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Importance of the Study
Glioma, like most other cancer histologies, occurs at 
greater frequency in males than in females, and this 
difference is not explained by currently known risk 
factors. A  previous sex-stratified analysis of these 
datasets identified three risk loci that varied in asso-
ciation between males and females. In this analysis, 
we attempted to leverage the summary statistics gen-
erated by this previous analysis for additional discov-
ery using gene- and pathway-based approaches. After 

conditioning on previously identified genetic risk loci, 
EGFR was significantly associated with all glioma and 
glioblastoma in males only and a female-specific asso-
ciation in TERT. There were also nominal associations 
with the Telomeres, Telomerase, Cellular Aging, and 
Immortality pathway (in BioCarta) in both males and 
females. These results provide additional evidence that 
there may be biologically relevant significant differ-
ences by sex in genetic risk for glioma.

Glioma is the most common type of primary malignant 
brain tumor in the United States, with an average annual 
age-adjusted incidence rate of 6.0 per 100 000 population.1 
Glioma can be broadly classified into glioblastoma (GBM, 
61.9% of gliomas in adults 18+ in the US) and lower-grade 
glioma (non-GBM glioma, 24.2% of adult gliomas). These 
tumors occur more commonly in people of European ances-
try, in males, and in older adults. Most glioma histologies 
occur with a 30–50% higher incidence in males, and this 
male preponderance of glial tumors increases with age 
(Supplementary Figure 1).1

Many environmental exposures have been investi-
gated as sources of glioma risk, but the only validated 
risk factors for these tumors are ionizing radiation (which 

increases risk) and history of allergies or other atopic 
disease (which decreases risk).2,3 A  minority of glioma 
risk is thought to arise from heritable genetic risk fac-
tors, and the contribution of common low-penetrance 
single nucleotide polymorphisms (SNPs) to the heritabil-
ity of glioma is estimated to be ~25%.4 A recent glioma 
genome-wide association study (GWAS) meta-analysis 
validated 12 previously reported risk loci and identified 
13 new risk loci, and these 25 loci in total are estimated 
to account for ~30% of heritable glioma risk.5 This sug-
gests that there are both undiscovered environmental 
risk factors (which account for ~75% of disease incidence 
variance) and genetic risk factors (accounting for ~70% 
of heritable risk).4,5

 
Abstract
Background. To date, genome-wide association studies (GWAS) have identified 25 risk variants for glioma, 
explaining 30% of heritable risk. Most histologies occur with significantly higher incidence in males, and this 
difference is not explained by currently known risk factors. A previous GWAS identified sex-specific glioma 
risk variants, and this analysis aims to further elucidate risk variation by sex using gene- and pathway-based 
approaches.
Methods. Results from the Glioma International Case-Control Study were used as a testing set, and results 
from 3 GWAS were combined via meta-analysis and used as a validation set. Using summary statistics 
for nominally significant autosomal SNPs (P < 0.01 in a previous meta-analysis) and nominally significant 
X-chromosome SNPs (P < 0.01), 3 algorithms (Pascal, BimBam, and GATES) were used to generate gene 
scores, and Pascal was used to generate pathway scores. Results were considered statistically significant in 
the discovery set when P < 3.3 × 10−6 and in the validation set when P < 0.001 in 2 of 3 algorithms.
Results. Twenty-five genes within 5 regions and 19 genes within 6 regions reached statistical significance in 
at least 2 of 3 algorithms in males and females, respectively. EGFR was significantly associated with all gli-
oma and glioblastoma in males only and a female-specific association in TERT, all of which remained nomi-
nally significant after conditioning on known risk loci. There were nominal associations with the BioCarta 
telomeres pathway in both males and females.
Conclusions. These results provide additional evidence that there may be differences by sex in genetic risk 
for glioma. Additional analyses may further elucidate the biological processes through which this risk is 
conferred.

Key Points

1. EGFR was significantly associated with all glioma and glioblastoma in males only.

2. TERT was significantly associated with all glioma in females only.

3. The telomere pathway was a risk factor for glioma that varied by sex.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
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Each individual GWAS results in regression estimates for 
hundreds of thousands of SNPs, only several hundred of 
which may meet the criteria for statistical significance to 
be prioritized for further investigation. While this process is 
appropriate for identifying individual loci that contribute to 
the development of disease, there is likely additional infor-
mation about disease risk within these results that do not 
meet the stringent statistical significance thresholds used 
in GWAS (usually P < 5 × 10−8). Gliomas are known to be 
biologically complex, and as a result additional single-SNP 
analyses may not be appropriate to discover additional 
sources of genetic risk for these tumors. Multi-SNP meth-
ods—such as gene- or pathway-based approaches—can 
allow for additional discovery in a manner that comple-
ments single-SNP approaches, while substantially reduc-
ing the multiple testing burden associated with GWAS.6

While it is not likely that autosomal genomic sequence 
varies significantly by sex in the population, previous 
research has suggested that sex-related genetic variation 
may occur at the transcriptional and regulatory level.7–9 One 
of the primary ways that SNPs are thought to affect phe-
notype is through variation in gene regulation and expres-
sion.10 Sex-specific variation in regulatory processes may 
also affect the relationship between SNPs and phenotype; 
as a result it may be possible that allele frequencies in risk 
SNPs vary between affected males and females. A  recent 
sex-stratified GWAS identified 3 glioma risk loci that differ 
in effect by sex.11 These 3 SNPs explain 1.4% of phenotypic 
variance in a pooled glioma sample (1.3% in males and 2.2% 
in females), and 0.6% of variance in GBM (0.9% in males and 
0.7% in females). Other analyses have also identified sex-
specific sources of risk for glioma, including an association 
study focused on the cAMP (cyclic adenosine monophos-
phate) pathway that identified SNPs in adenylate cyclase 8 
as a sex-specific modifier of risk for low-grade astrocytoma 
in neurofibromatosis type 1.12 Genetic risk for complex traits 
is increasingly understood to be polygenic, and variations in 
risk may be the result of variation at hundreds of locations 
across the genome. Each individual SNP may only provide 
a very small contribution to genetic risk for a trait, and the 
mechanistic relationship between these individual, low-
effect SNPs and phenotype is hard to estimate. Additional 
analyses using gene- and pathway-based approaches may 
further elucidate sex differences in genetic risk for glioma.

There is no consensus on the best method for generat-
ing gene- and pathway-based test statistics from GWAS 
summary statistics, and many different approaches have 
been developed. These pathway approaches have been 
utilized in other cancers with some success, but have not 
been widely used in glioma. The primary aim of this anal-
ysis was to contrast multiple gene-based approaches for 
leveraging currently existing sex-specific glioma summary 
statistics, as well as to assess whether these approaches 
may identify additional sources of genetic risk for glioma 
that may vary by sex.

Methods

Summary statistics generated as part of a prior sex-spe-
cific GWAS11 were used to estimate sex-specific gene and 

pathway scores. Data from 4 studies were divided into a 
testing set and a validation set. Results from the Glioma 
International Case-Control Study (GICC)13,14 were used 
as a testing set (Fig. 1A), and results from 3 prior glioma 
GWAS (San Francisco Adult Glioma Study GWAS,15 MD 
Anderson Glioma GWAS,16 and National Cancer Institute’s 
GliomaScan17) were combined via inverse-variance 
weighted fixed effects meta-analysis in META18 and used 
as a validation set for any statistically significant genes and 
pathways (Fig. 1A). See Supplementary Table 1 for an over-
view of characteristics for individuals included in these 
datasets, and Fig. 1 for an overview of the study schematic. 
Details of case ascertainment, genotyping, quality control, 
imputation, and primary analysis of these datasets are 
available in Melin et al (GICC), Wrensch et al (San Francisco 
Adult Glioma Study GWAS), Shete et  al (MD Anderson 
Glioma GWAS), and Rajaraman et al (GliomaScan).13–17

Sex-specific summary statistics studies for autosomal 
markers were previously generated11 using sex-stratified 
logistic regression models in SNPTEST19 to estimate sex-
specific betas (βM and βF), standard errors (SEM and SEF), 
and P-values (pM and pF) (Fig.  1A). Summary statistics 
for the 3 studies used as a validation set were combined 
using META.18 Only SNPs with minor allele frequency 
(MAF)  ≥  0.01, imputation INFO score  ≥  0.7 and P  <  0.01 
in a previous 8-study pooled-sex meta-analysis,14 which 
included the 4 datasets used in this analysis, were used to 
generate gene and pathway scores. X-chromosome data 
were available from the GICC set only, and analyzed using 
the logistic regression model in the SNPTEST module 
“newml” assuming complete inactivation of one allele in 
females, and males are treated as homozygous females. 
X-chromosome SNPs with MAF  ≥  0.01, imputation INFO 
score ≥ 0.7, and single SNP association P < 0.01 were used 
for generation of gene scores. Linkage disequilibrium (LD) 
information was based on structure within the European 
cases from the 1000 Genomes project phase III dataset.20 
All analyses were performed separately for males and 
females to identify genes and pathways with germline var-
iation between cases and controls. Genes were prioritized 
that were identified by at least 2 of the 3 selected algo-
rithms (Fig. 1B). Analyses were conducted for glioma over-
all and for glioblastoma only by sex within each dataset.

Three algorithms (Pascal,21 BimBam,22 and GATES23) 
were used to generate gene scores. Gene-based effects 
were assessed using SNPs within 50 kb of each gene (using 
5ʹ and 3ʹ untranslated regions) as defined using the UCSC 
hg19 assembly. Pascal21 calculates gene scores using the 
VEGAS24 scoring algorithm and generates a gene-based 
test statistic using sum-of-chi-squares (SOCS) correcting 
for LD structure (based on a reference set). Genes that are 
in LD are considered to be “fusion genes” and have only 
one gene score calculated. BimBam22 (as implemented in 
the Functional Magnetic Resonance Imaging of the Brain 
Automated Segmentation Tool [FAST] using summary sta-
tistics25) is a Bayesian regression approach. This method 
calculates an average Bayes factor for all K possible models 
within a gene, where K is the number of SNPs. The model 
then uses a Laplace method to estimate posterior distribu-
tions of the model’s parameters, and distribution models 
are obtained using the Fletcher–Reeves conjugate gradi-
ent algorithm. GATES23 (as implemented in FAST25) uses 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
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a modified Simes test that combines SNP-based P-values, 
using the P-value correlation matrix to estimate the num-
ber of independent SNPs within the gene. The resulting 
gene-based P-values approximate a uniform distribution. 
For all methods implemented within FAST, SNPs were 
excluded if they were in complete LD (r2 = 1) with another 
SNP in the gene, which limited the amount of SNPs evalu-
ated within each gene.

Pathway scores were generated using Pascal,21 using 
gene and fusion-gene scores generated by the Pascal algo-
rithm (Figure 1C). The pathway score was then calculated 
using both independent and fusion genes. A  parameter-
free enrichment strategy was used to calculate pathway 
scores using either a chi-squared method (gene score 
P-values were ranked and transformed to a uniform distri-
bution; these values were then transformed by a chi-square 
quantile function and summed) or an empirical sampling 
method (gene scores are transformed with chi-square 
quantile function and summed, then Monte Carlo estimate 
of the P-values were obtained by sampling random sets of 
the same size). Results from each gene and pathway algo-
rithm were compared within each sex as well as between 
sexes. Pathway information was obtained from KEGG,26 
Reactome,27 and BioCarta28 (as defined in MSigDB29,30).

For genes within regions that contain SNPs previously 
identified as significant by GWAS, conditional analy-
ses were run for all SNPs within those regions using 
SNPTEST, and adjusted gene scores were calculated. All 

figures were generated using R v3.3.2, ggplot2, graphite, 
network, Intergraph, ggnetwork, igraph, gridExtra, and 
LocusZoom.31–37

Results

Included in gene-based analyses were 159 706 SNPs 
from the testing set and 163 115 SNPs from the validation 
set. Gene scores were generated for ~16 000 genes and 
were considered significant at P < 3.3 × 10−6 (based on a 
Bonferroni correction for 15 000 tests). P-values in the vali-
dation set were considered significant at P < 0.001 (based 
on a Bonferroni correction for 50 tests, for 25 total genes 
tested in each sex).

Among males, 25 genes within 5 regions had scores that 
reached the set significance threshold (P < 3.3 × 10−6) in at 
least 2 of 3 evaluated algorithms in all glioma or glioblast-
oma (see Fig. 2 and Supplementary Table 2 for the strong-
est associations within each of the 6 regions where genes 
met the set significance threshold). Among females, 19 
genes within 6 regions had scores that reached the set sig-
nificance threshold (P < 3.3 × 10−6) in at least 2 of 3 evalu-
ated algorithms in all glioma or glioblastoma (see Fig. 2 
and Supplementary Table 3 for the strongest associations 
within each of the 6 regions where genes met the set sig-
nificance threshold). Solute carrier family 6, member 18 

TESTING VALIDATION

Glioma International Case-Control
Study GWAS

Males: 2,733 cases,1,868 controls
Females: 1,831 cases, 1,397 controls

San Francisco Adult Glioma Study
GWAS; MD Anderson GWAS; NCI

Gliomascan GWAS
Males: 2,098 cases, 3,308 controls
Females: 1,375 cases, 4,013 controls

Summary statistics filtered for SNPs with MAF ≥0.01; Imputation INFO score ≥0.7;
Nominally significant (p<0.001) in Melin, et al.

A

B C

Gene-scores calculated by sex and
histology with single SNP summary
using three algorithms 1) Pascal,
2) BimBam, and 3) Gates for both

testing and validation sets

Pathway-scores calculated by sex
and histology with single SNP

summary using Pascal, for both
testing and validation sets

Genes prioritized in testing set at
p<3.3x10–6 in 2/3 algorithms

Genes validated in validation set at
p<0.0001 in 2/3 algorithms

Pathways prioritized in testing set
at p<5x10–5

Pathways validated in validation
set at p<0.001

Fig. 1 Study schematic for (A) generation of discovery and validation summary statistic sets, (B) generation, prioritization, and validation of 
gene scores, (C) generation, prioritization, and validation of pathway scores.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
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(SLC6A18), telomerase reverse transcriptase (TERT), cyc-
lin-dependent kinase inhibitor 2B (CDKN2B), and stathmin 
3 (STMN3) reached the set significance threshold in both 
males and females in glioblastoma, while SLC6A18, TERT, 
and STMN3 reached the set significance threshold in both 
sexes in all glioma. All shared associations validated.

Epidermal growth factor receptor (EGFR), dynein axo-
nemal heavy chain 2 (DNAH2), and several genes sur-
rounding regulator of telomere elongation helicase 1 
(RTEL1) on chromosome 20 (with the strongest association 
in the RTEL1–tumor necrosis factor [TNF] receptor super-
family member 6b [RTEL1-TNFRSF6B]) reached the sig-
nificance threshold in males only (Fig. 2, Supplementary 
Table  2). In all glioma, CDKN2A reached the set signifi-
cance threshold in males only. All genes validated in 
males. Blepharophimosis, epicanthus inversus and pto-
sis, candidate 1 (non-protein coding) (BPESC1) reached 
the significance threshold in all glioma in females only 
(Fig.  2, Supplementary Table  3), but this association was 
not confirmed in the validation set. The association in 
EGFR was nominally significant in males after condition-
ing on 3 SNPs previously identified by GWAS within this 
gene (rs75061358, rs723527, and rs11979158), including 
one (rs11979158) that has previously been identified as 
having a sex-specific effect (Supplementary Tables  4–5). 
When conditional single-SNP associations were exam-
ined by sex and histology in EGFR, there was a nominally 

significant peak apparent in both males and females, 
with no single SNP that approached genome-wide sig-
nificance (Supplementary Fig. 3). The association at TERT 
was nominally significant for females in glioblastoma 
only after conditioning on the previous identified SNP 
(Fig. 3, Supplementary Table 5). When conditional single-
SNP associations were examined by sex and histology in 
TERT, a single SNP of nominal significance (rs7705526) 
was identified upstream of the previously identified SNP 
(rs10069690; Supplementary Fig.  3). This region was 
apparent in males and females. Associations in STMN3 
and RTEL1-TNFRSF6B remained nominally significant 
after conditioning in both males and females (Fig.  3, 
Supplementary Tables  4–5). When conditional single-
SNP associations were examined by sex and histology in 
RTEL1-TNFRSF6B, nominally significant SNPs were identi-
fied across the gene in both males and females, with no 
apparent additional signal (Supplementary Fig.  4). There 
was no substantial difference in effect size by sex in the 
most significant SNP in either gene (Supplementary Fig. 5).

There were 202 886 X-chromosome SNPs with 
MAF ≥ 0.01 and INFO score ≥ 0.7 in the GICC dataset. Gene 
scores were calculated for 56 X-chromosome genes with 
at least 5 SNPs, and associations were considered sig-
nificant at P < 8.3 × 10−4 (based on a Bonferroni correction 
for 60 tests). There were 12 genes within 4 chromosomal 
regions that reached the significance threshold in at least 
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Fig.  2 Gene scores for prioritized genes by algorithm, histology, and sex for (A) BPESC1 (3q23), (B) TERT (5p15.33), (C) EGFR (7p11.2), (D) 
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2 of 3 algorithms (results from the strongest association 
in each region are shown in Table 1). Shroom family mem-
ber 2 (SHROOM2) (Xp22.2) and armadillo repeat contain-
ing, X-linked 2 (ARMCX2) (Xq22.1) were significantly 
associated with both all glioma and glioblastoma, while 
dystrophin (DMD) (Xq21.2-p21.1) was significantly associ-
ated with all glioma only, and zinc finger protein 185 with 
LIM domain (ZNF185) was significantly associated with 
glioblastoma only.

There were 1077 pathways in the combined KEGG, 
BioCarta, and Reactome sets, and associations were con-
sidered statistically significant in the discovery set at 
P  <  5  ×  10−5 (based on a Bonferroni correction for 1000 
tests) and significant in the discovery set at P  <  0.00883 
(based on a Bonferroni correction for 6 tests). No pathways 
reached the set significance threshold, but there were sev-
eral nominally significant associations. The Telomeres, 
Telomerase, Cellular Aging, and Immortality pathway 
from the BioCarta dataset reached nominal significance 
in both males and females in all glioma and glioblastoma 
(Table 2). When the gene scores for the genes contained 
within this pathway were examined, the association with 
this pathway was driven primarily by strong associations 
in TERT and TP53 (Fig. 4). There were nominally significant 
associations in POLR2A (in both males and females) and 
PRKCA (in males only), both genes that have not been sig-
nificantly associated with glioma to date. Further interro-
gation of the single-SNP results for these genes found no 

associations significant at the P < 5 × 10−4 level in either sex 
or histology group.

Nominally significant associations were identified in 
5 cancer-specific KEGG pathways: bladder cancer, gli-
oma (Supplementary Fig.  6), melanoma (Supplementary 
Fig. 7), non–small cell lung cancer, and pancreatic cancer 
(Table 2). There is significant overlap between these gene 
sets (Supplementary Fig.  8), and when the gene scores 
used to build each pathway were examined, all the associa-
tions appear to be driven largely by strong associations in 
EGFR and CDKN2A, which are members of all KEGG cancer 
pathways found to be nominally associated with glioma in 
this analysis. Pathway analyses were run using single-SNP 
results, including conditional analyses for all SNPs within a 
2 mega base window around the previously identified SNPs 
near TERT, EGFR, CDKN2B, TP53, and RTEL1. No pathway 
association reached the significance threshold when analy-
sis included conditioned results (Table 2).

Discussion

This represents the first genome-wide sex-specific gene- 
or pathway-based analysis for germline risk variants in 
glioma. Gene-based tests are an efficient way to increase 
power to detect associations of low effect size, where mul-
tiple variants within a region may contribute to increased 
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Fig. 3 Conditional gene scores for prioritized genes by algorithm, histology, and sex for (A) TERT (5p15.33), (B) EGFR (7p11.2), (C) CDKN2B 
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risk. Multimarker tests, such as gene- or pathway-based 
tests, allow investigators to leverage previously exist-
ing GWAS summary statistics for discovery as well as to 
increase power when strength of association for single-
SNP associations may be low. Incidence of glioma is sig-
nificantly higher in males compared with females, and 
currently identified environmental risk factors do not 
explain this variation in incidence.1 A previous sex-specific 
GWAS analysis identified 3 loci with sex-specific effects, 
including a previously identified SNP in 7p11.2 (rs11979158, 
proximate to EGFR).11 As a primary goal, this analysis 
aimed to compare existing gene- and pathway-based 
methods in the context of heritable genetic risk for glioma, 
and additionally to explore additional potential sources of 
genetic risk that may contribute to sex differences in gen-
etic risk for glioma. All autosomal genes identified by this 
analysis were proximate to previously identified GWAS 
hits. After conditioning on previously identified SNPs, 
associations at TERT, EGFR, and RTEL1 remained nom-
inally significant. The results of this conditional analysis 
suggest that there are remaining sources of genetic risk 
for glioma within these regions, including one apparent 
region in TERT (Supplementary Fig. 3), with a single-SNP 
association that approaches genome-wide significance in 
both sexes (Supplementary Fig.  5). There were no differ-
ences by sex in effect size and direction, which suggests 
that while there may be remaining genetic risk associa-
tions to be detected within these genes, they do not have 
sex specificity.

Four regions on the X chromosome (Xp22.2, 
Xp21.2-p21.1, Xq22.1, and Xq28) contained genes that 
reached the significance threshold in at least 2 of 3 algo-
rithms (Table  1). These genes have not been previously 
associated with glioma. SNPs near SHROOM2 (Xp22.2) 
were previously associated with prostate and colon can-
cer.38–40 There are no known associations with inherited 
variants in the other 3 regions and increased risk for can-
cer, though all contain genes that have been shown to be 
dysregulated in some cancer cells (eg, DMD, ARMCX2, 
ZNF185).41–45 Without a validation set, it is not possible to 

know if these are true associations or the result of type 1 
error. Further exploration of these genes is necessary to 
determine their true relationship with glioma risk.

The BioCarta Telomeres, Telomerase, Cellular Aging, and 
Immortality pathway reached nominal significance in both 
males and females in all glioma and glioblastoma (Table 2). 
This pathway contains EGFR, TERT, and TP53, all of which 
contain SNPs identified by glioma GWAS. Inherited vari-
ants affecting telomere length have been associated with 
many complex diseases, including glioma.46–48 Both age 
and sex are known to affect telomere length, and previous 
research has suggested that males have shorter telomeres 
and higher rates of telomere attrition with aging.49,50 An 
analysis comparing a weighted genetic score based on 8 
SNPs associated with leukocyte telomere length found that 
telomere length was ~5% longer in glioma cases versus 
controls.51 The significance of the telomere maintenance 
pathway may explain the remaining significant association 
in the regions surrounding TERT, EGFR, and RTEL1, as any 
variants affecting telomere length could contribute to gli-
oma risk. In addition to the strong associations in genes 
associated with SNPs previously identified by GWAS, there 
were nominally significant associations in POLR2A (in both 
males and females) and PRKCA (in males only).

The numerous KEGG cancer pathways found to be signifi-
cant in this analysis are likely due to the strength of associ-
ation in genes (CDKN2A and EGFR) that are members of all 
identified cancer-specific KEGG pathways. While these asso-
ciations are driven by strong associations in these specific 
genes, they may also be evidence of shared sources of gen-
etic risk between these cancers and glioma. Both the glioma 
and melanoma pathways, driven by strong associations in 
CDKN2A, were significantly associated with all glioma in 
males (Supplementary Figs.  6–7). Previous analyses sug-
gested an association between genetic risk for glioma and 
melanoma, in terms of known cancer syndromes (most not-
ably melanoma-neural system tumor syndrome, caused by 
inherited variants in CDKN2A3), familial glioma, and spor-
adic disease.52–54 Persons with a previous diagnosis of mel-
anoma are estimated to have incidence of glioma that is 1.42 

Table 1 Gene scores for prioritized X chromosome genes by histology

Gene (location) Histology Pascal BimBam GATES Algorithms 
P < 8.3 × 10−4

SNPsa P-value SNPsa Testsb P-value SNPsa Testsb P-value

SHROOM2 (Xp22.2) All glioma 7 1.20 × 10−4 6 5.09 7.68 × 10−4 6 5.09 0.0020 2/3

Glioblastoma 9 1.45 × 10−5 8 7.06 5.02 × 10−4 8 7.06 0.0012 2/3

DMD (Xp21.2-p21.1) All glioma 88 3.22 × 10−5 79 59.92 3.13 × 10−4 79 59.92 0.0026 2/3

Glioblastoma 39 6.53 × 10−6 37 31.23 0.0047 37 31.23 0.0097 1/3

ARMCX2 (Xq22.1) All glioma 49 1.07 × 10−4 44 33.78 1.89 × 10−4 44 33.78 4.79 × 10−4 3/3

Glioblastoma 63 5.82 × 10−5 58 45.41 2.13 × 10−4 58 45.41 0.0011 2/3

ZNF185 (Xq28) All glioma 40 0.0018 33 24.26 0.0026 33 24.26 0.0061 0/3

Glioblastoma 49 6.19 × 10−5 42 33.52 3.04 × 10−4 42 33.52 9.22 × 10−4 2/3

Abbreviations: SHROOM2: shroom family member 2; DMD: dystrophin; ARMCX6: armadillo repeat containing, X-linked 6; ARMCX2:  
armadillo repeat containing, X-linked 2; ZNF185: zinc finger protein 185 with LIM domain.
aNominally significant (P < 0.01) SNPs used in calculating gene score.
bNumber of independent SNPs after filtered for linkage disequilibrium.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy135#supplementary-data
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times that of the general population, while relatives of gli-
oma patients are diagnosed with melanoma approximately 
2–4 times as frequently as the general population.52–54 
Melanoma GWAS to date have identified 21 genetic risk 
loci,55,56 including SNPs near CDKN2A and TERT, genes 
that have also been associated with glioma.6 The identified 
SNPs in these genes do not account for a large proportion 
of risk in either melanoma or glioma, but there is evidence 
that innate telomere length and variation in telomere main-
tenance pathways may contribute to risk in both diseases.57 
When pathway analyses were re-run using single-SNP 
results conditioned on known GWAS hits, pathway associa-
tions no longer reached the significance threshold. Gene-
specific P-values for TERT, EGFR, and RTEL1 were lowest 
for conditional analyses performed in Pascal, the algorithm 
used to calculate pathway scores compared with the other 
2 algorithms. The SOCS approach used by Pascal may be 
more conservative than others if there are many genes with 
null association and few genes with significant associations. 
Other pathway scoring algorithms that are more sensitive to 
a smaller set of strong associations may be more sensitive 
in identifying pathway associations.

All genetic association tests require consideration of 
the implicit assumptions about the genetic architecture of 
the disease and population of interest. GWAS approaches 
have attempted to identify single variants that have a 
causal relationship with a phenotype, which requires that 
this variant occur repeatedly within the study population. 
Gene- and pathway-based tests assume that the aggre-
gate effect of variants within a gene or pathway affect dis-
ease risk, but do not require that all individuals possess 
the same variant. These approaches are most appropriate 
for complex diseases where risk for disease is polygenic. 
In contrast to the logistic regression methods utilized by 
GWAS, the 3 analytic approaches used here do not gen-
erate measures of the magnitude of association. These 
methods test for enrichment of associations at single SNPs 
within genes, without consideration of the magnitude or 
direction of association. Further analysis of the identified 
regions is necessary to  estimate the level of association 
with glioma.

While multimarker tests can increase power to detect 
associations compared with single-SNP tests, different 
methods may be better suited to particular types of genetic 
architecture. Methods vary in their performance based 
on whether a gene has one strong signal versus multiple 
signals of lower significance. One of the genes (EGFR) 
identified by this analysis is known to have at least 2 inde-
pendent GWAS signals,5 and as a result, its identification in 
some methods may be affected by this bias.

There is a well-known bias in GWAS toward large 
genes,58 which are often enriched for tag SNPs, and this 
bias may influence the results of this analysis. All of the 
algorithms used for this analysis can be affected by gene 
size. Large genes with many SNPs of minimal significance 
and few SNPs of large effect may “dilute” the gene score in 
methods based on summed scores, such as Pascal. All 3 of 
the algorithms used for this analysis “prune” SNPs based 
on linkage disequilibrium statistics in attempts to obtain a 
set of independent SNPs. For large genes that contain mul-
tiple haplotype blocks, results may still be biased toward 
large genes. This analysis used a relatively large window 
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surrounding the defined genes (±50  kb) which may fur-
ther bias analyses toward large genes. While estimates 
of average gene size range 10–15 kb, the average size for 
genes included in the annotation file for this analysis was 
43.32  kb. The 3 major genes identified by this analysis 
range in size, but all are larger than the estimated average: 
TERT (29.84  kb), EGFR (137.92  kb), and RTEL-TNFRSF6B 
(39.8 kb). Genes that did not remain significant after condi-
tioning tended to be smaller: BPESC1 (20.98 kb), SLC6A18 
(20.84 kb), CDKN2B (6.4 kb), DNAH2 (26.14 kb), and STMN3 
(13.06 kb). As a result, it is possible that these methods may 
be biased toward identifying smaller amounts of remain-
ing signal in larger genes compared with smaller genes. 
This analysis utilized a 50 kb window surrounding a gene, 
and it is likely that changing this window may change the 
identified associations. These methods will also fail to 

identify any associations in intergenic regions, particularly 
the region at 8q24.21 that has previously been identified as 
having a sex-specific association.11

Patterns of linkage disequilibrium within the study 
population may also significantly affect the performance 
of a method. Results for methods that use LD informa-
tion, including all algorithms evaluated in this analysis, 
may also be significantly altered by the reference popula-
tions to estimate LD. All of the included methods attempt 
to adjust for potential score inflation due to LD, using 
the 1000 EUR super population as a reference set. FAST 
does this by pruning SNPs that are in complete linkage 
(r2 = 1), while Pascal does this by generating “fusion” gene 
scores for genes that are in linkage with each other. These 
“fusion” genes are used along with single-gene scores to 
generate pathway scores to decrease inflation of P-values 
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Fig. 4 Gene scores for genes in the BioCarta telomere pathway for all glioma in (A) males and (B) females, and for glioblastoma in (C) males 
and (D) females.
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due to the physical proximity of genes.21 Due to variations 
in adjustment for LD used in the 2 programs, the number 
of included SNPs by each gene varied slightly. Both meth-
ods require that the identifier for each variant in the sum-
mary statistics be present in the LD reference file, and as a 
result these methods are not able to incorporate variants 
that do not have a standard reference SNP cluster ID. FAST 
additionally limits the dataset by requiring that all markers 
be biallelic SNPs, and does not accept indels.

Different multimarker approaches may also perform 
better than others based on the computational resources 
available for an analysis. Permutation-based tests are 
more computationally intensive compared with para-
metric tests, especially when gene scores are calculated 
genome-wide. Neither Pascal nor GATES relies on per-
mutations for estimating P-values, which significantly 
decreases analysis time. BimBam uses permutations 
to calculate exact P-values; as a result, these analyses 
require more time to complete. The number of permuta-
tions used to calculate determines the boundaries for 
an exact P-value (ranging from 1 to 1/n, where n is the 
number of permutations), which may result in increasing 
permutations for increased P-value specificity. For more 
stringent P-value cutoffs, such as when testing multiple 
phenotypes in multiple groups, the number of permuta-
tions required may substantially increase analysis time. 
While multimarker tests do substantially decrease the 
multiple testing burden compared with genome-wide sin-
gle SNP approaches, it is still important to consider mul-
tiple testing when conducting these tests. In cases such 
as this analysis, where multiple phenotypes are being 
tested within population strata, multiple testing correc-
tion strategies should be used. The P-value threshold used 
for this analysis is adjusted only for the number of genes/
pathways within the testing phase. Use of more stringent 
testing cutoffs may result in prioritization of fewer genes. 
Use of a more stringent threshold in the testing phase of 
P < 7.8 × 10−7 (based on a Bonferroni correction for 64 000 
tests, for 16 000 genes in 2 phenotypes and 2 sexes) would 
result in DNAH2 not reaching the set significance thresh-
old in males, and BPESC1 and STMN3 not reaching the 
significance threshold in females (Supplementary Tables 2 
and 3). A Bonferroni correction is known to be conserva-
tive, and use of these very stringent cutoffs may result 
in rejection of “real” associations. Use of 2-stage testing 
and a validation stage provides an additional safeguard 
against type 1 error.

In addition to the technical limitations of the 3 algorithms 
utilized for this analysis, there are several limitations. All 
glioma cases from the included 4 GWAS datasets were 
recruited at time of first diagnosis, and the assigned diag-
noses represent the primary tumor type according to the 
prevailing histologic criteria at that time. There may also 
be variation in the histologies contained within each set 
by sex. The proportion of each dataset that is composed of 
glioblastoma compared with lower-grade gliomas varies 
by both study and sex (Supplementary Table 1). Less than 
50% of female glioma cases in the testing set are glioblas-
toma, whereas over 50% of female cases are glioblastoma 
in the validation sets. Glioma is a heterogonous disease, 
and due to all of these factors, it is likely that heterogeneity 
exists between the utilized datasets.

Conclusions

Multimarker tests, such as gene- or pathway-based tests, 
allow investigators to leverage previously existing sum-
mary statistics and increase power when strength of sin-
gle-SNP associations may be low. This analysis aimed to 
explore additional potential sources of genetic risk that 
may contribute to sex differences in genetic risk for glioma. 
There was a nominally significant association between 
germline variants in RTEL1 in both males and females 
after conditioning on previously identified SNPs. A signifi-
cant association was detected between germline variants 
in the telomere maintenance pathway in both males and 
females, which builds on previous evidence of the relation-
ship between inherited variants related to increased tel-
omere length and increased risk for glioma. There was also 
a male-specific association in EGFR, and a female-specific 
association in TERT that remained nominally significant 
after conditioning on previous GWAS hits. The results of 
this analysis confirm previously known information about 
inherited glioma risk and provide potential mechanistic 
explanations for how these variants may affect the process 
of gliomagenesis.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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