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LF, Solé R. 2018 Zipf ’s Law, unbounded

complexity and open-ended evolution.

J. R. Soc. Interface 15: 20180395.

http://dx.doi.org/10.1098/rsif.2018.0395
Received: 29 May 2018

Accepted: 19 November 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
biocomplexity, evolution, biophysics

Keywords:
complexity, algorithmic complexity,

open-ended evolution, Zipf ’s Law
Authors for correspondence:
Bernat Corominas-Murtra

e-mail: bernat.corominas-murtra@ist.ac.at

Ricard Solé
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A major problem for evolutionary theory is understanding the so-called

open-ended nature of evolutionary change, from its definition to its origins.

Open-ended evolution (OEE) refers to the unbounded increase in complexity

that seems to characterize evolution on multiple scales. This property seems

to be a characteristic feature of biological and technological evolution and is

strongly tied to the generative potential associated with combinatorics, which

allows the system to grow and expand their available state spaces. Interest-

ingly, many complex systems presumably displaying OEE, from language to

proteins, share a common statistical property: the presence of Zipf’s Law.

Given an inventory of basic items (such as words or protein domains)

required to build more complex structures (sentences or proteins) Zipf’s

Law tells us that most of these elements are rare whereas a few of them are

extremely common. Using algorithmic information theory, in this paper we

provide a fundamental definition for open-endedness, which can be under-

stood as postulates. Its statistical counterpart, based on standard Shannon

information theory, has the structure of a variational problem which is

shown to lead to Zipf’s Law as the expected consequence of an evolutionary

process displaying OEE. We further explore the problem of information

conservation through an OEE process and we conclude that statistical infor-

mation (standard Shannon information) is not conserved, resulting in the

paradoxical situation in which the increase of information content has the

effect of erasing itself. We prove that this paradox is solved if we consider

non-statistical forms of information. This last result implies that standard

information theory may not be a suitable theoretical framework to explore

the persistence and increase of the information content in OEE systems.
1. Introduction
Life has been evolving on our planet over billions of years, undergoing several

major transitions along with multiple events of both slow and rapid change

affecting structure and function [1–4]. Life seems to be indefinitely capable of

increasing in complexity. This is illustrated, as an instance, by the trend towards

larger genomes and diverse cell types exhibited by multicellular organisms.

Moreover, the emergence of high neuronal plasticity and complex communi-

cation provided the substrate for non-genetic modes of adaptation. A key

concept that pervades many of these innovations is the idea that evolution is

‘open-ended’. Following [5], open-ended evolution (OEE) can be defined as fol-

lows: ‘a process in which there is the possibility for an indefinite increase in

complexity.’ What kind of systems can exhibit such unbounded growth in com-

plexity [6]? What are the conditions under which the complexity—and thus, the

information content of the system—can increase and what are the footprints of

such an open-ended increase of complexity? Which kind of information is

encoded in an OEE system? The aim of this paper is to give hints to the

these questions.
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Open-ended evolutionary change needs a dynamical

behaviour allowing complexity to grow in an unbounded

way [5,7]. This requires a very large exploration space but

this is only a necessary requirement. For example, as noticed

in [8] mathematical models used in population genetics invol-

ving infinite alleles—using Markov models—do not display

OEE. Previous attempts to address the problem of OEE

involved different approximations and degrees of abstraction.

John von Neumann was one of the early contributors to this

issue [5,9,10]. In all these studies, some underlying mechan-

ism is assumed to be operating, and arguments are made

concerning the presence of self-replication, genotype–

phenotype mappings, special classes of material substrates

and physico-chemical processes [5,11]. On the other hand, a

theory of OEE might demand a revision of the role of novel

niches and abiotic changes, as well as refining what we

understand as the open-endedness of a system [12,13].

Special suitable candidates for OEE systems are complex sys-

tems exhibiting generative rules and recursion. The best-

known case is human language. Thanks to recursion, syntac-

tic rules are able to produce infinite well-formed structures

and thereby the number of potential sentences in a given

language is unbounded [14]. In another example, Darwinian

evolution proceeds through tinkering [15,16], continuously

reusing existing parts. These are first copied—hence bringing

in some redundancy into evolving systems—but are later on

modified through mutation or recombination. Despite the

obvious differences existing between Darwinism in biology

and human-guided engineering [15], this process of tinkering

appears to be common too in the growth of technological sys-

tems, thus indicating that copy-and-paste dynamics might be

more fundamental than expected [17].

These systems are very different in their constitutive com-

ponents, dynamics and scale. However, all share the presence

of a common statistical pattern linked to their diversity: fat-

tailed distributions. Four examples are provided in figure 1.

In all these cases, the frequency distribution of the basic units

decays following approximately Zipf’s Law. Zipf’s Law was

first reported for the distribution of city sizes [21], and then

popularized as a prominent statistical regularity widespread

across all human languages: in a huge range of the vocabu-

lary, the frequency of any word is inversely proportional

to its rank [22,23]. Specifically, if we rank all the occurrences

of words in a text from the most common word to the less

common one, Zipf’s Law states that the probability p(si)

that in a random trial we find the ith most common word

si (with i ¼ 1, . . ., n) falls off as

p(si) ¼
1

Z
i�g, (1:1)

with g � 1 and Z the normalization constant, i.e.

Z ¼
P

i�n i�g. Stated otherwise, the most frequent word will

appear twice as often as the second most frequent word,

three times as often as the third one, and so on. This pattern

is found in many different contexts and can emerge under

different types of dynamical rules (see [23–27] and references

therein).

The examples shown in figure 1 involve: (a) LEGO

models, (b) human language, (c) proteins, and (d) evolved

electronic circuits. The first example provides an illustration

of structures emerging through copy–paste and combination

in a non-biological setting. This toy system allows exploita-

tion of the intrinsic combinatorial explosion associated with
the multiple ways in which different bricks can be inter-

linked. In figure 1a, we plot the number of times that each

type of brick occurred within a very large dataset of LEGO

models [18]. The rank plot reveals that some simple bricks—

as those shown in figure 1a, right—are extremely common

whereas most bricks, having more complex shapes and

larger size, are rare. The analysis showed that the statistical dis-

tribution can be well fitted using a generalized form of

equation (1.1) known as the Pareto–Zipf distribution. This

reads

p(si) ¼
1

Z
(iþ i0)�g, (1:2)

where Z is again the corresponding normalization and i0 a

new parameter that allows us to take into account the curva-

ture for small i-values. This picture is similar to the one

reported from the study of large written corpora, as illustrated

in figure 1b [28]. Our third example is given by the so-called

protein domains, which are considered the building blocks of

protein organization and an essential ingredient to understand

the large-scale evolution of biological complexity [29–32]. Here

each protein domain—or fold—is characterized by its essen-

tially independent potential for folding in a stable way and

each protein can be understood as a combination of one, two

or more domains. In figure 1c, the rank distribution of observed

folds from a large protein database is displayed. Domains

define the combinatorial fabric of the protein universe and

their number, although finite, has been increasing through

evolution [31]. The fourth example gives the frequency of use

of four-element modules within complex circuits [20].

The repertoire of LEGO bricks, words, protein domains

and circuit modules provide the raw materials to combinator-

ial construction, but they also share the underlying presence

of grammar, to be understood here as the compact descrip-

tion of a language. As indicated in [18], if we treat pieces of

LEGO as words and models as utterances, LEGO appears

as a class of artificial language and the resulting structures

are passed from generation to generation through cultural

transmission. This is of course a largely metaphoric picture,

since the final outcome of the combinatorics is usually a

non-functional design, unbounded by the potential combi-

nations but not by functional constraints. This might

actually be the reason why its statistical distribution,

described by equation (1.2) deviates from equation (1.1).

Protein domains too exhibit a grammar in which a set of gen-

erative rules for combining the available folds provides an

explanatory mechanism for the observed repertoire of protein

structures [19,33,34]. In summary, these systems—and others

like electronic circuits or genomes, molecular networks

[35–37] and complex circuits [38] and even evolved technol-

ogy [39]—are characterized by a growth process that is

expanding their inventories over time, the presence of genera-

tive rules allowing new structures to emerge, and a common

statistical pattern described by Zipf’s Law.

In this paper, we provide a general definition, or postulates
of OEE based on algorithmic information theory (AIT), and

we show that the common presence of Zipf’s Law in these

seemingly disparate systems may be deeply connected to

their potentially open-ended nature. Furthermore, we explore

the consequences that OEE has for the conservation of infor-

mation, identifying the information loss paradox in OEE

systems. This paradoxical situation, in which the system

loses all its past information in the long run, even though
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Figure 1. Zipf ’s Law distributions are commonly found in very different systems candidates to display open-endedness. Here, we show several examples of scaling
behaviour involving (a) LEGO systems, (b) written language and (c) proteins. In (a), we display (in log scale) the probability of finding the ith most abundant type of
LEGO brick within a very large number of systems (see details in [18]). In (b), the log-scale rank-size distribution of Herman Melville’s Moby Dick is displayed. The
dashed line shows the frequency versus rank for words having length 5, which is the average length of words in this particular book. The plot displayed in (c) shows,
with linear axes, the corresponding rank distribution of protein folds in a large protein database (redrawn from [19]). The line is a power-law fit. Here the names of
some of the domains, which are associated with particular functional traits, are indicated. (d) Zipf ’s Law in the frequency of logic modules used in evolved complex
circuits (adapted from [20]).
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the step-by-step information transmission is maximized, is

shown to be a problem of the statistical nature of Shannon

information theory. Indeed, we prove that, in the general

setting of AIT, information can be conserved and systems

can grow without bounds without removing the traces of
its past. Therefore, the general study of OEE systems must

be framed in a theoretical construct not based on standard

information theory, but in a much more general one, inspired

in non-statistical forms of information content. We finally

observe that the connection of fundamental results of
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computation theory, and even Gödel’s incompleteness theo-

rem, with general problems of evolutionary theory has been

approached before in [8,40,41].
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2. Algorithmic information theory
AIT [42–52] is a natural framework to address the problem of

OEE. It incorporates powerful (still unexplored) tools to

model the complexity of living systems, which, for example,

has often been associated with information storage in the

genome [40,48]. Such information results from the growth

of genome complexity through both gene duplication and

the interactions with the external world and is (by definition)

a path-dependent process. Here we consider that we encode
our evolving system into strings of symbols. We assume

that, as long as the system evolves, such descriptions can

grow and change, in a path-dependent way. As we shall

see, the derived abstract framework is completely general,

and applies to any system susceptible of displaying OEE.

A natural question arises when adopting such an abstract

framework: why are we using Kolmogorov Complexity for

our approach to OEE? The first reason is that it is based on

strings obtained from a given alphabet, which naturally con-

nects with a representation based on sequences [48] such as

those in some of our examples from figure 1. Second, it con-

nects with information theory (which is the most suitable

coarse-grained first approximation to biology [53]) resulting

in a more fundamental framework. Third, it consistently

distinguishes predictable from unpredictable sequences in a

meaningful way, and how these scale with size. Finally, the

algorithmic definition based on the use of a program matches

our intuition that evolution can be captured by some compu-

tational picture.

Let us first introduce a key concept required for our analy-

sis: Kolmogorov—or algorithmic—complexity, independently

developed by Kolmogorov [45], Somolonoff [46] and Chaitin

[47]. Roughly speaking, if a given process can be described

in terms of a string of bits, the complexity of this string can

be measured as the shortest computer program capable of

generating it [49,50]. The underlying intuition behind this

picture—see figure 2—is that simple, predictable strings, such as

10101010101010 . . . can be easily obtained from a small piece

of code that essentially says ‘write “10”’ followed by ‘repeat’

as many times as needed. This would correspond to a regular

system, such as a pendulum or an electronic oscillator—see

figure 2a,b—and the simple dynamical pattern is reproduced

by a short program. Instead, a random string generated by

means of a coin toss (say 0100110011101101011010 . . .)

would only be reproduced by using a program that writes

exactly that sequence and is thus as long as the string

itself—figure 2c,d. Other stochastic processes generating

fluctuations—figure 2e,f —and represented as strings of n
bits can be similarly described, and their complexity shall

lie somewhere between both extremes.

The stochasticity inherent to the most algorithmically

complex strings (e.g. a coin toss, as introduced above) invites

us to think in terms of statistical or information entropy. But the

Kolmogorov complexity is, conceptually, a more fundamen-

tal measure of the complexity of such processes [51,52].

A formal definition follows. Let x and p be finite binary

strings of length ‘(x) and ‘( p), respectively. Let T u be a uni-

versal Turing machine. Note that a finite binary string p can
define the computations that a universal Turing machine

[54] will implement when p is fed as an input—i.e. it can

define programs executed by the Turing machine. We will con-

sider a set of prefix free programs: in such a set of programs,

no program is the prefix of another program. This property

is crucial for most of the results of AIT or even standard infor-

mation theory [51,52]. Let T u(p) denote the output of the

computer T u when running the program p. Considering

now all possible programs p that produce x as an output

when fed into T u, the (prefix free) Kolmogorov complexity

KT u (x) of the string x with respect to the universal computer

T u is defined as [51]

KT u (x) ¼ min
p:T u(p)¼x

{‘(p)}: (2:1)

This quantity is computer independent up to an additive con-

stant [51,52] so we will omit the subindex when referring to

it. If x is a random string, we would have a simple relation:

K(x) ¼ ‘(x), (2:2)

since all ‘(x) bits need to be included, and we say that the

sequence x is incompressible.

In addition, and as it happens with the statistical entropy,

one can define the conditional algorithmic complexity as fol-

lows: let x, y and p be finite binary strings again and let T y
u

be a universal Turing machine to which a description of y
has already been made available. The Kolmogorov complex-

ity of x given y is the length of the shortest program p that,

when applied to a universal Turing machine, modifies y to

display x as an output

K(xjy) ¼ min
p:T y

u(p)¼x
{‘(p)}: (2:3)

Notice that even though K(x) can be arbitrarily large, K(xjy)

accounts for the minimum program that knows the differ-

ences between x and y and amends them.1
3. General conditions for open-ended evolution:
postulates

We shall concern ourselves with dynamic systems whose

description can be made in terms of finite binary strings st at

each time step t over evolutionary time. The complexity of such

an object at time t is given by K(st). This object shall evolve

through intermediate steps in a path-dependent manner;

thus the quantities K(st), K(stþDt) and K(stþDtjst) and the

relationships between them will play a paramount role.

Let st be the description of the system at time t. Let the

sequence S(t) ; fs1, s2, . . ., stg be the history of the system

until time t in arbitrary time units. We want the process

that builds st to be an open-ended evolutionary one, hence

we turn our attention to the complexity of its evolutionary

history S(t). A minimal condition that this historical process

has to obey to be called open-ended is that its complexity

(properly normalized) always increases:

Axiom 3.1 Open-endedness. We say that the process that

generates st is open-ended if

K(S(t))
t
� K(S(tþ 1))

tþ 1
, (3:1)

for all t ¼ 1, . . ., 1. Of all open-ended processes that obey
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equation (3.1), we are interested in those whose complexity is

not bounded:

Axiom 3.2 Unboundedness. We say that the process generat-

ing st has an unbounded complexity if for any natural

number N [ N there is a time t such that

K(S(t))
t

. N: (3:2)
These two axioms imply that information is always being

added by the generative process in the long term—hence

more bits are needed to describe later stages of the evolution-

ary history. The knowledge of the history up to time t is not

enough to predict what will happen next. If it were, the

description of later stages of the evolutionary history would

be implicit in the description of the history at time t, and

axiom 3.1 would be violated. Equation (3.2) also implies that

the information of the processes we are interested in will

never converge, eventually diverging for large times. These

equations do not impose any condition on the complexity of

the system at a given time step. Notably, (i) they admit a situ-

ation in which the description of the system—but not of its

history—drops (K(st) . K(stþ1), which might happen in

biology [55], see also figure S1) and (ii) they do not imply

any connection between states st and stþ1. This second point

is possible because we have not requested yet that this is an

evolutionary process. We would hardly call a process ‘evol-

utionary’ if its successive steps are completely unrelated, hence:
Axiom 3.3 Heredity principle. Evolutionary processes

attempt to minimize the action

S(S(t)! S(tþ 1)) ; K(S(tþ 1) jS(t)): (3:3)

That is, evolutionary processes try to minimize the

amount of operations implemented to move the system from

one state to the next, under whichever other constraints

might apply. In the case of open-ended evolutionary sys-

tems, they try to minimize the number of operations

needed to unfold in time while always increasing the infor-

mational content of the evolutionary history (as equations

(3.1) and (3.2) demand). We could apply the same axiom,

say, to Darwinian evolutionary processes saying that they

attempt to minimize equation (3.3) subjected to random

mutation and selection. (Note that this has no saying on

whether Darwinian processes are inherently open-ended

or not.) Axiom 3.3 defines an AIT-based least action prin-

ciple that imposes that the information carried between

successive steps is maximized as much as other constraints

allow, thus turning the generative process into a path-

dependent one. Without the Heredity principle, we could

end up with a sequence of totally unrelated objects—i.e. a

purely random, unstructured process hardly interpretable

as an evolving system.

We take these axioms as our most general postulates of

OEE. Note how they capture a very subtle, blurry tension

between memory, to preserve past configurations and the

system’s ability to innovate, thus always adding new
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information that can upset established structures. As other

authors have hinted at [5,12,13], OEE phenomenology

seems to emerge out of this conflict, which is also familiar

in other aspects of complex and critical systems, designs

and behaviours [56–58]. These are often described by a com-

promise, the ‘edge of chaos’, between unchanging, ordered

states and structureless, disordered configurations.

In a nutshell, our working definition of open-endedness

implies that the size of the algorithm describing the history

of the system does not converge in time. Therefore, even if

every evolutionary stage accepts a finite algorithm as a

description, the evolutionary path is asymptotically uncom-

putable. These postulates are assumed to be satisfied by all

open-ended systems. However, they turn out to be too gen-

eric to extract conclusions of how OEE systems may behave

or which kind of observable footprints are expected from

them. To gain a greater insight about the effects of OEE we

can study a strong version of these postulates that applies

not to evolutionary histories, but to objects themselves.

Hence we demand that:

K(st) � K(stþ1), (3:4)

at any t ¼ 1, . . ., 1 and that for every natural number N [ N

there is a time t such that

K(st) . N: (3:5)

Also, in the strong version of OEE the action:

S(st ! stþ1) ; K(stþ1jst) (3:6)

is minimized, constrained by equations (3.4) and (3.5). As

before, S(st! stþ1) denotes an informational entropy—or

missing information—when inferring stþ1 from st. We

know from [49] that this quantity is bounded by

S(stþ1 ! st) � jK(stþ1)� K(st)j þO(1): (3:7)

As discussed before, the general OEE postulates—

equations (3.1)–(3.3)—allow for the complexity of st to

drop, so such processes are not necessarily OEE in the

strong sense defined by equations (3.4)–(3.6). However, it

can be proved that every unbounded OEE process in the

general sense must contain an unbounded OEE process in

the strong sense—see the electronic supplementary material.

That is, the strong version of OEE still can teach us something

about the footprints of open-ended evolution.
4. Statistical systems: a variational approach to
open-ended evolution

We will explore now the consequences of the definition stated

above for systems that accept a description—possibly partial—

in terms of statistical ensembles. The aim is to write the

three conditions for OEE described by equations (3.4)–(3.6)

in the language of statistical information theory. We will

assume now that the statistical properties of this very finite

string st are themselves accurately accounted for by a

random variable Xt. In other words: we consider that the

string st as a sequence of observations at the system at

time t. This will provide a description of the system, in

terms of observable states, at time t. We further consider

that such a description of the system is the outcome of a

random variable Xt. Then, the algorithmic complexity K(st)
is of the order of the Shannon entropy H(Xt) associated

with the random variable Xt [51,52]:

K(st) ¼ H(Xt)þO(1):

Recall that this is the minimal information required to

describe the behaviour of a single outcome of Xt, not a a
sequence of trials of the random variable Xt.

2 This random

variable will represent an observation or realization of the

system. Assume that we discretize the time, so we use the

subscript n or m instead of t, and that we label the states

i ¼ 1, . . ., n. Now let us define the following family of

nested subsets:

V1 ¼ {1}

V2 ¼ V1 < {2} ¼ {1, 2}

. . . ¼ . . .

Vnþ1 ¼ Vn < {nþ 1} ¼ {1, . . . , nþ 1}:

The open-ended evolutionary process will traverse the above

family of nested subsets, adding a new state per evolutionary

time step. We now define a sequence of different random

variables

X1, . . . , Xn,

such that Xk takes values over the set Vk and follows the

probability distribution pk(1), . . ., pk(k), with
P

i�k pk(i) ¼ 1.

Then

H(Xn) ¼ �
X
i�n

pn(i) log pn(i):

The variational principle derived from the path-dependent

process implies now the minimization of the conditional

entropy of the random variable Xnþ1 given the random

variable Xn, namely

H(Xnþ1 jXn) ¼ �
X
i�n

pn(i)
X

k�nþ1

Pn(k j i) log Pn(kji),

where Pn(k j i) ; P(Xnþ1 ¼ k jXn ¼ i). We will finally assume

(without loss of generality) that the probability distributions

p2, . . ., pn are sorted in decreasing order, i.e.:

pk(1) . pk(2) . � � � . pk(k):

In the electronic supplementary material, we discuss the con-

ditions under which the consecutive achievement of ordered

probability distributions is possible.

Therefore, for statistical systems, the previous constraints

for open-endedness from equations (3.4) and (3.5) must now

be rewritten as follows: first,

H(Xn) � H(Xnþ1), (4:1)

and, for any N [ N, there will be a n such that

H(Xn) . N: (4:2)

In addition, the path dependence condition stated in equation

(3.6) implies that:

minimize H(Xnþ1 jXn): (4:3)

In summary, we took a set of conditions, described by

equations (3.4)–(3.6), valid in the general AIT framework,

and we have re-written them in terms of statistical entropy

functions through equations (4.1)–(4.3). We finally observe
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that the condition that the probability distribution must be

strictly ordered leads to

H(Xn) , log n:

Accordingly, the case of total randomness (fair coin toss) is

removed.

4.1. Minimizing the differences between shared states
Condition (4.3) is difficult to handle directly. Nevertheless,

it can be approached as follows: we first find a minimum

by extremalizing a given Kullback–Leibler (KL) divergence,

and then we will prove that this solution indeed converges

to the absolute minimum of H(Xnþ1jXn).

Let us define the distribution p̂nþ1 as

p̂nþ1(k) ; pnþ1(kjk , nþ 1) ¼ pnþ1(k)P
i,nþ1 pnþ1(i)

:

p̂nþ1(k) is the probability that k , n þ 1 appears when we

draw the random variable Xnþ1 excluding the outcomes ¼
n þ 1. Clearly, p̂nþ1 and pn are defined over the set Vn,

whereas pnþ1 is defined over the set Vnþ1. Since the support

sets for both p̂nþ1 and pn are the same, one can use the KL
divergence defined as the relative entropy (or information

gain) between pn and p̂nþ1:

D(pnk p̂nþ1) ¼
X
k�n

pn(k) log
pn(k)

p̂nþ1(k)
:

Now we impose the condition of path dependence as a vari-

ational principle over the KL divergence and then we write

the following Lagrangian which defines the evolution of

our system:

L( p̂nþ1(1), . . . , p̂nþ1(n); unþ1)

¼ D(pnk p̂nþ1)þ unþ1

X
k�n

p̂nþ1(k)� 1

 !
:

The minimization of this Lagrangian with respect to the vari-

ables upon which it depends imposes that

p̂nþ1 ¼ pn,

which implies that

pnþ1(k) ¼ unþ1pn(k) 8k � n
and pnþ1(nþ 1) ¼ 1� unþ1:

)
(4:4)

By construction, 0 , unþ1 , 1. Equation (4.4) imposes that the

conditional probabilities between Xn and Xnþ1 read as

Pn(Xnþ1 ¼ i jXn ¼ k) ¼ dikunþ1, for i � n;

Pn(Xnþ1 ¼ nþ 1 jXn ¼ k) ¼ 1� unþ1, for k � n:

This defines a channel structure that leads to

H(Xnþ1jXn) ¼ H(unþ1), (4:5)

being H(unþ1) the entropy of a Bernoulli process having

parameter unþ1, i.e.:

H(unþ1) ¼ �unþ1 log unþ1 � (1� unþ1) log (1� unþ1):

In the electronic supplementary material, it is proven that

H(unþ1)! min H(Xnþ1 jXn):

We thus have found the specific form of the conditional

entropy governing the path dependency of the OEE system,

imposed by equation (4.3).
We finally remark some observations related to the flow of

information between past and present states. First, we note

that, from equation (4.5), the relationship between the entro-

pies of Xn and Xnþ1 satisfies the following Fano’s-like equality:

H(Xnþ1) ¼ unþ1H(Xn)þH(unþ1): (4:6)

Finally, from the definition of mutual information between Xn

and Xnþ1, one obtains:

I(Xnþ1 : Xn) ¼ H(Xnþ1)�H(Xnþ1 jXn),

and from equations (4.5) and (4.6) we arrive at the amount of

information transmitted from the time step n to n þ 1:

I(Xnþ1 : Xn) ¼ unþ1H(Xn): (4:7)

This is a good estimate of the maximum possible information

transmitted per evolutionary time step. Nevertheless, even

in this case, we shall see that the statistical information trans-

mitted along time in an open-ended system has to face a

paradoxical behaviour: the total loss of any past history in

the long run—see §4.3.

4.2. Zipf ’s Law: the footprint of OEE
As discussed at the beginning, a remarkably common feature

of several systems known to exhibit OEE is the presence of

Zipf’s Law. We will rely now on previous results [24,25] to

show that the solution to the problem discussed above is

given precisely by Zipf’s Law. We first note that, thanks to

equation (4.4), the quotient between probabilities:

pn(iþ j)
pn(i)

¼ f(i, iþ j),

remains constant for all n as soon as pn(i þ j ) . 0. In the elec-

tronic supplementary material, following [25], we provide the

demonstration that, in a very general case, the solution of our

problem lies in the range defined by

iþ 1

i

� �(1�d)

. fn(i, iþ 1) .
iþ 1

i

� �(1þd)

:

It can be shown that d! 0 if the size of the system is large

enough. Therefore,

fn(i, iþ 1) ¼ pn(i)
pn(iþ 1)

� iþ 1

i
,

which leads us to the scaling distribution:

pn(i)/ i�1: (4:8)

In other words, Zipf’s Law is the only asymptotic solution,

which immediately suggests a deep connection between the

potential for open-ended evolutionary dynamics and the

presence of this particular power law. Note that Zipf’s Law

is a necessary footprint of OEE, not a sufficient one: other

mechanisms might imprint the same distribution [23]. We

emphasize the remarkable property that this result is inde-

pendent of the particular way the evolving system satisfies

the OEE conditions imposed by equations (4.1)–(4.3).

4.3. The loss of information paradox in OEE
The above description of the evolution of open-ended statisti-

cal ensembles leads to an unexpected result: statistical

systems displaying OEE lose any information of the past

after a large period of complexity growing. Indeed, although
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information is conserved in a huge fraction step by step, it is

not conserved at all if we compare large periods of evolution.

Therefore, the capacity to generate an ensemble encoding an

unbounded amount of information through evolution results

in a total erasure of the past, even if a strong path dependency

principle is at work (figure 3).

To see what happens with information along the evol-

utionary process in the limit of large n’s, we first rewrite

mutual information between Xn and Xm, m , n as follows:

I(Xm : Xn) ¼
X
i�n

pn(i)
X
k�m

P(kji) log
P(kji)
pm(k)

,

where, in this case, P(k j i) ; P(Xm ¼ k jXn ¼ i). Then we

define the following constant Cm:

Cm ¼
Y

2�k�m

(uk)�1,

where the uk’s are the ones arising from equation (4.4). From

here, one can prove—see the electronic supplementary

material—that:

pm(1) ¼ 1

Cm
,

Now, observe that we can generalize equation (4.7) as

follows:

I(Xm : Xn) � umþ1 � . . . � unH(Xm):

This allows us to obtain the following chain of inequalities:

I(Xm : Xn) �
Y

m,i�n

uiH(Xn)

¼ 1

Cn

Y
2�k�m

u�1
k H(Xm)

¼ Cm

Cn
H(Xm):

(4:9)

The above inequalities have an interesting consequence.

Indeed, from equation (4.9), if Cn! 1, then

lim
n!1

I(Xm : Xn) � lim
n!1

Cm

Cn
H(Xm) ¼ 0: (4:10)

In the electronic supplementary material, it is proven that, in

OEE statistical systems, indeed we have that Cn! 1. Thus,

I(Xm : Xn)! 0: no statistical information is conserved in open-
ended systems in the long term.

4.4. Solving the paradox: algorithmic information can
be maintained

We have shown above that statistical information cannot be

maintained through arbitrarily long evolutionary paths if

the evolution is open-ended. The emphasis is on the word

statistical. As we shall see, using a rather informal reasoning,

other types of information based on the general setting of AIT

can be maintained. Let sn be a description, in bits, of an

object at time n and sN its description at time N . n. Let us

assume that sN, in its most compressed form, can only be

written as a concatenation of two descriptions, to be indicated

with symbol ‘�’:

sN ¼ sn � sN�n:

Now assume that K(sN) ¼ mN, K(sn) ¼ mn and K(sN2n) ¼

m(N 2 n), with 0 , m , 1. If pn is the minimal program that
prints sn and pN2n is the minimal program that prints

sN2n. Then, there is a program pN defined as

pN ¼ pn � pN�n,

such that, when applied to a universal Turing machine, gives

sN, i.e. T u(pN) ¼ sN . If we already know pn, it is clear that

K(sN jsn) ¼ K(sN�n)þO(1):

We observe that, under the assumptions we made

jK(sN)� K(sn)j ¼ K(sN�n),

so K(sNjsn) � jK(sN) 2 K(sn)j close to the bound provided

by Zurek [49], already used in equation (3.7). As we shall

see, the immediate consequence of that is that the algorithmic

mutual information between sN and sn does not depend on N.

Let I(sN : sn) be the algorithmic mutual information between

sN and sn:

I(sN : sn) ¼ K(sN)� K(sN jsn):

Then, one has that:

I(sN : sn) ¼ K(sN)� K(sN jsn)

� K(sN)� K(sN�m)

� K(sn),

we thus have

lim
N!1

I(sN : sn) � K(sn): (4:11)
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Within the AIT framework this implies that information of

previous stages of the evolution can be maintained.

The result reported above has an important consequence:

in an OEE system in which information is maintained,

the information is encoded by generative rules that cannot

be captured by simple statistical models. Therefore, Shannon

information theory is of little use to understand the persist-

ence of the memory of past states in OEE systems.
ing.org
J.R.Soc.Interface

15:20180395
5. Discussion
In this paper, we have considered a new approach to a key

problem within complex systems theory and evolution,

namely, the conditions for open-ended evolution and its conse-

quences. We provided a general formalization of the problem

through a small set of postulates summarized by equations

(3.1)–(3.6) based on the framework of AIT. Despite the high

degree of abstraction—which allows us to extract very gen-

eral results—important specific conclusions can be drawn:

(i) in statistically describable systems, Zipf’s Law is the

expected outcome of OEE. (ii) OEE systems have to face the

statistical information loss paradox: Shannon information

between different stages of the process tends to zero, and

all information of the past is lost in the limit of large time

periods. (iii) This paradoxical situation is solved when con-

sidering non-statistical forms of information, and we

provided an example where algorithmic information between

arbitrary time steps is maintained. This result, however, does

not invalidate previous approaches of statistical information

theory concerning the study of flows of information within

the system [59], since our result refers to the structural com-

plexity of the evolving entity. It is important to stress that

information may unfold in several meanings or formal frame-

works when talking about evolving systems. Moreover,

further explorations should inquire into the role of infor-

mation flows in keeping and promoting the increase of

structural complexity of evolving systems. In addition, it is

worth emphasizing that, at the current level of development,

our framework might fail to incorporate some processes, such

as exaptation or abiotic external drives, that are not fully algo-

rithmic but identified as key actors in evolutionary systems

[13]. All these issues are relevant in order to understand

and eventually build OEE systems, as it is the case within

the context of artificial life [12,60] by considering the possi-

bility of building a system able to evolve under artificial

conditions and maintain a constant source of creativity [61,62].

Since Zipf’s Law is the outcome of a statistical interpret-

ation of the OEE postulates given in equations (3.1)–(3.6),

one may be tempted to conclude that information is not con-

served in those systems exhibiting Zipf’s Law in its statistical

patterns. Instead, in line with the previous paragraph, it is

important to stress that the statistical ensemble description

can be just a partial picture of the system, and that other mech-

anisms of information prevalence, not necessarily statistic, are

at work. Therefore, if our system exhibits Zipf’s Law and we

have evidence of information conservation, the statistical pat-

tern may be interpreted as the projection of other types of

non-statistical information to the statistical observables.

Biological systems exhibit marked potential capacity for

OEE resulting from their potential for growing and exploring

new states and achieving novel functionalities. This open-
endedness pervades the apparently unbounded exploration

of the space of the possible. The two biological systems cited

in the Introduction, namely human language and the protein

universe, share the presence of an underlying grammar,

which both enhances and constrains their combinatorial poten-

tial. Analogously, the example provided by models of

evolution through gene duplication or tinkering revealed

that scaling laws and other properties displayed by protein

networks emerge from the amplification phenomena intro-

duced by growth through copy-and-paste dynamics [63–65].

One way of doing this is provided by the tinkered nature of

evolutionary change, where systems evolve by means of exten-

sive reuse of previous parts to explore novel designs [15,16,32].

This mechanism fully matches our assumptions: generative

rules that enable expansion of the state space, while the redun-

dant nature of the process enables most of the previous

structures to be kept. Again, our axioms capture this delicate

balance between memory and innovation, order and disorder,

that OEE systems seem to exploit as they unfold.

We reserve a final word for a general comment on the role

of OEE in the theory of biology. Postulates described by

equations (3.1)–(3.6) explicitly relate OEE to unpredictability.

This, according to classic results like the no free lunch theorem
[66], puts a question mark on the possibility of a theory of evol-

ution in the sense of classical physics. This issue, discussed

also in [8], may exclude the possibility of a predictive theory

in terms of the explicit evolutionary innovations that will even-

tually emerge. Nevertheless, in this paper we prove that this is

not an all-or-nothing situation: interestingly, the postulates of

OEE, which rule out the existence of a predictive theory, are

precisely the conditions that allow us to identify one of the

possible statistical regularities—Zipf’s Law—governing such

systems and thereby make predictions and, eventually, propose

physical principles for them, adding a new, unexpected ingre-

dient to the debate on predictability and evolution [67].

According to that, these principles would predict the statistical

observables, but not the specific events that they represent.
Data accessibility. This article has no additional data.

Authors’ contributions. B.C.-M., L.F.S. and R.S. contributed to the idea,
development, and mathematical derivations in this paper. All three
authors contributed to the writing and elaboration of figures.

Competing interests. We declare we have no competing interests.

Funding. This work has been supported by the Botı́n Foundation, by
Banco Santander through its Santander Universities Global Division,
a MINECO FIS2015-67616 fellowship, the Secretaria d’Universitats i
Recerca del Departament d’Economia i Coneixement de la Generali-
tat de Catalunya (R.S. and L.F.S.) and the Santa Fe Institute (R.S.).

Acknowledgements. We thank Jordi Piñero, Sergi Valverde, Jordi
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Endotes
1This quantity has been used as a conditional complexity within the
context of evolved symbolic sequences [48]. In this case, K(s j e)
referred to the length of the smallest program that gives the string
s from a given environment e, also defined as a string.
2Rigorously speaking, one should say that, if s is the description in
bits of the outcomes of N trials of Xt, then K(s)/N! H(Xt).
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4. Solé R. 2016 Synthetic transitions: towards a new
synthesis. Phil. Trans. R. Soc. B 371, 20150438.
(doi:10.1098/rstb.2015.0438)

5. Ruiz-Mirazo K, Umerez J, Moreno A. 2008 Enabling
conditions for ‘open-ended’ evolution. Biol. Philos.
23, 67 – 85. (doi:10.1007/s10539-007-9076-8)

6. Bedau MA, McCaskill JS, Packard NH, Rasmussen S,
Adami C, Green DG, Ikegami T, Kaneko K, Ray TS.
2000 Open problems in artificial life. Artif. Life 6,
363 – 376. (doi:10.1162/106454600300103683)

7. Nehaniv CL. 2000 Measuring evolvability as the rate
of complexity increase. In Artificial Life VII Workshop
Proc (eds CC Maley, E Boudreau), Portland, OR,
pp. 55 – 57. New York, NY: MIT Press.

8. Day T. 2012 Computability, Gödel’s incompleteness
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Zipf ’s law in the evolution of communication. Phys.
Rev. E 83, 036115. (doi:10.1103/PhysRevE.83.
036115)

26. Corominas-Murtra B, Hanel R, Thurner S. 2015
Understanding scaling through history-dependent
processes with collapsing sample space. Proc. Natl
Acad. Sci. USA 112, 5348 – 5353. (doi:10.1073/pnas.
1420946112)

27. Corominas-Murtra B, Hanel R, Thurner S. 2016
Extreme robustness of scaling in sample space
reducing processes explains Zipf ’s law in diffusion
on directed networks. New J. Phys. 18, 093010.
(doi:10.1088/1367-2630/18/9/093010)
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