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1  | INTRODUC TION

The process through which plants allocate carbon among dif‐
ferent organs is important not only for plant growth (Shvidenko, 
Schepaschenko, Nilsson et al., 2007b; Shvidenko, Schepaschenko, 

McCallum et al., 2007a) but also for forest carbon cycling rates 
and plant–atmosphere water exchange (Aber, Melillo, Nadelhoffer, 
Pastor, & Boone, 1991). Such processes are usually influenced by 
forest types (Dube & Mutanga, 2015), structure characteristics (e.g., 
forest component, age, and density; Li & Liu, 2014; Li et al., 2014; 
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Abstract
Carbon partition among plant parts has a vital influence not only on the growth of 
individual plants but also on decomposition, carbon and nitrogen sequestration, and 
plant–atmosphere water exchange. Although many studies have tried to reveal plant 
growth mechanisms using observational living biomass or the biomass ratio among 
different organs, knowledge and understanding about carbon partition is still scarce 
and exists much uncertainty. In this work, a dataset about 1,089 sample plots of 
natural forests downloaded from the Chinese Ecosystem Research Network (CERN) 
was used to explore the dependences of net primary production (NPP) partition 
among foliage, stem and branch, and root on forest age, and mean annual tempera‐
ture (MAT). The results found that (a) for all forest types, NPP partition had a signifi‐
cant relationship with forest age (p < 0.0001), that is, younger plants usually allocated 
a higher proportion of the NPP to stems, branches, and roots. As plants aged, an in‐
creasing proportion of the NPP was allocated to foliage; (b) MAT was negatively cor‐
related with the proportions of the NPP allocated to foliage (Fleaf; %) and roots (Froot; 
%), while proportions of the NPP allocated to stems and branches (Fstbr; %) were posi‐
tively dependent on MAT; (c) independent effect analysis demonstrated that forest 
age had a larger direct influence on Fleaf and Froot, while MAT was relatively important 
for Fstbr; and (d) forest age and MAT had a stronger combined effect on NPP alloca‐
tion for broad‐leaved forests, while for needled‐leaved forests, the influences of for‐
est age and MAT existed large differences among different forest types. This work 
not only is important for understanding the contribution of climatic factor and forest 
age on forest NPP partition, but also provides valuable ideas for developing ecologi‐
cal models.
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Wang et al., 2014; Zhang, Wang, et al., 2015), climate factors (Wang 
et al., 2014; Zhang, Song, et al., 2015), and environmental conditions 
(e.g., soil texture, and altitude) (Wen & He, 2016).

In the current years, many improvements have been achieved 
in understanding carbon allocation of individual plant, for example, 
some have described the distribution of biomass in different parts of 
individual plants (e.g., Poorter et al., 2012; Reich et al., 2014; Dube 
& Mutanga, 2015; Zhang, Song, et al., 2015), while others have ex‐
plored the relationships between biomass allocation and forest age 
(Litton, Raich, & Ryan, 2007; Yuan & Chen, 2010; Zhang, Song, et 
al., 2015; Zhao et al., 2014), climate or environmental factors (Chen 
et al., 2015; Luo, Wang, Zhang, Booth, & Lu, 2012; Poorter et al., 
2012; Reich et al., 2014; Wang, Fang, & Zhu, 2008; Zhang, Song, et 
al., 2015). For instance, it is commonly thought that the proportion 
of trunk biomass significantly increases with age (Xue et al., 2016), 
the biomass proportions of the branch and foliage decreases (Xue 
et al., 2016; Zhang, Song, et al., 2015). However, the carbon alloca‐
tion pattern between above‐ and belowground compartments varies 
with plantation type and stand age (Chen et al., 2015). King, Giardina, 
Pregitzer, and Friend (2007) found that the root and shoot ratio of 
individual trees increased significantly from the sapling to mid‐mature 
stage, and then dramatically decreased at the old‐forest stage. On the 
contrary, Li and Liu (2014) demonstrated that carbon allocation to the 
root system of black locust forest decreased constantly with stand 
age. When considering the dependence of biomass allocation on cli‐
mate/environmental factors, it is usually expected that climate is the 
key factor controlling the spatial distribution of carbon storage (living 
biomass or biomass fraction) (Liu, Yu, Wang, & Zhang, 2014). As to the 
sensitivity of carbon allocation to climate, there is still largely unclear 
knowledge about it. Zhang, Song, et al. (2015) found that for China’s 
forests, climate accounted for 7.7%, 21.4%, 10.0%, and 19.7% of vari‐
ances in foliage, branch, stem, and root biomass fractions. However, 
some work found that for forests across the northeast part of China, 
root biomass was less limited by precipitation than shoot biomass as 
a result of biomass allocation change (Wang et al., 2008). It might be 
because the growth of roots is mainly dependent on soil temperature 
and moisture instead of air temperature and precipitation (Ericsson, 
Rytter, & Vapaavuori, 1996). Reich et al. (2014) demonstrated that 
temperature was a better predictor of biomass allocation than mois‐
ture availability because the distribution of biomass fraction to roots 
or foliage was unrelated to aridity, while Chu et al. (2016) used three 
different approaches to analyze the same dataset, and confirmed that 
both temperature and precipitation were critical to carbon allocation.

To get closer to the mechanisms of carbon partition, representative 
datasets distributing in wide range are of crucial importance, but usu‐
ally difficult to obtain. Fortunately, with increasing field measurements 
covering various ecosystem types, China has become a key experimen‐
tal area for terrestrial ecosystems due to its various climate regimes 
and diverse ecosystems (Fang, Chen, Peng, Zhao, & Ci, 2001; Ni, 2013). 
China has approximately 175 million ha of forest, which cover approx‐
imately 18.21% of the country’s land area (Fu et al., 2010), and the for‐
est types range from boreal needle‐leaved and broad‐leaved forests to 
temperate deciduous broad‐leaved forests and subtropical evergreen 

broad‐leaved forests to tropical rainforests (Fang et al., 2001). Such 
terrestrial ecosystems provide a vital carbon sink (Fang et al., 2001; 
Piao et al., 2009). To date, there has been some work investigating the 
biogeographical patterns of biomass allocation in China’s forests (Luo 
et al., 2012; Wang et al., 2014; Zhang, Song, et al., 2015).

In this work, a dataset of the proportions of the NPP allocated 
among different organs from China’s forests was used to investigate 
the relationships between individual allocation strategies and forest 
age and climate. Different from most of current work, NPP partition 
data rather than biomass proportions were used in this work, which 
represented NPP partition rules more directly. This point is very useful 
to evaluate and develop ecological models because most of the cur‐
rent ecological models describe individual growth by NPP partition. 
Furthermore, this dataset includes relatively large number of observa‐
tional data, covering various forest types over China, so this work is 
an important supplement to related research, and provides some vital 
clues not only for ecology, but also for evaluations and developments of 
ecological models (e.g., Dynamic Global Vegetation Models (DGVMs)).

2  | MATERIAL S AND METHODS

2.1 | Study site and species

The observational data used in this work were collected and sorted by 
Luo (1996), which can be obtained from the Chinese Ecosystem Research 
Network (CERN) (https://www.cern.ac.cn/0index/index.asp). It includes 
1,089 sample plots of China’s natural forests (Figure 1), consisting of lon‐
gitude, latitude, MAT (°C), mean annual precipitation (MAP; mm/year), an‐
nual potential evapotranspiration (PET; mm/year), forest type, age (years), 
stand population density (stems ha−1), biomass (t DM ha−1) and NPP (t DM 
ha−1 year−1) for each organ (leaf, stem, branch, and root) and stem vol‐
ume (m3 ha−1) (https://159.226.111.42/pingtai/cernc/). This dataset cov‐
ers 13 forest types, including tropical and monsoon forests, subtropical 
evergreen broadleaf/coniferous forests, temperate deciduous broadleaf 
forests, boreal evergreen/deciduous coniferous forests, and so forth 
(Table 1). The forest stand age ranges from 3 to 350 years, and the MAT 
and MAP are −6.6 ~ 25.2°C and 25 ~ 3,000 mm/year, respectively.

2.2 | Measurement

The observational NPP involved in this work mainly refers to yearly 
allocated NPP to stem, branch, foliage, root, as well as bark, and 
the calculation methods for different organs are usually different. 
Stem NPP and branch NPP are often estimated based on tree age or 
growth rate (Luo, 1996). The age method can be described as.

where ΔBs is the average net growth per area in n years, Bs, a is 
the existing stem biomass, and Bs, a‐n is the stem biomass n years ago, 
calculated based on stem analysis. In the other method, the annual 
woody production of trees is estimated as the woody biomass (stems, 
branches, and roots) multiplied by the average annual growth rate (%) of 

(1)ΔBs= (Bs,a−Bs,a−n)∕n

https://www.cern.ac.cn/0index/index.asp
https://159.226.111.42/pingtai/cernc/
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the stem volume during the most recent 2 or 5 years (Luo et al., 2004, 
2009 ). The species‐specific equations of annual stem growth rate were 
developed by Luo et al. (2002). The annual production of leaves is esti‐
mated as the result of the green leaf mass divided by the species‐spe‐
cific leaf longevity (Luo et al., 2004, 2009 ). Root net growth rate is 
usually estimated by the same growth rate as stem (Luo, 1996), that is,

where ΔBr is root net growth per year, Br and Bs are root and 
stem biomasses, respectively.

2.3 | Analysis methods

The research objects in this work are the fractions of the annual NPP 
allocated to individual leaves (Fleaf; %), stems and branches (Fstbr; %), 
and roots (Froot; %), that is,

where NPPtotal is the total annual NPP per individual and NPPtissue 
is the annual NPP amount allocated to different organs, that is, 
leaves, stems and branches, as well as roots. NPP is converted to 
the forms of carbon content. Sample plots involved in this work are 
classified into 13 forest types (Table 1), and data are classified into 
needle‐leaved forests and broad‐leaved forests in some analyses.

Furthermore, to further quantitatively test for direct impacts 
of climate on NPP, partition independent effect analysis (Chu et al., 
2016; Murray & Conner, 2009) is used instead of partial correlations. 
Following Murray and Conner (2009), independent effect index of 
variable x1 (Ix1) is defined as.

where x1 is the research variable, xh is any subset of I predictors, x1 
excluded.

3  | RESULTS

3.1 | Statistics of NPP and NPP partition

In this CERN dataset, the averaged NPP for each organ of the broad‐
leaved forests was larger than that of the needle‐leaved forests 
(NPPleaf: 0.234 vs. 0.132; NPPstbr: 0.266 vs. 0.166; NPProot: 0.075 vs. 
0.039) (Figure 2). It was probably because broad‐leaved forests usu‐
ally grew in relatively warm and humid regions, so that photosynthe‐
sis effect was stronger than needle‐leaved forests. The variances of 
NPP allocated to different tissues of the broad‐leaved forests were 
also obviously larger.

Next, we discussed the frequency distributions of the NPP parti‐
tion proportions (σs; %) (Figure 3). All of the σs were unimodal except 

(2)ΔBr=ΔBs×Br∕Bs

(3)Ftissue=NPPtissue/NPPtotal

(4)
Ix1 =

k−1�
i=0
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F I G U R E  1   Locations of the 1,089 
sample plots of natural forests in the 
CERN dataset

TA B L E  1   Abbreviations for each forest type

Forest type Abbreviation

Boreal‐temperate deciduous needle‐leaved forest NDB‐M

Boreal deciduous needle‐leaved forest NDB

Boreal evergreen needle‐leaved forest NEB

Temperate evergreen needle‐leaved forest NEM

Temperate mixed needle‐broad‐leaved forest N‐BM

Temperate deciduous broad‐leaved forest BDM

Temperate‐subtropical deciduous forest BDM‐ST

Desert riverside woodland DerW

Subtropical mixed evergreen‐deciduous broad‐
leaved forest

BE‐DST

Subtropical evergreen broad‐leaved forest BEST

Subtropical montane needle‐leaved forest MNST

Tropical rainforest and monsoon forest R‐MT

Subtropical evergreen needle‐leaved forest NEST
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the Fleaf for broad‐leaved forests, and it seemed that the proportions 
of NPP partition for the needle‐leaved forests were more concen‐
trated in narrow ranges. In the considered plots, the averaged Fleaf, 
Fstbr, and Froot were 39.6%, 48.6%, and 11.9%, respectively, for the 
needle‐leaved forests, while the broad‐leaved forests tended to 
allocate a higher NPP proportion to foliage (the averaged Fleaf was 
up to 47.6%) and a lower NPP proportion to branches and trunks 
(the averaged Fstbr was 40.7%). For the needle‐leaved forests, ap‐
proximately 61.0% of the plots had trees with 30% < Fleaf ≤ 45%, 
while for the broad‐leaved forests, plots with 30% < Fleaf ≤ 45% ac‐
counted for approximately 46.3%. Similarly, approximately 61.0% 
of the needle‐leaved forests and 44.2% of the broad‐leaved for‐
ests had trees with 40% < Fstbr ≤ 55%. The Froot for the two forest 
types was mainly below 30%. Approximately 20.0% and 57.7% of 
the needle‐leaved forest plots had trees with 5% <Froot ≤ 10% and 
10% < Froot ≤ 15%, respectively, while for broad‐leaved forests, plots 
with 5% < Froot ≤ 10%, 10% < Froot ≤ 15%, and 15% < Froot ≤ 20% ac‐
counted for approximately 22.0%, 40.3%, and 26.6%, respectively.

3.2 | Factors in relation to NPP partition for 
China's forests

As is well known, individual growth strategies are governed by a 
combination of biotic and abiotic factors. Forest age is one of the 

most important indexes describing plant states, while MAT, MAP 
and aridity index (the ratio of mean annual precipitation and poten‐
tial evapotranspiration) (UNEP, 1997) are basic variables depicting 
temperature and water availability, respectively. However, colinear‐
ity diagnostics (eigenvalue analysis and condition index diagnostics) 
indicated that there was strong colinearity between forest age and 
MAP (or aridity index), MAT and MAP (or aridity index) in this data‐
set. Therefore, MAP and aridity index were eliminated from the fol‐
lowing statistical analysis.

First, the relationship between NPP partition and forest age 
was discussed. In order to exclude the effects of MAT on NPP parti‐
tion, dataset was divided into several temperature zones (Figure 4). 
Overall, NPP allocation proportions were significantly sensitive to 
forest age in all temperature zones (p < 0.0001). For both needle‐
leaved and broad‐leaved forests, younger individuals were inclined 
to allocate a lower NPP proportion to foliage and a higher NPP pro‐
portion to stems/branches and roots in a given temperature zone 
(Figure 4). Such phenomena were in accordance with the dynamic 
behaviors of carbon allocation parameterization in some concept 
models and numerical models (e.g., aDGVM (Scheiter & Higgins, 
2009)): As plants aged, woody biomass becomes sufficient for 
structure support as well as nutrition and water absorption due 
to slow turnover rate; therefore, to obtain the maximum photo‐
synthesis rate, an increasing proportion of NPP is used for foliage 
growth.

Then, to investigate the dependence of NPP partitions on MAT, 
the dataset was grouped into three age classes: forest age <50 years, 
50 ≤ forest age ≤100 years, and forest age >100 years (Figure 5). 
Results showed that NPP partition had different sensitivities to MAT 
among various cases. It seemed that NPP allocation proportions of 
needle‐leaved forests had weak dependence on MAT. However, 
broad‐leaved forests below 100 years old showed a significant 
sensitivity on MAT (p < 0.0001 for most of cases), and the Pearson 
correlation coefficient (R) between allocation proportions and MAT 
declined with forest age (Supporting information Appendix S1). 
Throughout the cases significant at 0.05 level for two forest types, 
Fleaf and Froot decreased with MAT, while Fstbr increased with MAT 
(Figure 5).

In nature, the actual plant growth strategies are the emergent 
properties resulting from interactions among numerous factors. 
Using independent effect analysis, the results demonstrated that 
for both needle‐leaved and broad‐leaved forest, forest age played a 
more significant role in Fleaf and Froot, while for Fstbr, MAT had dom‐
inant impacts. Furthermore, compared with needle‐leaved forests, 
Fleaf and Fstbr for broad‐leaved forests had larger dependences on 
forest age and MAT (Table 2).

Finally, multiple regressions were used to investigate the com‐
bined effects of forest age and MAT on NPP partition (Table 3). It 
was shown that for both needle‐leaved and broad‐leaved forests, 
(a) in accordance with Figure 4, Fleaf had a positive correlation with 
forest age, while Fstbr and Froot had a negative correlation with for‐
est age; (b) Fleaf and Froot were negatively correlated with MAT, 
while Fstbr was positively correlated with MAT. For needle‐leaved 

F I G U R E  2   Statistics of net primary production allocated to 
leaves (NPPleaf; kgC m−2 year−1), stems and branches (NPPstbr; 
kgC m−2 year−1), and roots (NPProot; kgC m−2 year−1). The black lines 
refer to the minimum, the 25th%, the median, the 75th%, and the 
maximum value from bottom to top, and the red star point is the 
average value for each variable

(a)

(b)
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forests, the combined influence of forest age and MAT only ac‐
counted for approximately 6.7% and 8.1% of the variances in Fleaf 
and Fstbr, while the Fleaf and Fstbr of broad‐leaved forests were 

more remarkably influenced by forest age and MAT which to‐
gether illustrated 39.8% and 47.1% of the variances in Fleaf and 
Fstbr, respectively.

F I G U R E  3   The frequency (σ; %) distribution of NPP partition allocated to leaves (Fleaf; %), stems and branches (Fstbr; %), and roots (Froot; 
%) for needle‐leaved and broad‐leaved forests

(a) (b) (c)

(d) (e) (f)

F I G U R E  4   The dependence of NPP 
partition allocated to foliage (Fleaf; %), 
stems and branches (Fstbr; %), and roots 
(Froot; %) on forest age (Age; years) for 
different temperature zones

(a) (b)

(c) (d)

(e) (f)
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4  | CONCLUSIONS AND DISCUSSION

Net primary production allocation among individual foliage, stem and 
branch, as well as root is thought to be the main mechanism of plant 
growth. Not only it has a close relationship with forest ecosystem dy‐
namics, but also it has a vital effect on global carbon cycle. As well 
known, NPP allocation is determined by biotic and abiotic factors to‐
gether, and there have been a lot of attempts to explore their effects 
(Chen et al., 2015). However, there is still much uncertainty about NPP 

partition mechanisms. To identify the effects of forest age and climate, 
as well as their relative importance for forest NPP partition, independ‐
ent effect analysis and multiple regressions were used to process the 

F I G U R E  5   The dependence of NPP partition allocated to leaves (Fleaf; %), stems and branches (Fstbr; %), and roots (Froot; %) on mean 
annual temperature (MAT; °C) for needle‐leaved and broad‐leaved forests. Solid lines denoted the cases significant at 0.05 level, while the 
dashed lines mean the opposite cases

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

TA B L E  2   Independent effect index for NPP partition 
proportions

IAge IMAT

Needle‐leaved

Fleaf 0.027 0.018

Fstbr 0.013 0.065

Froot 0.084 0.056

Broad‐leaved

Fleaf 0.178 0.147

Fstbr 0.170 0.232

Froot 0.072 0.001

TA B L E  3   Multiple regressions between NPP partition with 
forest age and climate factors

Equation R2 p

Needle‐leaved

Fleaf Fleaf = 4.344log(Age) – 0.231MA
T + 22.401

0.067 <0.0001

Fstbr Fstbr = –1.597log(Age) + 0.511M
AT + 52.524

0.081 <0.0001

Froot Froot = –2.728log(Age) – 0.281M
AT + 25.016

0.164 <0.0001

Broad‐leaved

Fleaf Fleaf = 14.693log(Age) – 0.790M
AT – 6.036

0.398 <0.0001

Fstbr Fstbr = –11.445log(Age) + 0.857
MAT + 80.006

0.471 <0.0001

Froot Froot = –3.076log(Age) + 24.715 0.100 <0.0001

Note. Fleaf (%), Fsrbr (%), and Froot (%) denoted NPP proportion allocated to 
leaf, stem and branch, as well as root, respectively; Age (years) was forest 
stand age; MAT (°C) was mean annual temperature.
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observational data from the Chinese Ecosystem Research Network 
(CERN) in this work. The results showed that for both needle‐leaved 
and broad‐leaved forests, (a) NPP partition was remarkably sensitive 
to forest age, that is, Fleaf increased with forest age, while Fstbr and 
Froot decreased with forest age. Such the finding is consistent with the 

observed phenomena that leaf biomass increases in China’s subtropi‐
cal evergreen broad‐leaved forests described in Xiao, Zhou, Zhang, 
Wang, and Liu (2014) and low root:shoot ratio in current China’s forests 
found by Tang, Zhao, Bai, and co‐authors, (2018); (b) Fleaf and Froot were 
negatively correlated with MAT, while Fstbr was positively correlated 

TA B L E  4   Multiple regressions between NPP partition with forest age and climate factors for 13 PFTs

PFTs Equation R2 p

NDB‐M Fleaf = 29.828log(Age) − 1.758MAT − 81.618 0.814 <0.0001

Fstbr = −20.845log(Age) + 2.388MAT + 130.907 0.669 <0.0001

Froot = −8.985log(Age) – 0.627MAT + 50.752 0.659 <0.01

NDB Fleaf = 9.857log(Age) − 1.872MAT − 6.403 0.363 <0.0001

Fstbr = −8.667log(Age) + 1.682MAT + 89.251 0.295 <0.0001

Froot = −1.196log(Age) + 0.184MAT + 17.231 0.068 <0.05

NEB Fleaf = 17.385log(Age) − 25.783 0.911 <0.0001

Fstbr = −11.370log(Age) + 88.110 0.827 <0.0001

Froot = −6.104log(Age) + 38.082 0.880 <0.0001

NEM Fleaf = 13.790log(Age) − 14.595 0.231 <0.05

Fstbr = −9.685log(Age) + 85.296 0.174 <0.0001

Froot = −4.072log(Age) + 29.157 0.231 <0.0001

N‐BM – – >0.4

– – >0.7

– – >0.3

BDM Fleaf = 21.620log(Age) + 0.747MAT − 33.080 0.262 <0.1

Fstbr = −12.849log(Age) + 83.932 0.195 <0.0001

Froot = −7.699log(Age) + 40.548 0.302 <0.0001

BDM‐ST Fleaf = 16.525log(Age) − 21.519 0.542 <0.0001

Fstbr = −11.062log(Age) + 84.613 0.488 <0.0001

Froot = −5.458log(Age) + 36.897 0.308 <0.0001

DERM Fleaf = −14.563log(Age) − 75.657 0.400 <0.1

– – >0.2

– – >0.3

BE‐DST – – >0.3

Fstbr = 56.193 0.071 <0.0001

Froot = 1.210MAT 0.311 <0.01

BEST Fleaf = 15.652log(Age) + 0.446MAT − 30.978 0.607 <0.002

Fstbr = −13.876log(Age) + 0.308MAT + 109.348 0.675 <0.005

Froot = −1.776log(Age) − 0.140MAT + 21.657 0.054 <0.1

MNST Fleaf = 23.577log(Age) − 1.174MAT − 34.059 0.580 <0.05

Fstbr = −17.646log(Age) + 1.243MAT + 101.430 0.617 <0.0001

Froot = −5.924log(Age) + 31.886 0.334 <0.0001

R‐MT – – >0.4

– – >0.3

Froot = −2.810log(Age) + 0.987MAT + 0.865 0.747 <0.1

NEST Fleaf = 8.448log(Age) 0.300 <0.001

Fstbr = −8.998log(Age) − 0.589MAT + 93.876 0.422 <0.1

– – >0.6

Note. Fleaf (%), Fsrbr (%), and Froot (%) denoted NPP proportion allocated to leaf, stem and branch, as well as root, respectively; Age (years) was forest 
stand age; MAT (°C) was mean annual temperature.
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with MAT; (c) independence effect analysis demonstrated that forest 
age played a more significant role in Fleaf and Froot, while for Fstbr, MAT 
had dominant impacts. In addition, compared with needle‐leaved for‐
ests, NPP partition of broad‐leaved forests with age <100 years had a 
stronger dependence on forest age and MAT.

As shown above, the NPP partition of needle‐leaved forests was 
not very sensitive to forest age and MAT (Table 3). It was probably be‐
cause of mixture among forest stands with different traits. Previous 
studies have reported that biomass partition is usually age‐specific 
(Peichl & Arain, 2007). Similarly, from Figure 5, it was found that MAT 
had no significant influence on Fleaf and Fstbr for needle‐leaved for‐
ests with age <100 years, while for stands with age >100 years, Fleaf 
decreased with MAT, and Fstbr increased with MAT, which indicated 
that the sensitivity of NPP partition to MAT could change with plant 
growth. On the other hand, there are six forest types grouped into 
needle‐leaved forests, and NPP partition of different forest types 
may have diverse sensitivity to forest age and MAT. To test this as‐
sumption, multiple regressions between NPP partition and forest 
age as well as MAT for 13 forest types were calculated, respectively 
(Table 4). Due to forest type refinement, fitting degree of regression 
equation was remarkably improved, especially for needle‐leaved for‐
ests. For example, the combination of forest age and MAT accounted 
for about 81.4% and 66.9% of the variance in Fleaf and Fstbr for NDB‐M. 
Meanwhile, for some other needle‐leaved forests, NPP partition was 
indeed not sensitive to forest age and MAT (N‐BM) or was only signifi‐
cantly influenced by forest age (NEB, NEM, and NEST). It also should 
be noted that for NDB‐M, NDB, and NEB, Fstbr was significantly and 
positively correlated with MAT, while Fstbr of NEST was negatively 
correlated with MAT. Such distinction of relationship was also likely to 
reduce the fitting degree of equation in Table 3.

For broad‐leaved forests, it was found that the correlation of 
NPP partition with MAT declined across the three age classes: It 
was highest for stands 0–50 years old, but not sensitive for stands 
above 100 years old. It also may be because forest characteris‐
tics significantly change with age, meanwhile, the responses of 
NPP partition to MAT critically depend on forest composition 
and structure (Coomes et al., 2014). On the other hand, in older 
stands with higher NPP, there is a greater likelihood of equilibrium 
or stand decline, weakening the relationship of biomass change 
to NPP (Chu et al., 2016; Michaletz, Cheng, Kerkhoff, & Enquist, 
2014). So, if using biomass change in short intervals defined as 
NPP, the relationship between biomass change and climate proba‐
bly cannot reflect the correlation of NPP with climate.

In addition, there may be some uncertainties resulting from ob‐
servational data in this work. To investigate plant carbon allocation 
strategies, choosing the proportions of the NPP allocated to differ‐
ent organs seems better. However, forest NPP cannot be directly 
measured, and alternatively, NPP is defined as the total new organic 
matter produced during a specified interval (Clark et al., 2001). 
Ideally, NPP is the sum of all materials including the following: (a) 
the amount of new organic matter that is retained by live plants at 
the end of the interval, and (b) the amount of organic matter that 
was both produced and lost by the plants during the same interval. 

However, as mentioned in subsection 2.2, the observational NPP 
in this CERN dataset omits the litter fall, which may lead to under‐
estimate actual NPP (Chu et al., 2016; Clark et al., 2001), and then 
results in bias in the intrinsic climate dependency of NPP partition.

This work not only is important for understanding the contri‐
bution of climatic factor and forest age on forest NPP partition, 
but also provides valuable ideas for developing ecological models 
because the NPP partition scheme is usually the sole part describ‐
ing the individual growth strategies of plants, and such processes 
directly determine model simulation performances. Of course, 
more observational data are still needed to further verify the car‐
bon allocation rules.
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