
rsif.royalsocietypublishing.org
Research
Cite this article: Wilkinson DA, Marshall JC,

French NP, Hayman DTS. 2018 Habitat

fragmentation, biodiversity loss and the risk of

novel infectious disease emergence. J. R. Soc.

Interface 15: 20180403.

http://dx.doi.org/10.1098/rsif.2018.0403
Received: 1 June 2018

Accepted: 7 November 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
environmental science, biomathematics,

biogeography

Keywords:
disease ecology, habitat fragmentation,

emerging infectious disease, one health
Author for correspondence:
David A. Wilkinson

e-mail: d.a.wilkinson@massey.ac.nz
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4302668.
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Habitat fragmentation, biodiversity
loss and the risk of novel infectious
disease emergence

David A. Wilkinson1,2, Jonathan C. Marshall1, Nigel P. French1,2

and David T. S. Hayman1

1Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre,
Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand
2New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand

DAW, 0000-0002-9986-6212

The number of microbes on Earth may be 1030, exceeding all other diversity.

A small number of these can infect people and cause disease. The diversity

of parasitic organisms likely correlates with the hosts they live in and the

number mammal hosts for zoonotic infections increases with species richness

among mammalian orders. Thus, while habitat loss and fragmentation may

reduce species diversity, the habitat encroachment by people into species-rich

areas may increase the exposure of people to novel infectious agents from wild-

life. Here, we present a theoretical framework that exploits the species–area

relationship to link the exposure of people to novel infections with habitat

biodiversity. We model changes in human exposure to microbes through

defined classes of habitat fragmentation and predict that increased habitat

division intrinsically increases the hazard from microbes for all modelled

biological systems. We apply our model to African tropical forests as an

example. Our results suggest that it is possible to identify high-risk areas for

the mitigation and surveillance of novel disease emergence and that mitigation

measures may reduce this risk while conserving biodiversity.
1. Introduction
Biodiversity loss poses a significant threat to humanity. The global encroach-

ment by humans into natural habitats drives habitat loss and fragmentation,

leading to declines in species richness [1], which can endanger human liveli-

hoods [2,3]. Evidence of habitat fragmentation leading to infectious disease

emergence has been reported for Ebola virus disease (EVD) [4]. Human popu-

lation density strongly correlates with the risk of emergence for all major classes

of emerging infectious disease [5]. Zoonotic infections are those among people

that come from animal sources and biodiversity has been correlated with emer-

gence of novel zoonotic infectious diseases at the macro-scale [6]. More

specifically, the number of mammalian hosts for zoonotic infections increases

with species richness among mammals [4,7]. Thus, human encroachment into

species-rich habitats may simultaneously decrease biodiversity and increase

exposure of people to novel microbes [8–10].

Multiple, interrelated phenomena contribute to how species are affected by

anthropogenic habitat loss and fragmentation, but typically loss of species

diversity occurs [11,12]. While some peri-domestic and other wild species

may flourish, anthropogenic species decline affects most species, which will

likely include potentially pathogenic microbial agents (the majority of which

remain either uncultured or undescribed [13]), their vectors and maintenance

host species. The maintenance of biodiversity is hypothesized to reduce patho-

gen prevalence and consequently human disease risk through the dilution

effect [14]. However, assuming microbial diversity correlates with that of all

other life forms, there may be increased potential for novel pathogens to

emerge from biodiverse regions.
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Figure 1. Habitat fragmentation effects. Schematic of the four proposed classes of potentially independent change to habitat distributions and shape that are often
referred to as either ‘fragmentation effects’ or ‘edge effects’. From left to right, geometric effects include; (i) core habitat effects, changes in the average shortest
distance to the boundary of the habitat across its total area and (ii) perimeter effects, changes to the perimeter of the habitat. Separation effects are split into two
classes (i) division, changes in the total number of habitat patches, elsewhere referred to as ‘habitat fragmentation per se’ and (ii) isolation, separation of habitat
patches in space.
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The processes that lead to disease emergence are highly

complex, occurring in multiple stages and across diverse

scales [15]. Recent advances have linked anthropogenic land

conversion to multi-host models for pathogen transmission

between species in intact and degraded habitats [16], quantify-

ing the changing infection risk across altered landscapes for

multi-host pathogens. Given these results and that current dis-

ease control policies focus on rapid response to outbreaks [17];

models that link biodiversity with habitat structures and novel

pathogen emergence are lacking.

Here, we present a theoretical framework that exploits the

species–area relationship (SAR) to link habitat biodiversity

and fragmentation with the exposure to novel infectious dis-

eases. Instead of focusing on the specific traits of individual

disease-causing agents, we attempt to estimate hazard from

the full cross section of disease-causing diversity that is likely

to be contained within the habitat. We define classes of habitat

encroachment and fragmentation and model changes in

exposure to the microbial diversity existing within them.

Under the presented conditions, we predict that increased habi-

tat division intrinsically increases exposure for all biological

systems. We present an approach for determining geographical

risk zones from estimated risk for novel infectious disease emer-

gence (eRIDE). In the absence of appropriate data, we partially

validate our model using historical index case data from EVD.

We apply our model to African tropical forests and link

eRIDE with continental human population data to estimate

pandemic potential from novel pathogen emergence to help

identify potential surveillance sites. Our results suggest

that by exploiting ecological theory it is possible to identify

high-risk areas for risk mitigation and mitigation measures

that may simultaneously reduce risk and conserve biodiver-

sity, a problem that has previously been described as both

conceptually and practically challenging [18].
2. Methods
2.1. Fragmentation definitions
Habitat fragmentation can be considered as a product of non-

uniform habitat loss along habitat boundaries, meaning that

habitat loss and fragmentation are concurrent in the majority of

non-experimental scenarios [19]. Precisely altered experimental

landscapes are required to disentangle these innately linked mech-

anisms and their consequences on biodiversity [1], and usage of

the terms ‘fragmentation’ and ‘edge effects’ often lack precision

due to the inherently linked nature of habitat distributions,

shapes and areas.

Here, for dynamic habitats, we classify those fragmentation-

linked effects that may be independent of habitat loss into two

groups: separation effects and geometric effects. Separation
effects can be split into two classes (i) ‘division’ (habitat fragmen-

tation per se [19]), changes in the total number of habitat patches

and (ii) ‘isolation’, separation of habitat patches in space. Geo-

metric effects that may occur independently of separation

effects can also be separated into two classes: (i) ‘perimeter’,

changes in habitat shape that alter the total perimeter (surface

area for three-dimensional habitats), and (ii) ‘core habitat’,

where the average shortest distance to the boundary of the habi-

tat across its total area is modified by changes in boundary shape

(figure 1).
2.2. Biodiversity model
Increasing contact through habitat encroachment and fragmenta-

tion and the corresponding species diversity decline are likely to

act antagonistically to affect hazards from novel pathogens. To

explore this interaction, we first link the SAR to microbial diver-

sity. The SAR predicts that at the landscape level the number of

species, S, contained within similarly classed habitat fragments

(or patches, i) scales with patch area, A. The exact SAR formu-

lation is debated, here we use the power-law relationship [20]

which has been extensively demonstrated for vertebrates, invert-

ebrates, plants [21] and importantly microbial communities [22].

Thus, the formulation of the SAR used states that the number of

patch-associated species (Si) scales with patch area (Ai) following

a power law with magnitude c and rate of decline z.

Si ¼ cAz
i , ð2:1Þ

For simplicity, we assume that habitat patches are not linked

following division (approximate oceanic islands model). We

compute total species diversity across fragments as ST ¼ <iSi

given total area A ¼
P

i Ai by assuming that equation (2.1)

holds for each fragment, and that the species diversity observed

in each fragment is an independent sample from the total

number of species S that would be observed in a single fragment

of area A.

Let Si ¼ jXij where Xi is the set of all species in fragment i,
and S ¼ jXj where X is the set of all species in a single fragment

of area A. The probability that a given species x [ X is in

XT ¼ <Xi can be found as follows:

P(x [ XT) ¼P x [
[

i

Xi

 !

¼1� P x �
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i
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¼1� P x [
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i
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: ð2:2Þ

Assuming Xi is an independent draw of species diversity from

the diversity that would be present in a single fragment with

area A ¼
P

i Ai, we have:

P(x [ Xi) ¼
cAz

i

cAz ¼
Az

i

Az , ð2:3Þ
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Figure 2. Linking fragmentation effects to eRIDE. (a) Division effects. Lines display the SAR -z-value that balances both total biodiversity (ST, equation (2.4)) and
eRIDE (R, equation (2.6), see electronic supplementary material, data S1) for different numbers of equally sized patches relative to a single habitat of the same
shape. Conceptually, habitats obeying an SAR with values of z less than these values will have increased eRIDE with increased division. Dashed lines display the
same z-value under the scenario where a dilution/amplification effect of magnituded alters the prevalence of disease relative to habitat biodiversity. The green
shaded bar indicates the likely range of real-world values of z, based on the data in electronic supplementary material, table S1. (b,c,d ) Geometric effects.
(b) Schematic of de Broglie’s circles with varying frequency and amplitude. (c) Correlation between solidity and core ratios for de Broglie’s circles. (d ) Correlation
between eRIDE and solidity for de Broglie’s circles of varying frequency and amplitude.
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Equation (2.4) calculates total species diversity for a single,

closed, multi-fragment system that can be summarized by a single

value of z in equation (2.1). Within a single system, all approxi-

mations of total species diversity can be relative measures on an

arbitrary scale, as c cancels in equation (2.3). Extending this model

to multiple habitat types would require the reintroduction of par-

ameter c and the complex union of data from multiple habitats

accounting for species sharing, or the degree of nestedness between

habitats [23]. Accurate estimation of c and nestedness require

detailed field data, and thus combining data from multiple habitat

types is likely impractical in the majority of situations.
2.3. Estimated risk of infectious disease emergence
model

To model the risk (R) of infection emergence from the natural

habitat into the expanding human population, we defined R as

the product of the relative number of potential disease-causing

agents within that habitat, which we assume to scale linearly

with fragment biodiversity (Si), and the area over which the

expanding human population comes into uniform contact with

this habitat, which we assume is represented by the perimeter
of the habitat (Pi). Initially, we assumed that infectious disease-

causing agents within the natural habitat correlate directly with

all habitat biodiversity, i.e. that the total hazard from novel

pathogens was proportional to patch biodiversity. Thus the risk

for each patch i is:

Ri ¼ SiPi: ð2:5Þ

And total risk is:

R ¼
X

i

Ri: ð2:6Þ

The direct correlation between risk and diversity can be

relaxed. Relative disease prevalence may reduce with increased

biodiversity through a mechanism called the dilution effect [14],

as increased species diversity in an area reduces effective infec-

tion transmission due to altered species’ infection competency,

particularly for vector-borne infections [24], thus reducing emer-

gence risk. An alternative theoretical mechanism is amplification

of infection prevalence and therefore risk with increased biodiver-

sity, and various models of both dilution and amplification have

been suggested [25]. While not a dynamic model we can investi-

gate the impact of such dilution and amplification effects by

scaling the number of disease-causing agents within the habitat

as a power law function of diversity, such that equation (2.5)

becomes Ri ¼ Sd
i Pi while maintaining the overall positive scaling

with host richness and summed risk. Values of d , 1 correspond

to the presence of a dilution effect and d . 1 correspond to an

amplification effect.

To investigate division effects we compared k identically

shaped and scaled fragments for differing SAR values of z
while allowing total area to vary (figure 2). To isolate and exam-

ine geometric effects we fixed the area of a single habitat in the

shape of a de Broglie’s circle and varied its complexity by

independently altering frequency and amplitude (figure 2b).
2.4. Simulated encroachment model
To explore complex fragmentation patterns and the effect of

encroachment strategies with different initial perimeter and
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division effects we simulated the erosion of two-dimensional

habitats to generate landscapes containing different numbers,

shapes and sizes of patch to model the potential impact of

fragmentation on risk in complex landscapes. We modelled the

encroachment of an expanding population into a closed, homo-

geneous habitat. The population expansion removed area from

the habitat and grew linearly with time, maintaining a constant

population density. Initial habitats were 1000 � 1000 pixels in

size and complete erosion of 106 pixel2 habitats occurred over

100 time-points. A challenge landscape of the same size as the

initial habitat was generated containing values between 0 and

255, defined as the capped sum of n uniformly distributed two

dimensional, oblate distributions with a peak value of 255, and

a radius of m pixels. Variables n and m were changed to generate

landscapes containing different numbers and sizes of overlapping

distributions. Habitat erosion was simulated through an iterative

process where one of three encroachment scenarios, linear, box

or ribbon (electronic supplementary material, video S1), was

chosen to define initial contact zones between the natural habitat

and the expanding population. Challenge landscape positions

falling within a 10-pixel radius of contact zones were diminished

iteratively until they obtained a value of zero, whereupon they

were removed from the habitat area and included in the contact

zone. This process was repeated for each time point until 1% of

the total starting area had been removed from the habitat area,

whereupon a binary image snapshot of the remaining habitat

was captured for subsequent analyses.

Within each snapshot, habitat fragments were defined as

non-touching binary objects using 8-pixel-connectivity. Pixel

area, perimeter length, centroid position and solidity (the

proportion of the object’s convex hull which was occupied by

the object) were recorded for each fragment at each time point.

A total of 60 000 simulations were performed, including 50

independently generated challenge landscapes over 20 values of

m (ranging between 1 and 191) and 20 values of n (ranging between

1 and 191), and for linear, box and ribbon encroachment models.

The habitats were modelled in MatLabw R2016b using the image

processing and statistics toolboxes. The multiple habitat areas, A,

were then used in our biodiversity models, and perimeters, P,

used in infection risk models. Code is included in electronic

supplementary material, text S1 that allows these simulations to

be performed from a custom graphical user interface.

In simulations, the number of species (Si) contained within

patch areas (Ai) was expressed between 0 and 1, and are a rela-

tive measure where 1 corresponds to the total number of

species (S0) contained within the natural habitat at time zero

(A0 ¼ 106). So that equation (2.1) can be expressed as Si ¼ cAz
i =S0.

2.5. Cartographic estimation of risk associated with
African tropical forest encroachment

To see how our model may have real-world applications we

applied it to forest fragmentation in African tropical forest. The

African forests were chosen because important global infectious

diseases, such as EVD, falciparum malaria, HIV and Zika virus

have emerged from them, and because they are highly diverse

with relatively defined boundaries. Natural habitat boundaries

were defined using the Globcover 2009 dataset (ESA GlobCover

2009 Project, http://due.esrin.esa.int), a global landcover dataset

with 300 m resolution that classifies majority land use into one

of 22 different classes. A binary mask of forested areas was gener-

ated by selecting the following GlobCover classes; closed to open

(greater than 15%) broadleaved evergreen and/or semi-deciduous

forest (greater than 5 m), closed (greater than 40%) broadleaved

deciduous forest (greater than 5 m), closed (greater than 40%)

needle-leaved evergreen forest (greater than 5 m), closed to open

(greater than 15%) mixed broadleaved and needle-leaved forest

(greater than 5 m), closed (greater than 40%) broadleaved forest
regularly flooded—freshwater and closed (greater than 40%)

broadleaved semi-deciduous and/or evergreen forest regularly

flooded—saline water. Independent forest patches were defined

using 4-pixel-connectivity in the resulting binary image. Pixel

areas for each patch were used to estimate patch biodiversity

using the power law z-value proposed in Bell et al. [22]. A division

index (number of unique patches), an edge density index (number

of edge pixels) and an eRIDE index (sum of the product of number

of edge pixels from each patch and their corresponding patch bio-

diversities) were calculated within a 20 � 20 moving window for

each pixel of these data. The estimated population at risk (PAR)

for each pixel was defined as the product of the pixel eRIDE

index and the population density at that location. Population den-

sity data were taken from the Worldpop (http://www.worldpop.

org.uk) 2010 distribution for continental Africa.

2.6. Pandemic risk associated with African tropical
forest encroachment

The pandemic potential of such agents following initial cross-

species transmission events (spillover) depends on subsequent

human to human transmission and thus will be driven by

human density (rN) and connectivity. Understanding this for

novel agents will help inform surveillance programmes. There-

fore, we modelled potential spread and pandemic risk using

network theory by converting the pixel grid into a network.

To estimate the potential for pandemics from an emerging dis-

ease, such as EVD, we modelled disease spread between 3 km

pixels across Africa. We assumed the potential for spread between

adjacent pixels a and b was proportional to the product of the

population densities, so that pandemics were likely to travel

along paths of high population density. To estimate the relative

chance of a source pixel image x resulting in spread to a destination

pixel image y, we converted the pixel image to a network using

4-connectivity, with pixels representing nodes and edge weights

between adjacent pixels a and b given by

d(a,b)/
1

rarb
,

where ra is the population density in pixel a. The potential of pan-

demic spread from pixel x to pixel y was then estimated by the

shortest path s(x, y) in the graph between corresponding nodes x
and y, which was found using Dijkstra’s algorithm [26]. The rela-

tive chance of pandemic spread to pixel y was then estimated using

ps(y) ¼
X

x
PAR(x)s(x,y),

where the sum is taken over all potential source pixels x.

To assess the potential of each source pixel x to contribute to

a pandemic, we use

pp(x) ¼ PAR(x)
X

y
s(x,y),

so that those pixels with high populations at risk connected to large

populations have the most influence on pandemic projections.

2.7. Ebola virus disease modelling
We tested the predictive capacity of our cartographic model for

an infectious disease system from African forests where index

case data were available, namely EVD emergence. This system

is not an ideal model for our system which aims to model the

risk from pathogen diversity, however, there are several Ebola-
virus species and ebolaviruses have been linked to numerous

host species, including bats and primates, and linked to high

biodiversity areas and forest fragmentation [4].

We assume Ebola virus hosts are present in forest habitats

across Africa [27] and that these forests make up a habitat whose

http://due.esrin.esa.int
http://due.esrin.esa.int
http://www.worldpop.org.uk
http://www.worldpop.org.uk
http://www.worldpop.org.uk


Table 1. Predicted relationships between fragmentation-linked effects and eRIDE.

mechanism
summary
statistic predicted relationship with eRIDE

habitat loss change in area habitat area is directly proportional to eRIDE (equation (2.5))

division number of

patches

habitat division increases eRIDE for habitats with SAR values of z less than 0.5

dilution/

amplification

d (equation

(2.5))

a dilution effect with increased biodiversity amplifies the effect of division on eRIDE

isolation connectivity the proposed model does not directly measure isolation. Consequences of isolation on biodiversity will be scale-,

and species-specific. It is assumed parameters of the SAR are determined, in part, due to patch isolation

perimeter effects change in

perimeter

habitat perimeter is directly proportional to eRIDE (equation (2.5))

core habitat solidity solidity is negatively correlated with eRIDE. True core habitat effects are independent of perimeter, area

and eRIDE but only occur for dynamic habitats under special geometric scenarios
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biodiversity can be approximated by the SAR parameters pro-

posed by Bell et al. [22], although we show that the choice of

SAR parameter z will only result in relative scale changes in the

outcome for any value between 0 and 0.5. A list of GPS coordinates

for all known human filovirus outbreaks was compiled [4]. The

geographical precision around reported EVD index cases range

from 0.2 to 170 km (mean 29 km, median 10 km) [28]. EVD out-

break areas were defined as areas within r kilometre of each

filovirus outbreak coordinate. The median value of pixels falling

within outbreak areas was compared to the median value of an

equally sized random selection of pixels falling outside of outbreak

areas or from the entire map to test the predictive ability of the

model. r was varied in increments of 300 m between 0.3 km and

60 km to test the relationship between predictive capacity and

spatial scale. Owing to distribution of forest areas across Africa,

a large proportion of the map contained zero-value pixels for the

estimated metrics and pixel selections for areas outside of the

outbreak zones were limited to non-zero-value pixels.
3. Results
We assessed the impact of division effects by modelling k iden-

tically shaped and scaled fragments for differing SAR values of

z while allowing total area to vary (figure 2). When biodiversity

is held constant eRIDE increases with k, for z , 0.5. Similarly,

when eRIDE is held constant biodiversity necessarily decreases

with k for z , 0.5 (electronic supplementary material, figure

S1). The point at which biodiversity and eRIDE are the same

between k and 1 fragments tends towards z ¼ 0.5 as k increases

(electronic supplementary material, data S1; figure 2). Analyses

of invertebrate, plant, vertebrate and microbial systems suggest

z does not reach 0.5 (electronic supplementary material, table

S1). Thus, we predict that increased habitat division will

result in increased relative RIDE for all biologically relevant

scenarios where contact occurs at the habitat edge.

We observed that increasing the dilution effect increased

the extent to which division influenced eRIDE (figure 2a).

Strong correlation identified solidity, the ratio of the habitat’s

area to the area of its convex hull, as a good summary statistic

for the proportion of core habitat in these simple habitat shapes

(figure 2c). In this context solidity as a measure of shape com-

plexity has the additional benefit of being a scale-independent
variable with no units. Area, and thus solidity, is independent

of de Broglie’s frequency and only affected by amplitude, while

perimeter (and thus eRIDE) depends on both amplitude and

frequency. Solidity demonstrated a strong negative correlation

with eRIDE (figure 2d). Predicted relationships between eRIDE

and the four different classes of fragmentation effect (figure 1)

are summarized in table 1.

Our encroachment models generated heterogeneous

landscape scenarios with large variance in metrics for all frag-

mentation classes (figure 3; electronic supplementary material,

figure S2). Trends in these metrics were consistent with those

that have been reported for real-world habitat fragmentation

around expanding cities [3]; simulated encroachment typically

resulted in decreases in perimeter and solidity through time

whereas edge densities peaked and then fell. Median solidity

values were similar between encroachment models, suggesting

a level of similarity in the patch shapes explored. The longevity

of larger, more closely connected or contiguous patches

decreased from linear, to box, to ribbon encroachment models

(electronic supplementary material, figure S2) and in general

eRIDE increased most with ribbon, then box, and lastly linear

encroachment (electronic supplementary material, figure S3).

Principal component analysis demonstrated a strong correlation

between eRIDE and components influenced by perimeter and

solidity (figure 3; electronic supplementary material, figure S4).

This suggests that geometric effects are likely to be the main

determinants of RIDE in many real-world scenarios, and thus

that structuring erosion to maximize habitat solidity is a good

strategy to minimize RIDE for encroaching populations.

Our spatial analysis of Globcover satellite data predicted

more than 70% of eRIDE across Africa to be localized within

one of four countries (figures 4a and 5a); Democratic Republic

of Congo (DRC; 47%), Cameroon (8%), Gabon (8%) and

Mozambique (8%). In particular, DRC’s northern border with

the Central African Republic and Sudan was predicted to be

an expansive area of high risk. Overlaid population density

and eRIDE allowed the prediction of the population at risk of

disease emergence (PAR). PAR predictions show that many

areas of high eRIDE are sparsely populated, highlighting an

important role for population centres in disease emergence

and subsequent transmission (figure 4b). Under our gravity

model of transmission countries at greatest pandemic risk are
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Figure 3. Simulating habitat loss and fragmentation. (a) Snapshots of simulated landscapes. Depicted challenge landscapes were generated from n uniformly
distributed spherical distributions with a radius of m pixels. Snapshots are taken half way through the simulated encroachment (t ¼ 50 of 100), lines represent
simulated habitat boundaries. (b) Heatmap of data from all simulated encroachment scenarios represented in the principal component axes one (PC1) and two
(PC2), accounting for 51% and 37% of total variance, respectively. Inset: biplots of the influence of the contributing variables (number of patches, patch area, patch
perimeter and patch solidity) to the arrangement of the principal components. (c) Heatmap depicting the correlation between PC2 and eRIDE in all simulated data,
correlations between eRIDE and other principal components are displayed in electronic supplementary material, figure S4. Red, green and blue depict data from
linear, box and ribbon encroachment models throughout.
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those that connect to, or those with high rN and PAR

(figure 4c). Modelled pandemic risk was highest in Nigeria,

DRC and Cameroon. However, we identified the international

aspect of pandemic spread with (for example) countries

including Uganda, Kenya, Tanzania, Rwanda and Burundi

experiencing significant risk of disease originating from DRC

(figures 4c and 5b). Our model captured the distribution of

disease that occurred during the Ebola virus outbreak of

2014–2016 in Guinea, Sierra Leonne and Liberia (figure 6a).

EVD outbreak index cases occurred in high eRIDE areas,

whereas simple forest edge and forest division (fragmentation

per se) were poor predictors of these outbreak locations within a

60 km radius (figure 6b). The eRIDE metric was seen to work

best as a predictor of EVD emergence over smaller spatial

scales; a 10–12-fold increase in eRIDE was observed in areas

within 5 km, compared to a seven- to eightfold increase in

areas within 5–60 km of known EVD outbreak cases.
4. Discussion
By using the well-characterised species–area relationship

from ecology, we have developed a model framework allowing

us to predict that how people encroach into natural habitats

determines how they experience the risk of novel infectious dis-

ease emergence. Overall, our model suggests that there is an

argument for maintaining biodiversity and reducing encroach-

ment for the benefit of human health through reduction in the

emergence of novel infectious agents. This is in support of

another recent analysis which employed a different strategy

to suggest that the risk of pathogen spillover is highest at inter-

mediate levels of habitat loss [16]. By specifically decomposing

the concept of ‘edge effects’ we show that maintenance of habi-

tat core (solidity) is linked to reduced habitat perimeter and

that optimal geometry is key to reducing risk, as it determines

the contact zones where disease transmissions may occur.

We also demonstrate that for habitats obeying the power
law formulation of the SAR, the increase in contact perimeter

due to habitat division outweighs the contribution of reduced

biodiversity associated with habitat loss, resulting in a net

increase in disease risk with habitat division. This effect will

be greater for habitats experiencing the dilution effect and

reduced for habitats experiencing the amplification effect.

We do not explore the impact of migration between habitat

fragments, as such behaviour is highly scale dependant. How-

ever, our simulations of habitat encroachment highlight the

variation in the magnitude of separation effects at intermediate

levels of habitat loss that result from different strategies of

habitat encroachment.

Our model considers the total hazard across all habitat-

associated pathogens. We believe that this general framework

may negate some of the need for single system modelling [29],

as it may be applicable for all pathogens from macro- to micro-

parasites. Such an approach may inform land-use strategies in

scenarios where little or no biological data are available and is

therefore also pertinent regarding the emergence of ‘Disease

X’ [30]. However, other models may be favourable in situations

where specific pathogens are of known concern, or in situations

where the relationship between pathogen richness and host

species richness is not monotonic: This may be the case in scen-

arios where single species are known to harbour a large

diversity of disease-causing agents.

Our model assumes contact occurs at the edge of habitats

(e.g. figure 3) and thus is more applicable to forest-like

systems. The generalizability of our results and the inter-

action between fragmentation and eRIDE is likely robust

until some contact diffusion threshold is reached, and thus

if systems such as grasslands have different contact patterns

we predict alternative scenarios may be more likely.

These scenarios and measures of SAR-critical parameters

such as c and nestedness require future detailed modelling

and field studies.

Furthermore, we estimate risk from habitat-associated

biodiversity assuming that the habitat is at equilibrium.
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Figure 4. Mapping spatial index estimates for African forests. Depicted are (a) estimated values of relative biodiversity, as inferred from forest patch areas and the
species – area relationship (SAR), (b) eRIDE, (c) Population at risk (PAR, log values displayed for clarity) and (d ) pandemic risk. Throughout, discrete colour bands
increment following a log scale, one step per order of magnitude.
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In situations where habitat decline results in extinction debt

[31,32], equation (2.5) will likely be influenced by both residual

habitat biodiversity and increased contact areas due to species

migration, and thus the eRIDE metric can be considered a

minimum or ‘best-case’ estimate. It is additionally important

to distinguish between hazard and risk; in our simulations

(figure 3), we assume a homogeneous human population

with encroachment. However, in real-world scenarios it is the

hazard from potential interactions in contact areas that changes

with habitat distributions, and the realized risk comes from the

presence of human populations in these areas. This parameter

is calculated (population at risk, or PAR, statistic) in our carto-

graphic estimates, where population density data are available.

We expect the PAR to be dynamic and interrelated with other

processes that lead to habitat change, such as urbanisation,
deforestation, land clearing or farming, and predicting this

change may help with future mitigation efforts.

For our case study, we have focused on a system with high

species diversity. We use EVD data to partially validate our

model, as this is one of the only disease models for which

sufficient index case data are available for such a test. The

results of this partial validation are encouraging, as they suggest

the eRIDE metric is efficient at predicting emergence with high

spatial resolution. However, EVD emergence may be influ-

enced by host species richness, habitat encroachment [33] and

habitat fragmentation [4], and this test case is therefore biased

towards factors that are considered by our model. To test

the general nature of our approach, index cases from multi-

pathogen emergence datasets at appropriate spatial and

temporal resolution would be required for further validation.
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Extending this geographical example to model epidemic dis-

ease spread, our gravity model captured the distribution of

the Ebola virus outbreak of 2014–2016 in Guinea, Sierra

Leonne and Liberia (figure 6a). The total pandemic risk of

forest-derived infections from these three countries represented

only 0.8% of the total estimated pandemic risk, highlighting the

scale of potential pandemic disease burden across Africa if no

intervention measures are taken to mitigate RIDE. Cross-

boundary population movements were highlighted as a serious

management issue during the West African EVD outbreak [34]

and our model supports these observations, highlighting the

necessarily international nature of disease mitigation efforts.

Future models of eRIDE integrating human movement data

that account for internal and regional movements, along with

seasonal variations, and across other regions will be valuable

efforts [35,36].

In summary, our general model can be directly applied to

establish optimal land-use strategies or to identify strategic

sites for disease surveillance (e.g. figure 6a). As human popu-

lations continue to expand into habitats, we propose that such

general frameworks are essential for policymakers because

they provide clear guiding principles that enable common

ground to be established between species conservation and
novel disease emergence risk mitigation. The vast scale of the

estimated pandemic-associated risk across Africa with respect

to the emergence of EVD in Western Africa in 2014 clearly

demonstrates that internationally coordinated efforts are

required to avoid catastrophic events in the future. However,

our model suggests that the implementation of smaller-scale

land-use strategies linked with conservation efforts may help

to improve the overall burden from emerging infectious disease.
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