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Malaria is associated with significant microcirculation disorders, especially

when the infection reaches its severe stage. This can lead to a range of

fatal conditions, from cerebral malaria to multiple organ failure, of not

fully understood pathogenesis. It has recently been proposed that a break-

down of the glycocalyx, the carbohydrate-rich layer lining the vascular

endothelium, plays a key role in severe malaria, but direct evidence support-

ing this hypothesis is still lacking. Here, the interactions between Plasmodium
falciparum infected red blood cells (PfRBCs) and endothelial glycocalyx are

investigated by developing an in vitro, physiologically relevant model of

human microcirculation based on microfluidics. Impairment of the glyco-

calyx is obtained by enzymatic removal of sialic acid residues, which, due

to their terminal location and net negative charge, are implicated in the

initial interactions with contacting cells. We show a more than twofold

increase of PfRBC adhesion to endothelial cells upon enzymatic treatment,

relative to untreated endothelial cells. As a control, no effect of enzymatic

treatment on healthy red blood cell adhesion is found. The increased

adhesion of PfRBCs is also associated with cell flipping and reduced velocity

as compared to the untreated endothelium. Altogether, these results provide

a compelling evidence of the increased cytoadherence of PfRBCs to glycocalyx-

impaired vascular endothelium, thus supporting the advocated role of

glycocalyx disruption in the pathogenesis of this disease.
1. Background
Malaria is the most widespread mosquito-borne infectious disease in humans

and it is caused by single-celled Plasmodium parasites. Most of the cases of

fatal malaria are due to Plasmodium falciparum (Pf ), a species with a mortality

of 15–20% mostly among children in sub-Saharan Africa, where it is endemic

[1–4]. Malaria is transmitted through the bite of an infected female Anopheles
mosquito in the form of sporozoites. The asexual reproduction of the sporozoites

produces free forms of parasite (‘merozoites’); once released in the blood stream,

these proceed through rounds of intracellular growth, egress and invasion,

greatly amplifying their number by clonal divisions. The ability of merozoites

to invade cells is limited to a few minutes after parasite egress from red blood

cells (RBCs) [5,6]. The parasites grow intracellularly in the blood stage for

around 48 h through ring, trophozoite, and schizont phases [1,2,7–9].

The disease state is characterized by microcirculation disorders, including

mechanical obstruction of small blood vessels connected to the progressive

changes in Pf-infected RBC (PfRBC) shape, size, and structure during the

intraerythrocytic cycle [10,11] compared to healthy conditions [12,13]. In

severe malaria (SM), mature PfRBCs change their membrane properties and
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develop the ability to bind to endothelial cells of peripheral

blood vessels (sequestration) [1,14], to adhere to nearby

nonparasitized RBCs (HRBCs) (rosetting) [15] and/or to

other PfRBCs (auto-agglutination) [16]. Such phenomena

cause the restriction of the vascular lumen, leading to anae-

mia and fatal complications due to the blockage of the

microcirculatory flow and the lack of PfRBC clearance by

the spleen [17].

Malaria cytoadherence has been widely investigated both

by experimental research and mathematical simulations.

Several possible mechanisms have been proposed, such as

changes of RBC rigidity [1,2,18], induction to release of pro-

inflammatory receptors [19], binding of PfRBCs to specific

adhesion receptors on endothelial cells [20], and activation

of endothelial receptors [21,22]. Due to the complex structure

of microvasculature, most experimental studies have taken a

simplifying approach, addressing PfRBC adhesion and

sequestration in flow chambers coated by a choice of the

adhesion molecules likely involved in the adhesion pathway

(i.e. CD36, V-CAM1, I-CAM1) [23–26]. In some studies, the

cytoadhesion of PfRBCs at schizont stage under physiological

flow conditions was also associated with rolling, a behaviour

similar to the one of leucocytes in the first step of extravasa-

tion during acute inflammation [27–29]. PfRBC cytoadhesion

under flow has also been investigated by computational

models as a function of relevant parameters, such as cell stiff-

ness, flow conditions, tube dimensions and haematocrit.

Fedosov et al. [29–32], investigating the adhesion of PfRBCs

in cylindrical capillaries, identified several modes of adhesive

behaviour: solid adhesion, slow slipping along the wall, and

intermittent flipping. These computational studies shed criti-

cal information on the complex physical interactions coupling

fluid dynamics to cell membrane deformability, but they lack

biochemical detail at the microscopic level. Despite these

significant insights, the mechanisms at the base of PfRBC

binding to endothelial cells remain unclear and are still

under debate.

Recently, it has been suggested [33] that a breakdown of

the glycocalyx, the carbohydrate-rich layer lining the vascular

endothelium, might play a key role in SM. Endothelial

remodelling in malaria may result from local inflammation

and activation of enzymes inducing glycocalyx shedding,

such as thrombin and plasmin. Removal of the outer

glyocosaminoglycans may allow interaction of PfRBCs with

glycoproteins, such as CD36, intercellular adhesion molecule

1 and endothelial protein C receptor, which are located at a

deeper level in the glycocalyx and are involved in the cyto-

adhesion pathway. In addition, PfRBCs themselves may

also directly bind to the endothelium through glycosamino-

glycans, such as heparan sulfate and chondroitin sulfate

[34,35], and contribute to endothelium remodelling by

generating components with sheddase-like functions [33,36].

In vitro models are especially relevant to assess the puta-

tive role of glycocalyx in SM pathogenesis, since they allow

the use of human materials and controlled perturbations.

Nevertheless, the application of such models has been

hindered by the experimental difficulty to obtain a mature

glycocalyx in vitro. Protocols to observe endothelial glyco-

calyx in vitro by confocal microscopy under static [37] and

flow conditions [38] have been recently published. However,

to the best of our knowledge, no reports describing models of

microcirculation to study the effect of glycocalyx on malaria

in vitro are available in the literature.
Here, we describe a microfluidic organ-on-chip device

that mimics the lumen of a blood microvessel using small

sample volumes and allows one to observe PfRBC adhesion

onto endothelial cells under flow rates in the physiological

range of microcirculation. The coupling of microfluidics and

live microscopy provides a reliable in vitro model for the

investigation of cytoadherence in Pf malaria under physio-

logical conditions. By selectively removing the sialic acids

of the endothelial glycocalyx via enzymatic treatment, we

found that malaria infected cells become more adhesive with

respect to healthy ones, thereby showing that the vascular

endothelial glycocalyx strongly regulates cytoadherence.
2. Methods
2.1. Healthy red blood cells
Human blood was obtained from healthy volunteers. RBCs were

separated from other blood components by centrifugation (as

described in detail in electronic supplementary material S1)

and suspended in wash medium at a 1 : 1 ratio by volume to

have a 50% haematocrit (Hct) suspension. The latter was

placed at 48C for storage for up to 7–10 days.

2.2. Plasmodium falciparum culture
Pf ITO4 strain [39] knob positive was provided by Drs V.L. Lew

and T. Tiffert (Department of Physiology, Development and Neuro-

science, University of Cambridge). ITO4 parasites were cultured in

fresh human RBCs (prepared as described in §2.1) under low-

oxygen atmosphere (1% O2, 3% CO2, and 96% N2), and the culture

medium (wash medium supplemented with 0.5% AlbuMAX II,

Sigma-Aldrich) was changed daily according to standard protocols

[40,41]. For experiments requiring a low level of parasitaemia,

around 5%, the Hct was maintained at 5% and the malaria culture

was synchronized through the sorbitol lysis method [42] to keep

the development stage of the parasites within a narrow range (tro-

phozoites and schizonts). For experiments requiring an elevated

number of highly synchronous infected red blood cells (PfRBCs),

we followed the protocol of Radfar et al. [43], using low Hct of

1–1.5% and the sorbitol synchronization method to shorten the

parasite cycle window to 4–6 h, therefore increasing the parasitae-

mia to 15–20%. The parasitaemia was assessed by microscopic

inspection of Giemsa-stain (Sigma-Aldrich) blood smears.

2.3. Growth of human umbilical vein endothelial cells
in microfluidic channels

Primary human umbilical vein endothelial cells (HUVECs, from

Sigma-Aldrich) were cultured at 378C in a 5% CO2 incubator on

uncoated tissue-culture polystyrene flasks (see electronic sup-

plementary material S2 for details) until cell confluency of 85%

was reached. A suspension of HUVECs (density of about

106 ml21) was transferred from the flask and seeded into the

microchannels (commercially available from Ibidi as m-Slide VI)

used to perform controlled flow experiments.

Each microchannel was coated with collagen type IV and had

a rectangular geometry with height (h) 0.4 mm, width (w)

3.8 mm, and length (l) 17 mm.

A volume of 60 ml of HUVEC suspension was quickly

released into each channel of the slide to cover its entire surface.

After 2–3 h, cells were already attached to the bottom surface,

and fresh endothelial cell growth medium (ECGM) was added

to the reservoir of the flow chamber. Cells grew in the incubator

for 1–2 days until confluency with a daily change of ECGM.

Finally, a suspension of infected and healthy RBCs was flowed

across the HUVEC monolayer, as illustrated in figure 1.
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Figure 1. Malaria infected cells become more adhesive with respect to HRBCs, and the vascular endothelial glycocalyx regulates adhesion. An organ-on-chip vascular
endothelium of HUVECs is grown in a flow chamber, guaranteeing cell alignment and physiological glycocalyx. Cytoadherence experiments are performed in situ
while perfusing cell suspension of HRBCs and PfRBCs at controlled flow rate using a syringe pump. The microfluidic chip has multiple channels (17 � 3.8 �
0.4 mm) used for on-chip controls. The whole set-up is placed in an incubator for the growth of the endothelium, and on the stage of an inverted microscope
equipped with temperature control and gas supply for imaging. Experiments compare two conditions (schematically drawn in a and b): in (a) the integral glycocalyx
covers all the endothelial surface, preventing the adhesion of all the healthy and most of the infected RBCs, and favouring the flow of RBCs across the endothelium;
while in (b) the glycocalyx is largely removed by an enzymatic treatment, strongly affecting PfRBC cytoadherence. The loss of sialic acid layer on the outer portion of
glycocalyx (b) leads to adhesion of PfRBCs to glycoproteins on the endothelial surface. It is possible that in vivo the partial damage or complete loss of glycocalyx
could account for increased PfRBC adhesion and may cause blood flow problems such as hypoxia and inflammatory processes typical of SM. The glycocalyx structure
is schematically represented in blue, and the sialic acid, as part of glycocalyx, is highlighted in yellow. RBCs are in red: PfRBCs can be distinguished from HRBCs
because of the black spot representing the intracellular haemozoin, typical of late-stage infected RBCs.
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2.4. Characterization of endothelium growth
HUVECs were grown in parallel microchannels at the same time

as control, both in static and under shear stimulation for up to

8 days (see electronic supplementary material S3 for details).

The steady shear stress applied was 2 Pa, a typical value in the

human circulatory system [44].

Immunofluorescent staining of the glycocalyx was obtained

by using Wheat Germ Agglutinin (WGA-Alexa Fluor 488 (Mol-

ecular Probes)), a lectin that binds to sialic acid, an important

component of the endothelial glycocalyx [37].

The contribution of glycocalyx on malaria-induced cytoad-

herence was assessed via enzymatic digestion (details in

electronic supplementary material S3) by incubation with neur-

aminidase, which cleaves the O-glycosidic bonds between the

terminal sialic acids and the subterminal sugars [45] with a

95% specificity [46,47].

2.5. Microfluidic set-up for studying malaria adhesion
on endothelium

PfRBCs were diluted to 0.1% Hct for imaging by adding culture

medium and fresh uninfected erythrocytes (HRBCs), but keeping
the level of parasitaemia at 20%, which is typical of SM [48]. This

suspension was loaded into the microchannel using a syringe

pump (Harvard Apparatus) with flow rate regulation, as

illustrated in the top view panel of figure 1.

To measure the velocity of HRBCs and PfRBCs at different wall

shear stresses, videos were recorded at frame rate ranging from 10

to 300 frames per second depending on the flow rate and the size

of the acquisition window (see electronic supplementary material

S4 and S5).
3. Results
3.1. The microfluidic set-up provides a physiologically

relevant model of microcirculation in vitro
The microfluidic set-up described in the previous section was

used to create an organ-on-chip in vitro model mimicking the

human vasculature microenvironment lined with HUVECs

expressing the glycocalyx layer. The perfusion system, ensur-

ing physiological flow conditions, allowed the growth of a

viable HUVEC monolayer on the bottom plane of the flow
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layer is reduced in flow conditions. The plots show the distribution of the WGA intensity used to highlight the HUVEC surface as a function of their thickness in static,
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180773

4

chamber, with cell alignment and formation of endothelial gly-

cocalyx. Our experiments compare two conditions: (i) the

physiological case in which glycocalyx is produced on the

top layer of HUVECs (as schematically shown in figure 1a)

and (ii) the case in which glycocalyx is partly damaged

by the loss of sialic acids (figure 1b), leading to enhanced

cytoadherence of PfRBCs, as implicated in malaria infection.

The growth of HUVECs under microfluidic perfusion

leads to a physiologically relevant endothelium, as shown

in the pictures reported in figure 2a: HUVECs adhere onto

microchannel wall, forming a confluent monolayer of pro-

gressively oriented cells. Cell alignment along the flow
direction was measured considering the angle between the

major axis of the cell and the orthogonal direction to the

flow. A polar plot was generated by distributing cell orien-

tation angles into 25 equal slices (7.28 each) representing the

whole range (0–1808). The microscopy images of HUVECs

illustrate progressive cell alignment under 2 Pa flow over

8 days, as quantified in the polar plots from bottom to top.

In static conditions, HUVECs are randomly orientated, while

after just one day the cells start orienting along the flow

direction (90o). In particular, after one day under flow about

80% of cells are in the 608–1208 range, and after 8 days all

cells show orientation angles within the 608–1208 range.
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HUVEC elongation can be quantified by the shape index

(SI) of the cells, defined as

SI ¼ 4p A
P2

, ð3:1Þ

where A is the cell area, and P is the cell perimeter [49,50].

SI values range from 0 for a straight line to 1 for a perfect

circle. In figure 2b the SI is plotted as a function of time. SI

remains almost constant until day 5, then it starts decreasing

on day 6, and by day 8 the difference from the static value is

statistically significant ( p , 0.001).

The glycocalyx expression and thickness were quantified

by recording z-stack of images starting from the bottom

surface of the microchannel, both in static and under flow,

before and after enzyme treatment. Glycocalyx expression

was quantified through fluorescent plasma membrane stain-

ing with WGA, a lectin that binds to sialic acids, the most

commonly observed components of endothelial glycocalyx,

responsible for the negative charge and generally used as

representative of the glycocalyx presence [51–53]. In

figure 2c, the value of the mean fluorescence intensity in

each condition is normalized with respect to the confocal

microscopy gain value chosen during acquisition. It can be

observed that fluorescence doubles in aligned HUVECs,

whereas it is comparable to the non-aligned cells during

incubation with neuraminidase treatment, and after wash.

This shows that perfusion of HUVECs under physiological

flow conditions is essential to obtain higher cell alignment

and glycocalyx expression as compared to static culture

conditions.

Another parameter indicative of a physiologically

relevant HUVEC monolayer is its thickness: we evaluated

this by recording image z-stacks of HUVEC monolayers,

from the surface of the microscope slide upwards in steps

of 0.2 mm. The surface of the glycocalyx layer was recon-

structed by taking at each point the thickness of the

maximum fluorescence intensity value of the WGA dye.

The plot in figure 2d shows the distributions of the WGA

maximum fluorescence intensity as a function of thickness

under static and flow conditions, during incubation with

neuraminidase, and after enzyme wash. The width of these

distributions shows that HUVECs under flow have thickness

of about 6 mm, with no significant difference before and after

the neuraminidase treatment, whereas the thickness of

HUVECs in static conditions is about 9 mm, indicating that

the applied flow, and the consequent cell alignment, lead to

cell thinning. Regarding the thickness of the glycocalyx

layer, it depends on the techniques used to measure it and

usually varies from several hundred nanometres to 1 mm

[53], thus it is much smaller than HUVEC thickness. More-

over, it has been shown that the glycocalyx layer under an

applied shear stress up to 2.0 Pa is similar to that under

static conditions [54]. Hence, in our condition (i.e. 2 Pa) the

difference in HUVEC thickness between static and flow is

not due to glycocalyx thickness.

To sum up, neuraminidase treatment leads to decrease of

WGA signal due to removal of sialic acids, but does not sub-

stantially change HUVEC thickness due to the limited

thickness of sialic acids. Instead, HUVEC thickness is mark-

edly decreased under flow due to cell alignment and

flattening. The flow chamber was first characterized by

using the syringe pump to flow HRBCs both in bare and

endothelialized microchannels. As expected, HRBC velocity
profiles as a function of channel height showed a parabolic

trend and centreline velocity was higher in bare channels as

compared to that in HUVEC lined channels due to the endo-

thelial reduction of channel lumen (more details are available

in electronic supplementary material S5).

3.2. Neuraminidase treatment affects the flow
behaviour of HRBCs and PfRBCs near wall

Having assessed that a physiologically relevant layer of

glycocalyx-expressing HUVECs and well-controlled HRBC

velocity profiles were obtained by the microfluidic set-up

developed in this work, we now focus on the effect of neur-

aminidase on the flow behaviour of HRBCs and PfRBCs. In

figure 3a representative images of PfRBCs flowing over the

HUVEC monolayer are shown.

Late stage PfRBCs such as trophozoites and schizonts can

be recognized by the black spot of haemozoin, a product

formed from the digestion of haemoglobin by the parasites.

PfRBCs at trophozoite stage showed a peculiar flipping

motion and at schizont stage a rolling motion before adhering

firmly to the endothelium (figure 4a). While the HRBCs move

along the HUVEC surface in different motions such as tank-

treading, tumbling, and rolling, depending on the flow rate

(as described in electronic supplementary material, figure

S1), PfRBCs only flip and roll, respectively, for all the wall

shear stresses. Both behaviours have been reported in the lit-

erature for PfRBCs flowing in microchannels in vitro, coated

either with adhesion molecules or with endothelial cells

(e.g. see review by Rowe et al. [55]). However, to the best of

our knowledge, no study of rolling and firm adhesion of

PfRBCs onto endothelial cells with a defective glycocalyx

has been conducted so far. We have found that the flipping

and rolling dynamics is unchanged when the sialic acid

layer on HUVEC glycocalyx is removed, but PfRBC motion

slows down by 10–14% at 0.01 Pa.

The effect of neuraminidase on HRBC bulk flow was

evaluated by comparing HRBC centre line velocity for untreated

and enzyme-treated HUVECs, as shown in figure 3b. No

significant difference between control and neuraminidase-

treated samples is observed for each wall shear stress, i.e.

the loss of sialic acids does not influence HRBC bulk

flow behaviour.

This result is not unexpected due to the small thickness of

the glycocalyx layer (in the range 0.17–3.02 mm) [56] with

respect to the channel height (400 mm) in our microfluidic

device, although a significant reduction in glycocalyx thick-

ness has been found upon treatment with neuraminidase

[47]. As no bulk flow effects were found, the attention was

focused on the near wall flow behaviour of HRBCs and

PfRBCs in proximity of the endothelial surface.

The same analysis has been carried out for PfRBCs before

and after the removal of glycocalyx sialic acid by neuramini-

dase, and compared with results obtained for HRBCs. We

have checked that an intact glycocalyx covers all the endo-

thelial surface, preventing the adhesion of all the healthy

and most of the infected RBCs, thus favouring the flow of

RBCs across the endothelium. As shown in figure 3c, the

near wall velocity of PfRBCs is always higher than that of

HRBCs both for control and neuraminidase-treated samples

( p , 0.05). This result could be explained by the different tra-

velling modes of HRBCs and PfRBCs: while the first show a

tank-treading behaviour, the latter exhibit more tumbling/
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flipping behaviour due to parasite-induced cell stiffening.

Furthermore, this is consistent with a slowing-down of

HRBCs moving near a polymer brush mimicking the glyco-

calyx, which has been described in the literature [57]. A

statistically significant difference is also present separately

between control and neuraminidase-treated samples for

HRBCs and PfRBCs, but only at 0.01 Pa ( p , 0.05). Such

difference of 10–14% could be attributed to a velocity
reduction induced by increased adhesion with enzyme-

treated HUVECs. No difference in cell velocity is reported

starting from 0.03 Pa due to the increasing distance between

flowing RBCs and the endothelium which leads to lower

cytoadhesion at higher wall shear stress.
3.3. Neuraminidase treatment enhances cytoadhesion
of PfRBCs only, in a parasitaemia and shear stress
dependent manner

The effect of PfRBCs binding to glycocalyx of vascular endo-

thelium is studied by analysing HRBC and PfRBC firm

adhesion (henceforth just referred to as adhesion) on

HUVECs, before and after the selective removal of sialic

acids by neuraminidase. In particular, HRBC and PfRBC

adhesion has been evaluated by counting the number of

RBCs attached to endothelium after 1 h flow at 0.33 Pa, unat-

tached RBCs being flushed out by applying a strong flux at

0.39 Pa of fresh culture medium for several minutes. Images

are taken all along the microchannel in 10 different fields of

view (a field of view is 1920 � 1200 pixels, equivalent to

554.8 � 350.4 mm). Here, adhesion is measured in terms of

an ‘adjusted’ cell count per mm2, where by ‘adjusted’ we

mean that the parasitaemia of the suspension was taken

into account. In our condition, HRBCs and PfRBCs constitute

80% and 20% of RBC population, respectively. The number of

adhered healthy and infected RBCs per mm2 has been nor-

malized to the respective fractions within the RBC

population. An example of healthy and infected RBCs

firmly adherent to endothelium is presented in figure 4a.

PfRBCs are completely rigid and anchored to the endo-

thelium, while HRBCs, although remaining adhered after

washing the channel with medium at high flow rate, show

an elongated, droplet-like shape in the direction of the flow.

In figure 4b, PfRBC adhesion efficiency is double in neurami-

nidase-treated endothelium with respect to the control ( p ,

0.001). Moreover, PfRBCs always adhere significantly more

than HRBCs both for control and neuraminidase-treated

samples ( p , 0.001), while the removal of glycocalyx sialic

acid seems to have no impact on HRBC adherence. This

strengthens the hypothesis proposed by Hempel et al. [33]

according to which a damaged glycocalyx allows the interaction

of the parasites with the glycoproteins present in the deeper

layers of the glycocalyx, thereby resulting in enhanced adhesion.

Adhesion of HRBCs and PfRBCs is reported in figure 4c
as a function of wall shear stress, where RBCs have been con-

sidered as attached to the endothelium if no cell movement

was observed for 500 frames for each wall shear stress

value. This choice leads to a lower number of adherent cells

as compared to figure 4b, where a longer time was allowed

before taking the measurements, but has the advantage of

enabling a consistent and less time-consuming evaluation of

the effect of the applied shear stress. PfRBC adhesion effi-

ciency decreases at increasing wall shear stresses for both

control and neuraminidase-treated samples, while HRBC

adhesion efficiency remains almost constant for both these

conditions. Regarding the control HUVEC monolayer,

PfRBC adhesion efficiency decreases to zero, while for neur-

aminidase-treated HUVECs the number of adhesive PfRBCs

at the highest applied shear stress (0.66 Pa) is about 50, indi-

cating that PfRBCs are so strongly bound that even this high

value of shear stress is not able to detach them from
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Figure 4. The effect of HRBC and PfRBC adhesion on HUVEC glycocalyx, before and after the removal of glycocalyx sialic acids with neuraminidase. (a) Snapshot of
HRBCs and PfRBCs adhering to HUVEC layer after washing out unattached cells. (b) PfRBC adhesion efficiency is double in neuraminidase-treated endothelium with
respect to the control ( p , 0.001). PfRBCs always adhere significantly more than HRBCs for control and neuraminidase-treated samples ( p , 0.001), while the
sialic acid removal of HUVEC glycocalyx has no impact of HRBC adherence. Adjusted adhesion indicates the number of RBCs per mm2 attached to HUVECs normalized
by the ratio of PfRBCs and HRBCs. (c) PfRBC adhesion efficiency decreases for increasing wall shear stresses for both control and neuraminidase-treated samples,
while HRBC adhesion efficiency remains almost constant for both these conditions. RBCs were classed as adhered to the endothelium when they remained com-
pletely attached for about 500 frames for every value of shear stress. (d ) Linear increase of PfRBC adhesion as function of parasitaemia for both control and
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endothelium. Similar decreasing behaviour is consistent with

results obtained by using micropipette manipulation and

flow chamber techniques [58] and has also been found with

other RBC diseases: sickle red blood cells [59] and polycythae-

mia vera [60]. There is a sharp decrease until 0.2–0.3 Pa, then

the slope is shallower [61].

In figure 4d PfRBC adhesion is reported as a function of

parasitaemia ranging from 5% to 20%. A linear increase of

PfRBC adhesion is found for both control and neuramini-

dase-treated samples, the slope being larger for treated

endothelial cells, providing further support to the higher

adhesion of PfRBCs on damaged glycocalyx. These results

support the hypothesis that the partial damage or complete

loss of glycocalyx could account for increased PfRBC

adhesion in vivo and may cause blood flow problems such

as hypoxia and inflammatory processes typical of SM. An

increase of PfRBC adhesion as a function of parasitaemia

agrees with previous studies [62–64].

4. Discussion
We investigated the effects of a damaged glycocalyx on the

flow behaviour and cytoadherence of PfRBCs in an

organ-on-chip model of human microcirculation. The main

motivation comes from the hypothesis recently proposed in

the literature [33] that microcirculation disorders, which are

especially relevant in the severe stage of malaria, are essen-

tially due to glycocalyx disruption as a consequence of the

disease progress.
At a molecular level, glycocalyx can be damaged by the

shedding activity of several enzymes, such as thrombin and

plasmin, which are associated with coagulation and fibrinoly-

sis, matrix metalloproteases, and other components with

sheddase-like functions produced by the parasites

[33,36,65]. In this scenario, adhesion molecules located in the

deeper layers of the glycocalyx, such as CD36, V-CAM1,

I-CAM1 [23,66], are exposed to interactions with RBCs.

While HRBCs seem to adhere slightly less than the control

ones (the difference being not statistically significant) after

neuraminidase-treatment, PfRBCs show an enhanced cytoad-

herence. This is the hallmark of the sequestration process,

whereby infected cells adhere to the endothelium and

escape from spleen clearance, with the consequence of micro-

vessel obstruction and proinflammatory and coagulation

activity [67,68]. In turn, these effects can generate serious

complications typical of SM, such as cerebral malaria and

multiorgan failure. Here, we exploit the selective cleavage

of sialic acids by neuraminidase to create a model system of

damaged glycocalyx in human endothelial cells, previously

cultured under physiological flow conditions in a microflui-

dic organ-on-chip device. PfRBCs flowing close to the

enzyme-treated glycocalyx showed more than two-fold

enhanced adhesion as compared to untreated endothelial

cells. To the best of our knowledge, this result provides the

first experimental evidence of the suggested role of glyco-

calyx disruption as the main driver of PfRBC sequestration

on the vascular endothelium in microcirculation [33].

Removal of sialic acid by neuraminidase has been recently
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shown to induce increased endothelial permeability in rat

mesenteric microvessels in vivo [47], supporting the proposed

effect of glycocalyx loss on tissue swelling due to increased

vascular permeability in SM [33,69].

Peculiar interactions between PfRBCs and enzyme-treated

glycocalyx are also shown in the flow behaviour near the

endothelial surface, where enhanced cell rolling (and corre-

sponding lower cell velocity) is observed at low shear

stresses. It should be noticed that PfRBC (and, to less extent,

HRBC) rolling has been observed near the wall even in the

absence of endothelial cells or of any coatings with adhesion

molecules [48]. Such host independent flipping/rolling can

be attributed to parasite-induced PfRBC stiffening which

increases the tumbling behaviour already present in HRBCs

under certain shear rate [48]. When surface adhesion sites

are present, rolling is further enhanced, likely due to the pres-

ence of knobs, which are adhesive protrusions that the parasite

induces on the surface of the host RBC cell, starting about 16 h

after injection. Such structures contain several proteins includ-

ing PfEMP-1 (Pf erythrocyte membrane protein-1), considered

key in PfRBC adhesion [34,70]. Mathematical models captur-

ing knob-induced rolling have been shown to be in

qualitative agreement with experimental results of PfRBC

adhesion on endothelial cells [29]. However, the glycocalyx

was not taken into account in the modelling nor was docu-

mented in the endothelial cells investigated. Therefore, our

work is the first report of PfRBC dynamics on both an intact

and a damaged endothelial glycocalyx.
5. Conclusion
The main result of this work is that glycocalyx loss by selec-

tive cleavage of sialic acids enhances PfRBC cytoadherence

to endothelial cells in an organ-on-chip model of microcircu-

lation. We also found that glycocalyx loss is associated with

altered near wall flow behaviour, such as enhanced PfRBC

rolling on the diminished endothelial monolayer. This sup-

ports the proposed vicious circle acting in SM: PfRBC

cytoadherence to endothelial cells leads to glycocalyx disrup-

tion, thereby resulting in enhanced sequestration and

microcirculation disorders. Hence, more evidence is pro-

vided to considering glycocalyx as a possible therapeutic

target for malaria treatment, in addition to other antiadhe-

sion adjunctive therapy [55]. Future perspectives in this

area include the study of the effects of the putative sheddase

molecules at plasma-level concentrations on glycocalyx

impairment.
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