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Abstract
Background.  A high heterogeneity and activation of multiple oncogenic pathways have been implicated in failure 
of targeted therapies in glioblastoma (GBM).
Methods.  Using The Cancer Genome Atlas data, we identified subtype-specific prognostic core genes by a com-
bined approach of genome-wide Cox regression and Gene Set Enrichment Analysis. The results were validated 
with 8 combined public datasets containing 608 GBMs. We further examined prognostic chromosome aberrations 
and mutations.
Results.  In classical and mesenchymal subtypes, 2 receptor tyrosine kinases (RTKs) (MET and IGF1R), and the 
genes in RTK downstream pathways such as phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapa-
mycin (mTOR), and nuclear factor-kappaB (NF-kB), were commonly detected as prognostic core genes. Classical 
subtype-specific prognostic core genes included those in cell cycle, DNA repair, and the Janus kinase/signal trans-
ducers and activators of transcription (JAK-STAT) pathway. Immune-related genes were enriched in the prog-
nostic genes showing negative promoter cytosine-phosphate-guanine (CpG) methylation/expression correlations. 
Mesenchymal subtype-specific prognostic genes were those related to mesenchymal cell movement, PI3K/Akt, 
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), Wnt/β-catenin, and Wnt/Ca2+ 
pathways. In copy number alterations and mutations, 6p loss and TP53 mutation were associated with poor and 
good survival, respectively, in the classical subtype. In the mesenchymal subtype, patients with PIK3R1 or PCLO 
mutations showed poor prognosis. In the glioma CpG island methylator phenotype (G-CIMP) subtype, patients 
harboring 10q loss, 12p gain, or 14q loss exhibited poor survival. Furthermore, 10q loss was significantly associ-
ated with the recently recognized G-CIMP subclass showing relatively low CpG methylation and poor prognosis.
Conclusion. These subtype-specific alterations have promising potentials as new prognostic biomarkers and 
therapeutic targets combined with surrogate markers of GBM subtypes. However, considering the small number 
of events, the results of copy number alterations and mutations require further validations.

Key Points

1.	Cell cycle/repair/JAK-STAT pathways and TP53 mutation are prognostic in classical GBM.

2.	PI3K/MAPK/Wnt pathways and PIK3R1/PCLO mutations are prognostic in mesenchymal GBM. 

3.	Losses of 6p and 10q are prognostic in classical and G-CIMP GBM, respectively.
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Glioblastoma (GBM) is the most aggressive primary brain 
tumor in adults. Despite multimodal therapy, the overall 
prognosis remains dismal, largely due to almost universal 
recurrence. The high degree of heterogeneity and deregu-
lation of multiple signaling pathways have been implicated 
in the aggressiveness of GBM and treatment failures.1,2 
The aberrant signaling pathways underlying GBM patho-
genesis include the receptor tyrosine kinase (RTK) path-
way involving amplification or mutations of EGFR, ERBB2, 
PDGFRA, and MET, and other pathways, including p53/
retinoblastoma (RB), phosphatidylinositol-3 kinase (PI3K)/
Akt/mammalian target of rapamycin (mTOR), Ras/mitogen-
activated protein kinase (MAPK), signal transducer and 
activator of transcription 3, Notch, Wnt, and nuclear factor-
kappaB (NF-κB).2–12 Genomic and epigenomic studies have 
revealed that GBMs have pronounced genetic and molecu-
lar heterogeneity.13 Philips et al identified 3 transcriptional 
groups of high-grade glioma: proneural, proliferative, and 
mesenchymal.14 Similarly, comprehensive analysis of The 
Cancer Genome Atlas (TCGA) dataset revealed 4 subtypes: 
proneural, classical, mesenchymal, and neural. More 
recently, single-cell RNA-sequencing from primary GBMs 
revealed considerable intratumoral subtype heterogen-
eity.15 Furthermore, promoter DNA methylation profiling of 
TCGA GBM revealed that the proneural subtype included 
a distinct subset with promoter-associated cytosine-phos-
phate-guanine (CpG) island hypermethylation designated 
as a glioma-CpG island methylator phenotype (G-CIMP).16 
The G-CIMP GBMs are more frequently found in secondary 
GBMs derived from low-grade gliomas or recurrent GBMs 
and are characterized by frequent mutations in IDH1, favor-
able prognosis, and younger age at diagnosis.

Considering the high degree of heterogeneity, complex 
dysregulated signaling pathways, and failure of targeted 
therapies in this dreadful disease,2,5,17 an approach starting 
with more homogeneous subsets will be a more powerful 
strategy to find new therapeutic possibilities and to evaluate 
therapeutic response efficiently. Accordingly, here we identi-
fied subtype-specific gene sets and pathways with prognostic 
implications. We further investigated prognostic chromosomal 
aberrations and mutations in each subtype of GBM.

Materials and Methods

Data Collection and Determination of Subtype

GBM expression profiles (Affymetrix HG-U133A), copy 
number data (Gistic2 Copy Number all thresholded by 

genes), and mutation data (somatic gene-level nonsilent 
mutation [broad]) were downloaded from TCGA (https://
tcga.xenahubs.net/; Accessed 08 June 2018). DNA methy-
lation data were downloaded from the Genomic Data 
Commons portal (https://portal.gdc.cancer.gov/; Accessed 
08 June 2018). Sample information was obtained from 2 
sources: clinical data from TCGA and a recent study.18 
A  total of 523 expression profiles from primary tumors 
with available overall survival (OS) were used. Gene sym-
bols were updated according to the HUGO gene nomen-
clature committee (http://www.genenames.org/; Accessed 
08 June 2018), and the final expression dataset included 
11 910 genes. Using 4 subtype variables (“G-CIMP Status,” 
“Original Subtype,” “Transcriptome Subtype,” and “Pan-
glioma RNA Expression Cluster”),18,19 we selected only 
the samples with consistent subtype information (n = 395) 
(Supplementary Table 1). For validation, we collected 608 
expression profiles with OS information from 8 public 
datasets generated by 2 platforms, Affymetrix HG-U133A 
or U133 plus2: GSE4412,20 GSE13041,21 GSE4271,14 
Rich et  al,22 GSE16011,23 GSE7696,24 E-TABM-898,25 
and Repository of Molecular Brain Neoplasia Data 
(REMBRANDT) (Supplementary Table  2).26 The survival 
information of 3 datasets, GSE16011, E-TABM-898, and 
REMBRANDT, was obtained from GSE55981.27 Raw cel files 
with the same platform were preprocessed together using 
the RMA (robust multi-array average) algorithm.28 When 
multiple probe sets existed for a gene, the probe set with 
the largest interquartile range was selected. Using a simi-
lar procedure applied by Sandmann et al,29 the subtype of 
each validation sample was determined by correlation with 
TCGA samples based on 11 634 gene expressions com-
monly available in both datasets. More specifically, 11 634 
average expression values across the samples of each 
TCGA subtype were compared with the expression values 
of each validation sample, then the subtype was defined 
as the same TCGA subtype showing the highest value of 
Pearson’s correlation coefficient (Supplementary Table 3).

Identification of Subtype-Specific Prognostic 
Gene Sets and Core Genes

To identify subtype-specific prognostic gene sets, the prog-
nostic power of 11 910 individual genes was assessed in 6 
major subtypes based on univariable Cox regression using 
relative expression values and OS (Fig.  1A). The TCGA 
GBMs included 382 samples in “Classical LGr4” (classical) 
(n = 120), “Mesenchymal LGr4” (mesenchymal) (n = 134), 

Importance of the study
Despite recent advances in understanding molecular 
pathogenesis, GBM remains a dismal brain tumor with 
a high recurrence rate and remarkable resistance to 
current treatments. Targeted therapies have not proven 
substantial clinical benefit yet, and a high degree of 
genetic heterogeneity and activation of alternative 
pathways have been implicated in the failure. Hence, 
we identified subtype-specific prognostic signaling 

pathways, core genes, and genomic aberrations which 
have great potentials as specific molecular targets 
and biomarkers for risk stratification in each subtype 
of GBM. Our subtype-specific approach will provide 
insights into new strategies to overcome the heteroge-
neous nature of GBM and to eventually develop suc-
cessful therapeutic interventions toward precision 
oncology.

https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
https://portal.gdc.cancer.gov/
http://www.genenames.org/
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
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“Neural LGr4” (neural) (n = 26), “Proneural LGr4” (n = 12), 
“Proneural LGr1” (n = 51), and “G-CIMP” (n = 39). The rela-
tive expression values were calculated by rescaling the 
expression values of each gene to range from 0 to 1 across 
the 382 samples. Subsequently, using the pre-ranked 
coefficients from Cox regression, overrepresented prog-
nostic gene sets and core genes were identified by Gene 
Set Enrichment Analysis (GSEA) with default settings.30 
According to the positive normalized enrichment score 
(NES), the top 5 overrepresented gene sets were selected 
in 5 terms of Gene Ontology Biological Process (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Hallmark, 
Pathway Interaction Database (PID), and BioCarta. A posi-
tive NES indicates that high expression of the genes is 
associated with poor prognosis.30 The collective prognostic 
power was assessed by Cox regression using the average 
relative expression values of the core genes in each gene 
set. For validation, 2 separately preprocessed expression 

profiles in 6 subtypes (n = 539) (Fig. 1A) were rescaled into 
relative expression values respectively, then combined 
into one dataset. The final validation dataset comprised 
13 093 genes common in 2 platforms. Using Cox regres-
sion, the collective prognostic power of each gene set was 
evaluated in the validation dataset.

Identification of Subtype-Specific Prognostic 
Chromosome Aberrations and Mutations

The prognostic chromosome aberrations and mutations 
were identified in 3 subtypes: classical, mesenchymal, and 
G-CIMP. Gain or loss of each chromosome arm was deter-
mined using TCGA gene-level copy number data including 
classical (n =  117), mesenchymal (n =  133), and G-CIMP  
(n = 39) (Supplementary Table 1). The copy number statuses 
of 24 776 genes were thresholded into 5 categories: −2, −1, 

TCGA dataset

TCGA GBMs

G-CIMP (n = 39) Non-G-CIMP (n = 356) G-CIMP (n = 66)

Pan Glioma RNA Expression Cluster
LGr1 LGr2 LGr3 LGr4

1Classical – – 120
2Mesenchymal – – 134
3Neural 4 – 26

51Proneural 1 2 12

Pan Glioma RNA Expression Cluster
LGr1 LGr2 LGr3 LGr4

1Classical – – 196
–Mesenchymal – – 159
1Neural 67 – 16

56Proneural – – 46

Non-G-CIMP (n = 542)

Validation GBMs

Expression profiles of primary GBM with OS information (n = 523) Expression profiles of primary GBM with OS information (n = 608)
from 8 datasets

Determine subtype of each GBM sample
based on correlation with expression profiles of TCGA datasets

Divide samples into GBM subtypes

Identification of subtype-specific
prognostic gene sets and core genes

Genome-wide Cox regression analysis with rescaled expression values (n = 382)
Gene Set Enrichment Analysis with pre-ranked In (Hazard Ratio)
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Fig. 1  Overview of the identification of subtype-specific prognostic gene sets and core genes. (A) Flowchart of data analysis. (B) Kaplan–
Meier plots for overall survival. (C) Distribution of age at diagnosis.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
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0, 1, and 2.31 If the proportion of the genes with a negative 
or a positive threshold was greater than 50% in a specific 
chromosome arm, the copy number status of the arm was 
defined as a loss or a gain, respectively. Subsequently, 
log-rank tests were performed to assess the associations 
between OS and recurrent chromosome aberrations found 
in more than 5% of patients in each subtype. To detect 
prognostic mutations, the associations between OS and 
recurrent mutations found in more than 10% of patients 
in each subtype were estimated with log-rank tests in the 
classical (n =  55), mesenchymal (n =  60), and G-CIMP (n 
= 12) subtypes (Supplementary Table 1). All data analyses 
were performed using R statistical software (http://www. 
R-project.org/; Accessed 08 June 2018).

Results

The final sample numbers in 6 major subtypes were 382 
and 539 in TCGA and the validation datasets, respectively 
(Fig.  1A). As expected, G-CIMP patients showed favor-
able prognoses (Fig.  1B) and younger ages at diagnosis 
(Fig. 1C).

Classical Subtype

Among the top 25 prognostic gene sets, the prognos-
tic power of core genes was validated in 10 gene sets 
(P < 0.05) (Fig. 2A and Supplementary Table 4), including 3 
GO terms: “Sumoylation,” “Nuclear envelope,” and “DNA 
replication”; 4 KEGG pathways: “Spliceosome,” “Sugar 
metabolism,” “P53 signaling,” and “Base excision repair”; 
1 Hallmark gene set: “E2F”; and 2 PID gene sets: “Androgen 
receptor” and “ATM.” Kaplan–Meier plots with log-rank 
tests using the average expression of 148 core genes in the 
top 3 GO gene sets revealed that the GBM patients with 
high average expression had poor survival (Fig. 2B). When 
the patients were divided into 2 or 3 groups according to 
the average expression of 76 core genes in the “DNA rep-
lication” gene set, the group with high expression showed 
significantly poor OS (Fig.  2C, Supplementary Fig.  1). 
Moreover, the 76 core gene expression remained a signifi-
cant independent prognostic factor (adjusted hazard ratio 
[HR] = 1.80, P = 0.049) after adjustment for age at diagnosis, 
treatment (chemotherapy and radiotherapy [chemoRT]), 
and O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation status (Supplementary Table 5).32

To investigate whether expression changes of the prog-
nostic core genes were associated with promoter CpG 
methylation, Pearson’s correlation coefficients were cal-
culated with expression profiles and β-values of methy-
lation probes in gene promoters (TSS1500, TSS200, 5ʹ 
untranslated region, and first exon). The methylation data 
were measured on either Illumina Infinium 27K or 450K; 
therefore, we analyzed only the CpG probes present on 
both platforms. For a given gene, only the probe with 
the highest negative correlation coefficient was selected. 
Expressions of the genes in the “INFalpha” gene set were 
associated with promoter CpG methylation features show-
ing significantly different distribution of correlation coef-
ficients toward negative relationships compared with 

those of the total 521 genes detected in the classical sub-
type (Fig. 2D, Supplementary Table 6). The genes involved 
in immune response (OAS2, OASL, DHX58, BST2, IFIT3, 
and IFITM3), DNA damage (ATRX, BRCA1, MGMT, and 
SMUG1), and cell cycle/cancer pathways (TGFB1, MNAT1, 
SMC4, and TFDP1) showed Pearson’s correlation coef-
ficient  ≤  −0.3 and changes in β-values across samples 
(|Δβ|) ≥ 0.25 (Supplementary Table 6).

In copy number data analysis, losses of 6p, 11p, or 12q 
were significantly associated with poor prognosis in clas-
sical GBM (Supplementary Table  7). However, 11p loss 
and 12q loss were no longer statistically significant when 
6p loss was adjusted in multivariable Cox regressions. 
Additionally, the patients with 11p or 12q loss but not 
accompanied by 6p loss did not show significantly differ-
ent survival from those without 6p, 11p, and 12q loss (data 
not shown). Accordingly, we considered that 6p loss was 
the main prognostic chromosomal aberration in the clas-
sical subtype. The 6p loss was detected in 10 (8.5%) of 117 
patients. When the classical GBMs were divided into 3 
groups according to 6p loss and the average expression 
level of 76 core genes in the “DNA replication” gene set, the 
survival curves were distinctly separated (Fig. 2E). To exam-
ine the influence of treatment, the analysis was repeated in 
2 separated groups: one received chemoRT and the other 
did not receive either or all of chemoRT. The survival curves 
in both groups were similarly separated, although more 
favorable outcomes were generally observed in the chem-
oRT group (Fig. 2F and G). Finally, we investigated the asso-
ciation between OS and nonsilent somatic mutations. The 
most recurrent mutation was in EGFR; however, the EGFR 
mutation was not significantly associated with prognosis 
(Supplementary Table 8). TP53 mutation was significantly 
associated with prognosis (P = 0.0033, log-rank test) in a 
protective direction (HR = 0.24), indicating that the patients 
with mutated TP53 had better prognosis (Fig.  2H). Nine 
of 55 patients (16%) harbored TP53 mutations, including 
missense (n = 8) or splice site (n = 1) mutations. In Fig. 2I, 
the heatmap of average expressions of core genes in 10 
representative prognostic gene sets was presented with 
6- to 24-month survival statuses, copy number status of 
6p, TP53 mutation, and high/low level of average expres-
sion of 76 core genes in the “DNA replication” gene set. 
The heatmap clearly showed that the average expressions 
of the 10 gene sets were highly correlated, which was simi-
larly observed in the validation dataset (Supplementary 
Fig. 2A).

Mesenchymal Subtype

In the mesenchymal subtype, the prognostic power of 
15 of the top 25 gene sets was confirmed in the valid-
ation dataset, including gene sets of GO “Retrograde ves-
icle,” KEGG “Glycosaminoglycan,” Hallmark “Notch,” PID 
“E-cadherin stabilization,” and BioCarta “HDAC” (Fig.  3A 
and Supplementary Table 4). In CpG methylation analysis, 
no particular gene set showed a significantly negative 
distribution of correlation coefficients (Fig. 3B). However, 
2 cell cycle–related genes, EGF and PPP2R2B, showed 
a negative correlation with |Δβ|  ≥  0.25 (Supplementary 
Table 6). High average expressions of 61 core genes in the 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://www.R-project.org/
http://www.R-project.org/
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
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Fig. 2  Identification and validation of prognostic gene sets, chromosome aberrations, and mutations in the classical subtype. (A) Top 5 prog-
nostic gene sets in 5 terms and forest plots of HRs per 0.1 increment of average relative expression with 95% CIs from Cox regression. (B) 
Kaplan–Meier plots with log-rank tests of high/low expression groups divided by the upper tertile cutoff (66.7%) of the average expression of 148 
core genes in the top 3 GO gene sets. (C) Kaplan–Meier plots with log-rank tests of high/low expression groups divided by the upper tertile cutoff 
of the average expression of 76 core genes in the “DNA replication” gene set. (D) Boxplots of Pearson’s correlation coefficients calculated with 
expression profiles and β-values of CpG methylation probe of core genes. (E) Kaplan–Meier plots with log-rank tests of 3 groups: the 6p loss 
group and 2 expression groups defined in (C) without 6p loss. (F) Kaplan–Meier plots with log-rank tests of 3 groups defined in (E) but confined 
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Fig. 3  Identification and validation of prognostic gene sets, chromosome aberrations, and mutations in the mesenchymal subtype. (A) Top 
5 prognostic gene sets in 5 terms and forest plots of HRs per 0.1 increment of average relative expression with 95% CIs from Cox regression. 
(B) Boxplots of Pearson’s correlation coefficients calculated expression profiles and β-values of CpG methylation probe of the core genes. (C) 
Kaplan–Meier plots with log-rank tests of high/low expression groups divided by the lower tertile cutoff (33.3%) of the average expression of 61 
core genes in the top 3 GO gene sets. (D) Kaplan–Meier plots with log-rank tests of high/low expression groups divided by the lower tertile cutoff 
of the average expression of 12 core genes in the “Notch” gene set. (E) Kaplan–Meier plots with log-rank tests of 3 groups defined in (D) but con-
fined to the patients with chemotherapy and radiotherapy. (E) Kaplan–Meier plots with log-rank tests of 3 groups, a group with PIK3R1 or PCLO 
mutation and 2 groups defined in (D). (G) Heatmap of the average expression of core genes in 10 representative gene sets with 6- to 24-month 
survival statuses, PIK3R1 and PCLO mutations, expression categories defined in (D), and treatment information.
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top 3 GO gene sets were significantly associated with poor 
OS in both TCGA and validation datasets (Fig.  3C). Only 
12 core genes in the “Notch” gene set were also prognos-
tic (Fig. 3D, Supplementary Fig. 3), which was also obvi-
ous in the patients with chemoRT (Fig.  3E). The “Notch” 
core genes remained an independent prognostic factor 
(adjusted HR = 2.15, P = 0.011) after adjustment for age at 
diagnosis, chemoRT, and MGMT promoter methylation 
status (Supplementary Table  5). No recurrent chromo-
some aberration was prognostic in the mesenchymal sub-
type; however, 2 nonsilent somatic mutations, PIK3R1 and 
PCLO, were associated with poor outcome (Fig.  3F and 
Supplementary Table 8 ). The average expressions of the 
core genes were highly correlated with one another in both 
TCGA and validation datasets (Fig. 3G and Supplementary 
Fig. 2B).

G-CIMP Subtype

Many of the top 15 overrepresented prognostic gene sets 
in the G-CIMP subtype were related to cellular metabol-
ism or transport (Fig. 4A and Supplementary Table 4). No 
significantly overrepresented gene set was found in PID or 
BioCarta. Six of 15 gene sets were confirmed in the valid-
ation dataset. In the G-CIMP subtype, the genes involved 
in “Glycosaminoglycan and Alanine/aspartate/glutamate” 
showed a significantly negative distribution of correlation 
coefficients between expression and CpG methylation 
(Fig. 4B). High average expression of 20 core genes from 
the top 3 GO gene sets was associated with poor prog-
nosis (Fig. 4C), which was also substantiated with 9 core 
genes in the “Sulfur” gene set (Fig. 4D). Twelve chromo-
somal aberrations were prognostic toward an increase of 
risk (Supplementary Table 7). However, simultaneous aber-
rations were found in many patients. Additionally, 26 of 37 
patients harbored at least one of the 12 risk chromosomal 
aberrations. The 26 patients possessed at least one of 3 of 
the most recurrent aberrations, 10q loss, 14q loss, and 12p 
gain. Furthermore, the 3 aberrations were independent 
prognostic factors when all 12 aberrations were added to 
multivariable Cox regression (P < 0.05). The G-CIMP GBMs 
showed differential survival curves according to presence 
or absence of the 3 aberrations (Fig. 4E), which was also 
observed in the patients with chemoRT (Fig. 4F). Fig. 4G 
also shows that the patients without 10q loss, 14q loss, and 
12p gain had favorable outcomes. The most recurrently 
mutated genes in G-CIMP were TP53, IDH1, and ATRX 
(Supplementary Table  8). However, none was associated 
with prognosis.

Proneural and Neural Subtypes

Proneural GBM had been known to be associated with a 
favorable prognosis.14,19 However, this was attributed to a 
subset of G-CIMP.16 Congruently, after excluding G-CIMP, 
the proneural subtype did not show better OS (Fig. 1B). In 
TCGA pan-glioma analysis, proneural GBMs without IDH1 
mutation (non–G-CIMP proneural) were clustered into 2 
transcriptomic groups, LGr1 and LGr4, while most GBMs 
in other subtypes were clustered into one group, LGr4.18 

This suggests that proneural GBM is heterogeneous even 
after excluding G-CIMP. Accordingly, we identified prog-
nostic pathways in 2 groups, proneural LGr1 and LGr4, 
separately. Several prognostic gene sets were identified as 
common for the 2 groups, such as Hallmark “Genes defin-
ing epithelial-mesenchymal transition,” indicating that 
proneural GBMs with more mesenchymal-like features 
had poor prognosis. However, most of the results were 
not confirmed in the validation dataset (Supplementary 
Table  4). When the analysis was repeated with the com-
bined proneural GBMs (LGr1 and LGr4), the results were 
not validated. Similarly, in the neural subtype, most of the 
prognostic gene sets were not validated (Supplementary 
Table 4). Moreover, the neural subtype was recently sus-
pected to be normal brain contamination.33 Considering 
the poor validation, heterogeneity, and possible normal 
contamination, we did not perform further analysis for 
these 2 subtypes.

Discussion

In 2 major GBM subtypes, classical and mesenchymal, 
many signaling pathways previously reported to be dereg-
ulated in GBM were identified as prognostic gene sets, 
including the p53, DNA replication, insulin-like growth fac-
tor 1 (IGF-1), mTOR, Ras, and Notch pathways (Figures 2A 
and 3A).8,14,19,34,35 The mTOR and IGF-1 pathways were com-
monly detected in both subtypes. Specifically, 64 genes 
were commonly identified as prognostic core genes, 
including 2 RTKs (MET and IGF1R), a growth factor (IGF1), 
a Notch receptor (NOTCH2), and many genes in RTK 
downstream, including PI3Ks, AKT1, MTOR, NF-κB subu-
nits, protein kinase C subunits, RAF1, and RAC1 (Fig. 5A). 
Schematic diagrams of the prognostic signaling pathways 
with representative core genes and inhibitors are pre-
sented in Fig. 5B and C. In the classical subtype, 2 growth 
factors, hepatocyte growth factor (HGF) and Epiregulin 
(EREG), an ErbB receptor (ERBB3), and androgen recep-
tor (AR) were the prognostic core genes. Additionally, 
MKI67 encoding the cell proliferation marker Ki-67, and 
many genes involved in the p53/RB pathway or cell cycle 
progression such as PLK1, CDC25A, and CDC25B, cyclins 
(CCND1, CCNE2, and CCNG2), cyclin-dependent kinases 
(CDK2/4/6/9), and E2Fs (E2F1/4) were detected as prog-
nostic core genes, suggesting that classical GBM patients 
might benefit most from cancer therapy targeting cell cycle 
and proliferation. High expressions of many DNA repair 
genes (eg, ATM, PARP, BRCA1, PRKDC, MGMT) were also 
associated with poor prognosis in the classical subtype. In 
previous reports, GBM patients with MGMT silencing by 
promoter hypermethylation were more sensitive to treat-
ment of temozolomide.36 A  recent study reported that 
MGMT methylation status was predictive of temozolomide 
response only in the classical subtype.37 This supported 
our result that MGMT is a prognostic core gene only in 
the classical subtype. Moreover, 2 membrane receptors 
related to inflammatory response (CD40 and TLR4) and 
many genes in the JAK-STAT pathway were prognostic in 
the classical subtype. The JAK-STAT pathway–related prog-
nostic genes included cytokines (IL7 and IL15), cytokine 
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Fig. 4  Identification and validation of prognostic gene sets and chromosome aberrations in the G-CIMP subtype. (A) Top 5 prognostic gene sets 
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Fig. 5  Diagrammatic illustration of prognostic core genes and pathways. (A) Venn diagram of prognostic core genes identified in the clas-
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receptors (IFNAR2, IL15RA, IL22RA1, IL4R, CSF2RB, and 
GHR), Janus kinases (JAK1/2), STAT transcription factors 
(STAT1/2/3/4/5A/6), and cAMP response element binding 
protein (CREBBP). Potential targeted therapies inhibiting 
JAK-STAT or NF-κB pathways have been suggested in GBM 
in the context of regulating inflammatory response.4,17 
In copy number and mutation data analyses, 6p loss and 
TP53 mutations were associated with poor and good sur-
vival, respectively (Fig. 2E and H). The association between 
favorable prognosis and TP53 mutations was previously 
reported in GBM patients without IDH1 mutation,38 but to 
the best of our knowledge, this is the first study reporting 
the association between 6p loss and poor prognosis. We 
found that low expression of 7 genes on 6p were signifi-
cantly associated with poor prognosis (Supplementary 
Table  9). Among the 7 genes, NOL7 was reported as a 
tumor suppressor.39 However, due to the relatively small 
number of cases with 6p loss (10 of 117) and TP53 muta-
tions (9 of 55), further investigations are warranted to con-
firm the associations.

Mesenchymal subtype-specific prognostic core genes 
included those involved in mesenchymal cell movement 
(CDC42 and RHOA), PI3K/Akt pathway genes (PIK3CD, 
PIK3CG, PIK3R2/5, and AKT3), and MAPK/extracellular sig-
nal-regulated kinase (ERK) pathway genes (HRAS, KRAS, 
NRAS, ARAF, BRAF, MAP2K1/2, MAPK1/3, and ELK1) 
(Fig. 5C). Many genes in canonical Wnt/β-catenin and non-
canonical Wnt/Ca2+ pathways were also detected, includ-
ing 2 frizzled receptors (FZD2/7), CTNNB1 (β-catenin), T-cell 
factor–lymphoid enhancer factor (TCF/LEF) transcription 
factors (TCF7L1/2 and LEF1), CDH1 (E-cadherin), phospho-
lipase C gamma (PLCG1), calmodulins (CALM1/2/3), cal-
cineurin (PPP3CA, PPP3CB, and PPP3CC), and nuclear 
factor of activated T cells (NFAT) (NFATC4). Therefore, 
targeting Wnt signaling might be more effective in mes-
enchymal patients. In mutation analysis of the mesenchy-
mal subtype, 11 of 60 patients with mutations in PIK3R1 
(n =  6) or PCLO (n =  6) showed poor prognosis. In the 
xenograft model, human normal astrocytes introduced 
by PIK3R1 somatic mutations could cause oncogenic 
events.40 PCLO had recurrent mutations in diffuse large 
B-cell lymphoma.41

Recently, glioma-intrinsic transcriptional subtypes 
have been newly defined after excluding tumor micro-
environment-related genes.42 We investigated whether 
subtype-specific prognostic markers could be retained 
in the intrinsic GBM subtypes. Many of the gene sets 
remained to be prognostic in the new classical subtype 
(11 of 25), intermediately in the new proneural subtype 
(8 of 25), but mostly not in the new mesenchymal sub-
type (Supplementary Table  10). The little congruence 
in the mesenchymal subtype implies that the mesen-
chymal prognostic core genes may originate from the 
tumor microenvironment and/or tumor microenviron-
ment-associated tumor features. Indeed, several major 
prognostic pathways detected in the mesenchymal sub-
type (Fig.  5C) have been described to be linked to the 
tumor immune microenvironment: a possible role of 
Wnt signaling in the interaction between GBM and brain 
immune cells to create a more favorable microenviron-
ment for invasion,43 a potential impact on immunother-
apy response and regulation of immune cell infiltration 

by the Wnt/β-catenin pathway,44 a relationship between 
immune-silent tumor phenotype and the MAPK signal-
ing pathway,45 and activation of the Notch signaling 
pathway by tumor-infiltrating myeloid cells.46 In add-
ition, mesenchymal prognostic gene sets included 
the “Glycosaminoglycan” gene set (Fig.  3A), which is 
involved in biosynthesis of chondroitin sulfate, an extra-
cellular proteoglycan that plays a crucial role in promot-
ing a favorable tumor microenvironment.47

In the G-CIMP subtype, chromosomal aberrations were 
more prognostic than gene expression profiles (Fig.  4C 
and E), and 10q loss, 12p gain, and 14q loss were detected 
as the main prognostic factors. A  recent study reported 
that G-CIMPs can be further divided into 2 different sur-
vival groups based on low/high methylation status, desig-
nated “G-CIMP-low” (poor prognosis) and “G-CIMP-high” 
(good prognosis).18 We found that the “G-CIMP-low” 
group was significantly associated with G-CIMP with 
10q loss (Fig.  4G) (Fisher’s exact test P  =  0.0028). Loss 
of chromosome 10 and phosphatase and tensin homo-
log  (PTEN) is one of the most common events in non–
G-CIMP GBMs.16 Therefore, the significant association 
between “G-CIMP-low” and 10q loss implies that G-CIMP 
with chromosomal aberrations similar to non–G-CIMP 
might have worse prognosis and that 10q loss might be a 
major prognostic marker in G-CIMP.

On the other hand, prognostic core genes showing nega-
tive methylation/expression correlations were enriched with 
immune function–related genes (Supplementary Table 11), 
suggesting that DNA methylation might influence the prog-
nosis of GBM, probably by controlling the tumor immune 
microenvironment. Congruently, modulation of methyla-
tion in immune genes was proposed to play a role in GBM 
progression in comparative analysis of initial and recurrent 
primary GBM pairs.48 Moreover, genome-wide methylation 
analyses revealed that the top pathways enriched in hypo-
methylated genes in GBMs compared with normal brain 
tissues were all related to immune functions.49

In current practice, the G-CIMP GBMs are identified 
on a routine basis by detection of IDH1 mutation as a 
surrogate marker. However, classification of other GBM 
subtypes is not currently performed in clinical practice. 
Thus, there are many challenges in practical application 
of subtype-based approaches to everyday clinical man-
agement toward precision oncology. Incorporation of 
expression profiles into routine practice requires new 
molecular assays, with an increase of medical expenses. 
Utilization of surrogate markers of GBM subtypes will 
greatly facilitate subtype-specific approaches. For 
instance, the classical subtype is characterized by high 
expression of EGFR,19 which is consistently observed 
in both TCGA and validation datasets (Supplementary 
Fig.  4A). Likewise, most of the TP53 mutations and 
6p losses are concurrently observed with high EGFR 
expressions in the classical subtype (Supplementary 
Fig. 4B), which sheds light on the possible use of EGFR 
expression as a potential surrogate marker for the clas-
sical subtype. Further identification of surrogate mark-
ers of GBM subtypes that can be easily incorporated into 
clinical practice will enable the application of subtype-
specific approaches in risk stratification, investigation of 
therapeutic strategies, and clinical trial designs.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy120#supplementary-data
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