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Understanding how breeding populations are spatially and temporarily

associated with one another over the annual cycle has important impli-

cations for population dynamics. Migratory connectivity typically assumes

that populations mix randomly; yet, in many species and populations, sex-,

age- or other subgroups migrate separately, and/or spend the non-breeding

period separated from each other—a phenomenon coined differential

migration. These subgroups likely experience varying environmental con-

ditions, which may carry-over to affect body condition, reproductive success

and survival. We argue that environmental or habitat changes can have dis-

proportional effects on a population’s demographic rates under differential

migration compared to random mixing. Depending on the relative contri-

bution of each of these subgroups to population growth, environmental

perturbations may be buffered (under-proportional) or amplified (over-

proportional). Thus, differential migration may result in differential mortality

and carry-over effects that can have concomitant consequences for dynamics

and resilience of the populations. Recognizing the role of differential migration

in migratory connectivity and its consequences on population dynamics can

assist in developing conservation actions that are tailored to the most influential

demographic group(s) and the times and places where they are at peril.
1. Introduction
Many migratory populations have experienced massive declines over the past

years mainly as a consequence of the single or combined effects of habitat loss

and deterioration, climate change, erection of barriers and sensory pollution

[1–4]. Their conservation requires understanding migratory connectivity, i.e.

how breeding populations are spatially and temporarily associated with one

another over the annual cycle—during breeding, migration and the non-breeding

season [5–7]. The connectivity patterns have important implications for

short-term population dynamics as well as long-term trends.

Migratory connectivity is quantified along a continuum from low inter-

population spread and complete segregation of different breeding populations

(strong connectivity) to high interpopulation spread and thorough mixing of

individuals from different breeding populations (weak connectivity) [6,8].

Under the original definition of migratory connectivity [6], the entire migratory

period is overlooked including in how far individuals from one breeding popu-

lations may migrate at different times or use different routes and stopover sites,

suggesting that migratory connectivity is not purely a breeding to non-breeding

phenomenon. Including the migration period in the definition of migratory

connectivity is vital for many species and populations especially those in

which sex-, age- or other subgroups migrate separately, and/or spend the

non-breeding period separately from each other—a phenomenon coined differ-

ential migration [9]. Due to this segregation, subgroups likely experience

varying environmental conditions en route and at the non-breeding sites.
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consequencespecies

male semi-collared flycatchers
(Ficedula semitorquata) migrate
earlier than females

early migrants might encounter harsher
environmental conditions and food
shortage upon arrival at the breeding
sites, resulting in higher mortality [10]

moose (Alces alces) juveniles
migrate longer distances than
adults

juvenile, female and subordinate
European robins (Erithacus
rubecula) migrate longer
distances

in Dolly Varden trout
(Salvelinus malma) probability
of migration decreases with
increasing age

different migration strategies result in age-
specific wintering sites exposing various
age-classes to different environments [17]

female Nathusius’s pipistrelle
(Pipistrellus nathusii) leave the
breeding areas earlier than
males

a larger proportion of female
European blackbirds (Turdus
merula) are more likely to be
migratory compared to males

males and females spend the greater part
of the annual cycle in separate locations
experiencing different conditions on local
and regional scales [25]

migratory individuals show higher over-
winter survival than complete resident
individuals [16]

different age-, sex- and dominance-
classes are latitudinally segregates during
the non-breeding period [18]

migratory individuals suffer higher mortality
[22]
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Figure 1. Examples of differential migration from throughout the animal kingdom and its consequences for population dynamics as mediated via migratory con-
nectivity. (Photo credits from top: Martins Briedis, Viesturs Vintulis, Edgars Smislovs, Agris Krusts, Ainārs Mankus, LoveToTakePhotos ( pixabay.com).).

rsbl.royalsocietypublishing.org
Biol.Lett.14:20180679

2

Exposure to different environments may carry-over to influ-

ence individual physical condition potentially leading to

group-specific en route mortality [10], spring arrival times

[11] or reproductive success [12]. More importantly, if

global and climate change alter habitats at varying rates

and magnitudes, these segregated subgroups will be affected

to different degrees.

We argue in the following that environmental or habitat

changes can have disproportional effects on a population’s

demographic rates under migratory segregation compared

to random mixing. Depending on the relative contribution

of each subgroup to population growth, negative effects

caused by environmental perturbations may be buffered

(under-proportional) or amplified (over-proportional). Thus,

differential migration resulting in differential mortality and

carry-over effects can have concomitant consequences for

the dynamics of migratory populations.
2. Differential migration
Differential migration is a widespread phenomenon in the

animal kingdom and can take many forms, from differences

in the timing of migration to differences in migration

routes: subgroups may segregate during relatively short

periods, during migration [10,13–15], during non-breeding

residency [16,17] or for most of the year [18,19] (figure 1).

Similarly, the spatial scales of segregation may vary from

local segregation such as the use of microhabitats [20], to

regional (several tens to a few hundreds of kilometres)

when different stopover or wintering sites are used [16,18],

to continental, when subgroups use entirely different

flyways [21].
Probably, the most common segregation is between sex-

and age-groups but other segregations, e.g. between

dominants/subordinates and breeders/non-breeders may

also occur (figure 1). In sexual segregation, males precede

females (protandry), females precede males (protogeny),

females use other habitats than males or migrate via different

stopover sites to different non-breeding sites. Similarly,

differential migration by age means that juveniles differ in

migration timing from adults and/or use different flyways

to different non-breeding sites [13,17,22,23]. Dominance

status may force subordinates to undertake longer migrations

[18,24] or reside in suboptimal non-breeding habitats [20]. In

partially migratory populations and short-distance migrants,

migratory behaviour is often female skewed with a larger

proportion of females being migratory [24], leaving the

breeding grounds earlier [25] or travelling longer distances

compared to males [18].

These examples illustrate how the two core components

of migratory connectivity—spatial and temporal site use

across the annual cycle—can be essentially different for dis-

tinct groups of individuals within the same core population.
3. Cascading consequences of differential
migration on migratory connectivity

Patterns of migratory connectivity can shape population

dynamics on local and range-wide scales [26,27]. Strongly

connected migratory populations are thought to be more vul-

nerable to environmental changes as all individuals cluster at

certain places and times, and changes on any of those would

affect the entire population. By contrast, weak migratory
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Figure 2. Schematic of (spatial) migratory connectivity in a hypothetical species under (a) random mixing of individuals and (b) sex-specific differential migration.
When males and females mix randomly during migration and non-breeding residency, the consequences of habitat loss on population dynamics will be less severe
(c) than under differential migration where exclusively one demographic group is affected (d ).

rsbl.royalsocietypublishing.org
Biol.Lett.14:20180679

3

connectivity is thought to buffer negative consequences of

environmental perturbations, adverse weather or food short-

age on specific sites and times as only part of a breeding

population experiences these conditions [28].

Under differential migration, connectivity patterns are

stronger within groups (e.g. within sex or age classes)

than between groups, leading to demography-specific

vulnerability across the annual cycle (figure 2). Conse-

quently, environmental perturbations may have under- or

over-proportional effects on population dynamics if a

specific demographic group is concerned, i.e. effects are

much larger or smaller than what would be expected

under random mixing of individuals. For instance, if
males and females migrate differentially and only females

suffer a high mortality, the population’s sex ratio will

become male-biased and its vital rates plummet even

though more than half of the individuals had returned

[29]. Male-biased sex ratios are particularly problematic

in small populations causing local population declines

[30]. By contrast, differential migration may also prevent

major consequences of massive (local) habitat alterations

if a demographically less significant group is affected.

For instance, if young of a long-lived species experience

higher mortality for a restricted period, this might show

only in short-term population dynamics, but not in the

long-term population trajectory [31].
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4. Conservation implications
The widespread application of tracking devices over the past

decade(s) has yielded a wealth of information on individual

migration routes and schedules, and increasingly provides

the possibility to determine the degree of migratory connec-

tivity. As mounting individual tags requires the handling of

individual animals, their sex and age (or other characteristics)

are usually also recorded or determined retrospectively.

Although we are not aware of an explicit analysis of differen-

tial migration, migratory connectivity and its link to

population trends, the data to explore such links are certainly

there and will continue to be accumulated [32–34].

Thus, (re-)analysing existing individual migration data

with regard to differential migration is a first step in under-

standing demography-specific connectivity [15]. However,

we also need to analyse the contribution of demographic

groups to population vital rates (e.g. fecundity and seasonal

survival probability) which could then be used to develop

full annual cycle population models [35,36] to identify the
places and times at which specific demographic groups are

most at peril. Conservation and management actions could

then be tailored to these places and times and targeted at

the most influential demographic groups.

Thus, we call for recognizing the role of differential

migration in migratory connectivity as well as its potential

consequences for population trends and the implications

these may have for conserving and managing migratory

populations.
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