drug sensitivity, which ena-
bled us to provide potential targeted therapy options 
for C-GBM patients.

http://fantom.gsc.riken.jp/5
http://fantom.gsc.riken.jp/5
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Public Microarray Data Processing

For public microarray data, raw CEL files were downloaded 
from the Gene Expression Omnibus under accession num-
bers GSE36245 (Strum et  al), GES5675 (Sharma et  al), 
GSE34824 (Schwartzentruber et  al), GSE44971 (Lambert 
et  al), and GSE50161 (Griesinger et  al), and normalized 
together using the RMA function (Affy package) to reduce 
batch effects.10–14 For data of Roth et  al and Gravendeel 
et al, we downloaded the processed expression data from 
accession numbers GSE3526 and GSE16011, respect-
ively.15,16 For the Repository of Molecular Brain Neoplasia 
Data (REMBRANDT) dataset, CEL files and a corresponding 
clinical information file were available from REMBRANDT 
data portal in 2011 and now available from ArrayExpress 
under accession number E-MTAB-207.17

DNA Methylation Subtyping Classification

The Illumina MethylationEPIC BeadChip kit was used to 
estimate the DNA methylation levels of C-GBM samples. 
The resulting IDAT files were used to determine their 
methylation classes, and MolecularNeuropathology.
org (https://www.molecularneuropathology.org/mnp; 
Accessed August 7, 2018) provided the brain tumor methy-
lation classification tool (Classifier: 11b2).

Clinical Statistics

Clinical characteristics of supratentorial and cerebellar 
GBMs were compared statistically using Fisher’s exact test. 
The log-rank test was used to compare overall survival, 
estimated using Kaplan–Meier curves, between the groups.

Results

Clinical Analysis for 853 Glioblastoma Patients

We determined tumor locations from MR images and ana-
lyzed the clinical information of 853 primary GBM patients 
older than 18  years of age diagnosed between 1996 and 
2016. To remove any bias for the clinical analysis, secondary 
GBM cases were excluded. Among this cohort, 94.5% were 
located in the supratentorial region and 39 cases (4.6%) 
were found in the cerebellum—a greater incidence rate 
than in previous studies (Fig. 1A).3 There were no significant 
differences in demographic features or treatment regimens 
between C-GBM and S-GBM (Table 1). Although the median 
survival was longer in the C-GBM than in S-GBM patients, it 
was not statistically significant regardless of usage of temo-
zolomide (Fig. 1B). Evaluation of histological features (eg, 
necrosis) in all C-GBMs were typical of S-GBMs (Fig. 1C).

Distinct Genomic Profiles of Cerebellar 
Glioblastoma

To reveal the genomic characteristics of C-GBMs, we 
performed whole-exome sequencing (WES), targeted-
DNA sequencing (GliomaSCAN), and mRNA sequencing 

(RNA-seq) for 9, 10, and 6 samples, respectively—in total 
19 patients (Supplementary Table  3). The analyzed MR 
images of C-GBMs show tumors located within diverse 
areas of the cerebellar hemisphere without any consistent 
characteristics (Supplementary Figure 2A–C).

From WES data, we annotated the mutational status of 
9 C-GBMs; additionally, glioma-specific mutational sta-
tus of 10 C-GBMs was annotated from GliomaSCAN data 
(Fig.  2A; Supplementary Figures  3, 4A–C). Consistent 
with previous C-GBM studies, no EGFR-activating altera-
tions, including EGFR variant III, existed in our C-GBM 
cohort, whereas EGFR alterations are among the most 
frequent alterations in S-GBM (Fig. 2C).1,4,5,7 On the other 
hand, our data showed that mutually exclusive altera-
tions in alpha thalassemia/mental retardation syndrome 
X-linked (ATRX) or platelet derived growth factor recep-
tor A (PDGFRA) occur more frequently in C-GBMs than in 
S-GBMs (58%, 11/19 vs 20.1%, 30/139, Fisher’s exact test, 
P = 0.001; Fig. 2A). Especially, 4 of 19 (21.1%) samples car-
ried a mutation in the ATRX gene (2 stop codons, 1 mis-
sense, and another frameshift), while 3 were wild type for 
both isocitrate dehydrogenase (IDH1) and TP53, unlike 
adult supratentorial gliomas (Fig.  2A, Supplementary 
Table 4); in both our S-GBM and TCGA GBM cohorts, ATRX 
mutations occurred in only 10.8% and 5.8% of samples, 
and most (76.5%) were accompanied by IDH1 and TP53 
mutations (Fig. 2C).1 Significance of copy number altera-
tions C-GBMs was calculated by GISTIC and it revealed 
that the 4q12 region, covering PDGFRA, was most signifi-
cantly amplified in C-GBMs (q-value = 10−6; Supplementary 
Figure  4A).18 GISTIC also identified 12q14.1 and 12q15 
amplification in C-GBM tumors where CDK4 and MDM2 
are located. Gene expression profiling also represents 
genomic characteristics, as a gene set enrichment ana-
lysis (GSEA) found that the proneural glioblastoma sub-
type markers were enriched in C-GBMs versus S-GBMs, 
and 5 of 6 C-GBMs were classified as tumor-intrinsically 
proneural subtype, which is characterized by IDH1, ATRX, 
TP53 mutation, CDK4 amplification, or PDGFRA amplifica-
tion/mutation (Fig. 2A and B, Supplementary Table 3).1,19,20 
Also, mitogen-activated protein kinase (MAPK) pathway–
associated genes, RAS and NF1 alteration, were notable in 
C-GBM with 32% of incidence (Fig. 2A and C). Unlike pan-
creatic, colon, or lung cancer, RAS alterations are not com-
monly reported in GBMs.1,21 However, mutational analysis 
revealed that 3 of 19 (15.8%) C-GBMs possessed either 
RAS hotspot mutation (Q61H/K) or amplification (Fig. 2A 
and C).

Since histone H3 mutation is a hallmark mutation for 
pediatric glioma and diffuse intrinsic pontine glioma 
(DIPG), and H3 K27M mutation was also recurrently found 
in a recent DCG study, we evaluated the mutational state 
of histone H3 genes in our C-GBM tumors and detected 
no mutations within H3 genes (Fig.  2A; Supplementary 
Table 4).7,12,22 Furthermore, Sanger sequencing and immu-
nohistochemistry were also unable to detect H3F3A K27M 
(Fig. 2A; Supplementary Figure 5).

Telomerase reverse transcriptase (TERT) promoter muta-
tions with chromosome 7 gain and chromosome 10 loss 
(chr7 gain/chr10 loss) are frequent events in IDH1 wild-type 
S-GBMs.23 However, only 2 of 19 C-GBMs (10.5%) harbored 
TERT promoter mutations with chr7 gain/chr10 loss, and 

https://www.molecularneuropathology.org/mnp
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
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another 2 samples contained chr7 gain/chr10 loss without 
the TERT promoter mutations. Consequently, TERT expres-
sion was significantly infrequent in C-GBM compared with 
S-GBM (P = 0.007; Fig. 2A and C; Supplementary Figure 4D; 
Supplementary Table 5).

Drug Response in Cerebellar Glioblastomas

To investigate chemical drug sensitivity associated with 
genetic alterations in C-GBMs, we compared average drug 
responses in 3 C-GBMs with those in 20 S-GBMs for 45 
gene-targeted chemical drugs (Fig.  2D). As we expected 
based on the mutational profiles, C-GBMs were less sen-
sitive than S-GBMs in all EGFR-targeted drugs and showed 
higher sensitivity for mitogen-activated protein kinase kin-
ase (MEK) inhibitors, which are known to be effective for 
neurofibromatosis 1 (NF1) loss and Ras-activated tumors 

by regulating the MAPK pathway.24 We also evaluated 
the efficacy of various vascular endothelial growth factor 
receptor and Abl inhibitors, since these target PDGFR, and 
PDGFR-specific drugs are not yet available.25 Of these, tivo-
zanib and tandutinib reduced cell viability more in C-GBMs 
than in S-GBMs. The drug response data emphasized the 
importance of personalized therapy according to genomic 
alterations and the efficacy of MEK inhibitors for C-GBM 
patients.

Gene Fusion in Cerebellar Glioblastoma

Gene fusions have become dominant cancer driver muta-
tions, and many novel cancer-related gene fusions were 
recently discovered in part due to improved algorithms in 
NGS.26 Also in GBM, oncogene activation was achieved 
through gene fusion and resulted in tumorigenesis.27,28 
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Fig. 1  C-GBMs among 853 glioblastoma patients. (A) Location information of 853 glioblastoma patients. Among them, 39 GBMs (4.6%) were 
located in the cerebellum. (B) Kaplan–Meier survival plots between C-GBMs and S-GBMs for all patients (left) and temozolomide-treated 
patients (right). P-values were estimated by log-rank tests. (C) Histological features of C-GBM. Glioblastoma features were evident, such as 
tumor necrosis (red arrow), endovascular proliferation (blue arrow), hypercellularity (green arrow), and glomeruloid endovascular proliferation 
(yellow arrow). Scale bars, 300 μm (GBM004), 400 μm (GBM165), and 200 μm (S1413552).
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We discovered one in-frame gene fusion, OSBPL8-
KIF5A, in SNU001 in our C-GBM cases as well as con-
firmed the fusion by reverse transcription PCR (Fig.  2A, 
Supplementary Figure  6A and C). We then compared 
OSBPL8 and KIF5A expression levels among both S-GBMs 
and C-GBMs and found that both genes had upregulated 
expression levels in sample SNU001 (Supplementary 
Figure 6B). In particular, KIF5A was the most expressed in 
our fusion case among all GBM samples. As a member of 
the kinesin family, KIF5A has been reported as a putative 
driver gene in GBM and amplified in ~10% of GBM cases, 
which implies to us that KIF5A could be one of the potential 
therapeutic targets for this patient.29

Transcriptome and DNA Methylome Similarity of 
Cerebellar Glioblastomas

Pediatric brain tumors, such as medulloblastoma, epend-
ymoma, and pilocytic astrocytoma (PA), usually arise in 
the infratentorial region of the brain; however, adult brain 
tumors are more commonly located within the supratento-
rial region. To understand whether transcriptomic patterns 
were associated with location rather than disease type, 
we first performed hierarchical clustering to compare the 
expression pattern similarity of C-GBMs with public micro-
array datasets, including adult and pediatric GBMs, as well 
as other brain tumors.10–14 Although all sets were profiled 
with the same microarray platform (Affymetrix U133 Plus 
2.0 array), we normalized all public data together to reduce 
the possibility of batch effects due to different data sources, 
and our results showed that brain tumors appeared clus-
tered by their disease types under principal component 
analysis (Supplementary Figure 7A and B).

C-GBMs clustered near pediatric and adult GBMs, 
implying that transcriptomes of C-GBMs are more simi-
lar to S-GBMs than other brain tumors usually located 
in the infratentorial brain region (Fig.  3A). In addition to 

hierarchical clustering analysis, a topological data analysis 
revealed expression similarities, but more fine-grained 
relationships could be discerned between adult C-GBM 
and GBM clusters, including pediatric GBM and PA clus-
ters (Fig.  3B). In order to confirm there was no bias due 
to a different platform measuring gene expression again, 
we performed clustering using RNA-seq data of PA, epend-
ymoma, and medulloblastoma originated from cerebellum 
with microarray data of brain tumors. The hierarchical clus-
tering result showed that PA, ependymoma, and medul-
loblastoma were clustered according to their disease type 
but not platform, indicating there was no platform bias 
(Supplementary Figure 7C).

Besides RNA-seq, DNA methylation profiling for 4 
C-GBMs was performed, and then their DNA methylation 
patterns were compared with over 2800 other brain tumors 
on MolecularNeuropathology.org. All 3 PDGFRA-activated 
C-GBMs were classified as IDH1 wild-type GBM, sub-
class midline lacking H3 K27M mutation, while the IDH1-
mutant C-GBM was classified as IDH1 glioma, subclass 
astrocytoma (Fig. 3C). As observed in transcriptome ana-
lysis, we confirmed that C-GBMs share similar methylation 
patterns with those of other GBM tumors and found that 
there are infratentorial brain region–specific methylation 
patterns for C-GBM tumors.

Location-Specific and -Independent RNA 
Expression Patterns in Cerebellar Glioblastoma

From genomic, transcriptomic, and methylomic profiles, 
we confirmed that C-GBMs shared common GBM gen-
etic features, but also had unique mutational profiles and 
location-specific methylation patterns. Previous PA studies 
found differentially expressed and differentially methyl-
ated genes depending on their origin within the brain.11,13 
We assessed whether any location-specific expression pat-
terns arose in C-GBM from 6 C-GBM samples containing 

Table 1  Clinical differences between supratentorial and cerebellar glioblastomas

S-GBM C-GBM P-value

Cases, n 806 (94.49%) 39 (4.57%)

Age, y, at diagnosis, 
median (range)

55.32 (19–89) 56.90 (24–89) 0.54

Sex, n 0.25

Male 439 (54.45%) 25 (64.10%)

Female 367 (45.53%) 14 (35.90%)

Treatment, n 0.86

CCRT 503 (62.41%) 21 (53.85%)

TMZ alone 71 (8.81%) 8 (20.21%)

Other 232 (28.78%) 10 (25.63%)

Overall survival (95% CI), days

All 480 (445–521) 641 (344–1433) 0.36

CCRT/TMZ-treated 569 (535–621) 728 (535–1666) 0.39

Eight cases of brainstem glioblastomas were excluded; CCRT = concurrent chemoradiation therapy; TMZ = temozolomide.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy123#supplementary-data
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IDH1, ATRX, or PDGFRA alterations. Since C-GBM tumors 
were transcriptomically similar to proneural GBMs, we 
compared gene expression levels between these 6 sam-
ples and 40 proneural S-GBMs. FOXG1, known as a ven-
tral telencephalon marker and a GBM-promoting factor, 
was identified as the most differentially expressed gene 
in S-GBMs (Fig. 4A and D; Supplementary Table 6). FOXG1 
expression is abundant in GBM, except H3 K27M GBM 
tumors, which are located mostly in the brain midline.10 
Using publicly available normal brain expression profiles, 
we confirmed that FOXG1 was expressed only in the cere-
brum (Supplementary Figure  8B). Next, to define both a 
signature of C-GBM (C-GBM signature) and a signature 
of S-GBM (S-GBM signature), we selected for genes hav-
ing expression level 2-fold greater in one than in the other 
(Student’s t-test < 0.05 and false discovery rate [FDR] <5%). 
Gene Ontology of these 2 signatures from DAVID 
(Database for Annotation, Visualization and Integrated 
Discovery) found that the S-GBM signature was related to 
forebrain development and single-sample GSEA score lev-
els of S-GBM were significantly higher than in the normal 
brain dataset (Fig.  4B and C; Supplementary Figure  8A). 
The C-GBM signature was associated with cell commu-
nication, differentiation, apoptosis, and developmental 

processes. Although this signature does not appear to be 
restricted to the cerebellum, it was enriched in the normal 
cerebellum and can distinguish normal cerebellum expres-
sion patterns from other normal brain regions (Fig. 4B).16 
A subset of the signature included PAX3, which appeared 
in an infratentorial-specific manner in a previous PA study 
as well (Fig. 4E).11 We also confirmed that the C-GBM and 
S-GBM signatures, which generated from C-GBM versus 
proneural S-GBM comparison, were downregulated and 
upregulated, respectively, even in other subtypes of GBMs 
(Supplementary Figure 8D).

In addition to location-dependent genes, location-
independent genes, such as CSPG4 (also known as NG2), 
appeared to be upregulated in C-GBM versus proneural 
S-GBM, while the expression level of CSPG4 in normal 
cerebellum was comparable to that of normal cerebrum 
(Fig. 4F; Supplementary Figure 8C). CSPG4 is known to be 
expressed in oligodendrocyte progenitor cells (OPCs) and 
important for GBM proliferation.30,31 Glioblastomas could 
arise from lineage-restricted progenitors, and their sub-
types are determined by the cell of origin.32 Enrichment of 
the proneural gene set in C-GBM tumors and overexpres-
sion of the OPC marker may suggest that C-GBMs origi-
nated from OPCs, consistent with a previous report.7
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Master Regulator Analysis of Cerebellar 
Glioblastoma

To obtain a better understanding of the pathways involved 
in the regulation of C-GBM signature genes, we con-
structed a transcriptional network (TN) based on C-GBM 
and proneural S-GBM samples using the ARACNe algo-
rithm.33 In this network, each transcription factor (TF) is 
assigned a list of candidate target genes, referred to as its 
regulon. The final TN was composed of 81 635 transcrip-
tional interactions between 1634 TFs and 20 428 potential 
target genes. Next, we applied the master regulator ana-
lysis (MRA) algorithm to this network. In MRA, the statis-
tical significance of overlap between the regulon of each TF 
and the C-GBM signature genes is assessed using GSEA. 
At FDR < 5%, MRA inferred 23 C-GBM–specific TFs as mas-
ter regulators (Fig. 5A).

Among these 23 master regulators, nuclear receptor 
subfamily 4 group A  member 1 (NR4A1) could be both 
tumor suppressive and pro-oncogenic depending on 
tumor types and context.34 Inhibition of nuclear NR4A1 
and nuclear export of NR4A1 suppressed tumor cell pro-
liferation and promoted apoptosis.34 Expression level of 
NR4A1 regulons was increased in GBMs compared with 
normal brain control as well as increased in C-GBM com-
pared with all S-GBM. These results indicated that nuclear 
NR4A1-mediated transactivation played an oncogenic role 

in GBM, and nuclear export might be needed to encourage 
tumor cell apoptosis (Fig. 5B).

Discussion

Unlike pediatric brain tumors, adult brain tumors are 
located mostly in supratentorial regions, and this appears 
to be associated with the lack of oncogenic molecules such 
as substance P in the adult infratentorial brain region.35 To 
date, about 1% of GBMs have been reported to be located 
in the cerebellum.3,35 In this study, 853 adult GBM locations 
were analyzed, and as expected, most of them originated 
from the supratentorial brain, with the exception of 39 
cerebellar and 8 brainstem GBMs. Analysis of our cohort 
shows C-GBMs were not demographically and pathologic-
ally different from S-GBMs.

Owing to limited numbers of C-GBM cases, genomic 
characterization is lacking compared with the many studies 
published on S-GBMs.1,19 Recently, 17 DCGs were system-
atically characterized, and it was found that genes related 
with chromatin regulation and p53 functional disrup-
tion were frequently altered in DCGs.7 However, genetic 
diversity among GBM patients is one of the obstacles to 
improving survival benefits of GBM patients and therefore 
individualized treatment is required. Thus, we additionally 
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analyzed genomic profiles for 19 C-GBM samples via 
whole-exome sequencing and GliomaSCAN.

As previous cerebellar glioma studies indicated, EGFR 
alterations such as EGFR mutation, focal amplification, and 
structural variants were not detected in our C-GBM cohort, 
while EGFR is often hyperactivated in S-GBMs.1,4,7 EGFR 
activation is one of the characteristics of classical GBM, 
and consistently we could not find the classical subtype in 
our C-GBM tumors.19

Alterations in the PDGFRA gene were the most com-
mon events in our C-GBM cohort (36.8%) and in contrast to 
S-GBMs (10%) (P = 0.007). Also, CDK4 amplification tended 
to occur more in C-GBMs than in S-GBMs. Surprisingly, 
such mutations are more often found in proneural GBM, 
a disease whose cells resemble oligodendrocytes.19 In 
addition, CSPG4, one of the OPC markers, was differen-
tially expressed in C-GBM compared with S-GBM. A recent 
study revealed that CSPG4-Cre could generate mouse 
brain tumors with expression of OPC markers and that 
these frequently occur in the ventral region.32 These results 
imply that our C-GBM samples possibly originate from the 
lineage-restricted progenitor, OPC. Previously, upregulated 
SOX10 in DCG epigenetically resulted in enrichment of 
PDGFRA-related genes rather than PDGFRA amplification.7 
However, the high alteration frequency of PDGFRA ampli-
fication and mutation in our C-GBM samples indicates that 
PDGFRA activation already occurs at the genetic level and 
leads to oligodendroglial differentiation.

ATRX mutations were also frequent events (21.1%) in 
C-GBM tumors, while only 10% of S-GBMs possessed 
ATRX mutations. Interestingly, 3 of 4 (75%) ATRX mutant 
C-GBMs did not harbor IDH1 mutations, whereas only 
3% of GBMs acquired ATRX mutations without IDH1 
mutations.36 ATRX and TERT promoter mutations are 
mutually exclusive and both contribute to maintaining 
telomeres by alternative lengthening of telomeres (ALT) 
or telomerase overexpression.2 TERT promoter muta-
tions occurred in only 10.5% of C-GBMs (2/19), although 
they were detectable in ~80% of overall GBMs.23 In add-
ition to TERT promoter mutations, among 6 C-GBM sam-
ples with gene expression profiling, only 1 C-GBM sample 
(16.7%) showed a low level of TERT expression, while the 
rest of the samples did not express TERT. These high inci-
dences of ATRX mutation and low frequencies of TERT 
promoter mutation/expression indicate that C-GBMs tend 
to maintain telomeres by ALT, as observed in IDH1-mutant 
astrocytoma or pediatric GBMs, rather than telomerase 
activation.12,23 However, in spite of the high incidence of 
ATRX mutation (22.2%) in C-GBM tumors, 13/19 (68.4%) 
tumors harbored neither ATRX mutation nor TERT pro-
moter mutation. Through either telomerase activation or 
ALT, telomeres are longer in glioma than in normal tis-
sues or other cancer.37 It would be interesting to identify 
whether C-GBMs have shorter telomeres than expected or 
if telomeres are maintained via other mechanisms, such 
as TP53 and RB1 alterations.37

IDH1-wild type ATRX and PDGFRA alterations are also 
common in pediatric or young adult glioma patients.12,38 
H3 mutations are also usually detected in DIPG and pediat-
ric gliomas.10,22,39 Surprisingly, we, however, did not detect 
any H3 mutations within our WES data cohort, and none 

of an additional 15 C-GBM tumors showed H3F3A K27M 
mutation when validated by Sanger sequencing or immu-
nohistochemistry. These results imply that C-GBM is a dis-
tinct tumor type from pediatric and midline gliomas as well 
as S-GBM.

Moreover, we conducted chemical drug screenings on 
C-GBM primary cells and identified that they were more 
responsive to MEK inhibitors compared with S-GBM 
cells. Also, genomic alterations in MAPK pathway–asso-
ciated genes, such as RAS and NF1, were remarkable in 
C-GBMs. MAPK activation in tumorigenesis was usually 
found in PA and pediatric gliomas whose major lesion is 
cerebellum.40,41 Therefore, we assumed that brain loca-
tion–related MAPK activation could play a role in adult 
C-GBM, and targeting MAPK therapy is considerable for 
C-GBM patients.

In addition, location-specific gene expression and 
methylation patterns were revealed as observed in PA.11,13 
We identified 23 master regulators whose regulons are 
upregulated in C-GBM compared with S-GBM. Among the 
23 master regulators, NR4A1 was interesting, since it is a 
pro-apoptotic molecule in cytoplasm, but at the same time 
nuclear NR4A1-mediated transactivation is pro-onco-
genic.34 NR4A1 regulons were revealed as upregulated 
in GBMs compared with normal brain and especially in 
C-GBMs. These results demonstrate that NR4A1 is a pro-
oncogenic molecule as a transcription factor in GBM and 
can be a potential target for C-GBM tumor in particular.

Although we reconfirmed that C-GBM has an oligo-
dendrocyte lineage, the same as a previous study, our 
systematic genomic analysis of C-GBM revealed differ-
ent genomic characteristics from the previous report.7 
In particular, absence of histone 3 mutations in this 
study cohort was remarkable compared with the previ-
ous study, which included 3 H3F3A K27M-mutant sam-
ples (11%). A recent study reported that the median age 
of H3 K27M-mutant adult glioma patients was 32, much 
younger than H3/IDH wild-type gliomas.42 Consistently, 
2 of 3 DCG patients with H3F3A K27M mutation were 
younger than 30 years from the previous study.7 However, 
there were no subjects under 30 years among our IDH1 
wild-type C-GBM patients whose H3F3A K27M status had 
been identified, and lack of young adult patients in our 
C-GBM cohort might result in absence of H3F3A K27M 
mutation. Besides H3F3A, SETD2, and PPM1D genes 
were not detected, but instead ATRX, PDGFRA, NF1, and 
RAS alteration were notable in our C-GBM dataset. Lack 
of young adult C-GBM patients could not fully account for 
the genomic inconsistency between our C-GBM cohort 
and the previous study. The genomic distinction indicates 
that there is intertumoral heterogeneity of C-GBM gen-
ome, and more C-GBM samples need to be character-
ized to provide more confident therapeutic strategies for 
C-GBM patients.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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