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Abstract 

Background:  Genome-wide marker data are used both in phenotypic genome-wide association studies (GWAS) 
and genome-wide prediction (GWP). Typically, such studies include high-dimensional data with thousands to millions 
of single nucleotide polymorphisms (SNPs) recorded in hundreds to a few thousands individuals. Different machine-
learning approaches have been used in GWAS and GWP effectively, but the use of neural networks (NN) and deep-
learning is still scarce. This study presents a NN model for genomic SNP data.

Results:  We show, using both simulated and real pig data, that regularization is obtained using weight decay and 
dropout, and results in an approximate Bayesian (ABNN) model that can be used to obtain model averaged posterior 
predictions. The ABNN model is implemented in mxnet and shown to yield better prediction accuracy than genomic 
best linear unbiased prediction and Bayesian LASSO. The mean squared error was reduced by at least 6.5% in the 
simulated data and by at least 1% in the real data. Moreover, by comparing NN of different complexities, our results 
confirm that a shallow model with one layer, one neuron, one-hot encoding and a linear activation function performs 
better than more complex models.

Conclusions:  The ABNN model provides a computationally efficient approach with good prediction performance 
and in which the weight components can also provide information on the importance of the SNPs. Hence, ABNN is 
suitable for both GWP and GWAS.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Transformation of large quantities of data into valuable 
knowledge has become increasingly important in various 
fields of genomics and bioinformatics [1]. Machine-learn-
ing methods are flexible general-purpose approaches to 
automatically learn complex relationships and patterns 
from data, and they play a vital role in the analysis of 
big data [2–4]. The concept of genome-wide prediction 
(GWP) was introduced by Meuwissen et al. [5] and refers 
to the idea that regression coefficients of genomic mark-
ers, often single-nucleotide polymorphisms (SNPs), can 
be used to predict phenotypes of individuals. In order 
to identify markers that affect some phenotype of inter-
est, state of the art genome-wide marker data comprise 
several thousands, sometimes millions of SNPs, scored 
in a number of individuals that is in the order of some 

hundreds to a few thousands [6]. There are plenty of 
examples of the successful use of machine-learning in 
genomic prediction, genome-wide association studies 
and in other forms of genomic sequence analysis [7, 8].

Among the most flexible methods in machine-learning 
are deep artificial neural networks, which have recently 
received large attention because of their outstanding pre-
diction properties [9]. An artificial neural network (NN) 
connects the inputs (predictor variables) to an output 
(response variable), either directly or through one or sev-
eral layers of interconnected computing units (neurons). 
The depth of an NN corresponds to the number of hidden 
layers and the width to the number of neurons in its lay-
ers. NN with larger numbers of hidden layers are called 
“deep networks”. Training of a NN is accomplished with 
mathematical optimization algorithms that iteratively 
perform forward and backward passes (epochs) in order 
to minimize some loss (error) function and learn the 
weights (regression coefficients) and biases (intercepts) of 
the inputs. In the forward pass, the linear or non-linear 
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activation functions are applied to the current values of 
the weights of the links to get the output at each layer. The 
final result of a forward pass is new predicted outputs. The 
backward pass starts by calculating the derivatives of the 
error function between the predicted outputs and the real 
outputs. Then, the derivatives are propagated backwards 
updating the weights and computing new error terms for 
that layer. This process is repeated for each layer until the 
input layer is reached again [10]. The number of epochs 
and the learning rate determine the amount of training 
and need to be evaluated against validation or test data in 
order to avoid over-fitting.

Gradient descent is a popular algorithm that is used 
to perform mathematical optimization and is one of the 
most common ways to perform learning in neural net-
works. The gradient is computed layer-wise using the 
chain rule for reverse-mode differentiation [11]. The 
computed gradient indicates by what amount the errors 
would increase or decrease if the weights are increased 
by a small amount. Then, the weight vector is adjusted in 
the opposite direction to the gradient vector, i.e. the neg-
ative gradient vector specifies the direction of the steep-
est descent towards the minimum of the loss function. 
The gradient descent algorithm is an efficient alternative 
in NN with many connections, but easily leads to over-
fitting. Two of the most important methods for regulari-
zation in NN are weight decay and dropout [12]. Weight 
decay is an old technique in which each weight decays 
towards zero at a rate that is proportional to its magni-
tude. Weight decay is closely related to ridge regression 
and can be interpreted as Bayesian Gaussian regulariza-
tion [13]. Dropout is a recent innovation where a random 
proportion of the input weights are set to zero in each 
epoch [14]. Recently, it was shown that dropout can be 
interpreted as a Bayesian approximation to deep-learning 
with a near connection to Gaussian processes [15].

In genetics, there are some examples of the use of NN. 
Gianola et al. [16] introduced the feed-forward NN and 
showed how it could be interpreted in terms of standard 
regression models, and classical and molecular genet-
ics. Moreover, they suggested Bayesian ridge regression 
based regularization to prevent overfitting in the NN 
and showed that this improved prediction accuracy of 
traits such as milk production in Jersey cows and yield 
of inbred lines of wheat compared to normal linear mod-
els. The same model improved prediction accuracy of 
body mass index in mice in an accompanying study [17]. 
Ehret et  al. [18] replaced the computationally demand-
ing Levenberg–Marquardt training algorithm in [16] 
with back-propagation. Glória et  al. [19] showed how 
two approximate measures of variable contribution and 
importance could be used to assess marker effects in 
genomic NN. Deep-learning has also received attention 

in the related fields of bioinformatics and systems biology 
[20, 21].

The purpose of this study is to present a NN model for 
genomic SNP data that can be modified easily. We will 
also show that regularization is obtained using weight 
decay and dropout, and that it results in an approximate 
Bayesian model that can be used to obtain model-aver-
aged posterior predictions. The predictive accuracy of 
the NN model is evaluated by using both simulated and 
real data, and we show that weight components can pro-
vide information on the importance of SNPs under some 
circumstances.

Methods
Neural network
The most basic model starts with a single hidden layer 
NN. Denote W1 and W2 the weight matrices that con-
nect the input matrix X of dimension n× p to the out-
put y of dimension n× 1 through the hidden layer. The 
dimensions of W1 and W2 depend on the number of 
units in the hidden layer. Hence, for a hidden layer with 
k units W1 will be of dimension p× k and W2 of dimen-
sion k × 1 . Associated with W1 and W2 is a bias vector b 
of dimension k and an activation function σ(·) that per-
forms element-wise linear or non-linear transformation 
of the inputs. A standard NN model now becomes:

A model with one hidden layer containing one unit 
will be of dimension 1× 1 and thus, W2 disappears. For 
regression purposes, the NN model is usually completed 
with the Euclidean squared loss function:

where || · ||22 denotes the square of the Euclidean norm. 
For classification, one can use the logistic or cross-
entropy loss.

If p is larger than n , training of the NN will lead to over-
fitting and it is necessary to regularize the NN parame-
ters θ = {W1,W1,b} . Therefore, regularization terms are 
added during optimization. One common approach is to 
add the ℓ2 penalty [4] through weight decay parameters 
�i , which need to be tuned by cross-validation. The cost 
function to minimize is now:

The above single hidden layer NN with the Euclidean 
loss is identical to a basis function regression model. 
With k = 1 and σ(·) chosen to be the linear identity 

(1)ŷ = σ(XW1 + b)W2.
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function, the model is closely related to ridge regres-
sion. Extending this simple NN model to multiple layers 
is straightforward and results in a more expressive deep 
NN model, but it may result in over-fitting if the rela-
tionship between the input and output is linear and lacks 
structure. Hence, it is important to evaluate NN with dif-
ferent architectures and possibly also different activation 
functions.

Activation functions and one‑hot encoding
The most simple activation function is the linear identity 
function σ(x) = x , which has the derivative σ ′(x) = 1 
and range (−∞,∞) , and therefore is well adapted for lin-
ear regression purposes. In genetic terms, this function 
will infer additive effects of bi-allelic loci if the SNPs are 
coded 0, 1 and 2. In order to model non-linear effects, 
there are several activation functions that can be used. 
The tanh function is σ(x) =

(

2/
(

1+ e−2x
))

− 1 with 
derivative σ ′(x) = 1− σ(x)2 and range (−1, 1) . The recti-
fier function is defined as σ(x) = max(0, x) and has sev-
eral related functions, for example the rectified linear 
unit (ReLU). However, these non-linear functions may 
not be so useful for the first layer if the input contains 
integer coding (e.g. the 0, 1 and 2 of SNP genotypes) and 
the weights are expected to be in both the positive and 
negative domains.

An alternative way of inferring non-linearity of integer 
coded input variables is one-hot encoding [22]. In this 
approach, indicator variables are formed for each level of 
the input variable. From a genetic perspective, it means 
that each genotype will be coded by one (0, 1) variable, 
and both additive and dominance effects can be modelled 
straightforwardly.

Optimization algorithms
Gradient descent (GD) is a first order optimization algo-
rithm where the cost function J (θ) is minimized by updat-
ing the parameters in the opposite direction of the gradient 
of the cost function ∇θJ (θ) . The learning rate η determines 
the size of the steps towards the minimum. The original 
gradient descent uses all training data per epoch t:

and, thus, can be slow for large datasets and get stuck 
in local minima. In contrast, stochastic gradient descent 
(SGD) uses random single training samples that modifies 
the gradient to:

which makes it much faster per epoch, but also results 
in large fluctuations of the cost function. A compromise 
between GD and SGD is mini-batch GD (BSGD), where a 
batch of size b is used for every epoch:

(4)gt = ∇θt−1 J (θt−1), θt = θt−1 − ηgt ,

(5)gt = ∇θt−1 J
(

θt−1; yi; xi
)

,

which reduces the variance between updates and makes 
computations efficient. The number b needs to be cho-
sen, usually between 50 and 250 depending on the num-
ber of observations in the training data.

Several suggestions on how to improve the convergence 
properties of BSGD [23] have been reported. Kingma 
and Ba [24] introduced the adaptive moment estimation 
(ADAM) algorithm that computes momentum compo-
nents of the gradients:

where mt is the moving average of the gradient and vt is 
the moving average of the squared gradient. β1 and β2 are 
hyper-parameters that control the exponential decay of 
the moving averages. Furthermore, their bias-corrected 
estimates are calculated as:

which leads to an update of the parameters with adaptive 
learning rate:

where ǫ controls the effective stepsize. Kingma and Ba 
[24] suggest the following default hyperparameters, 
β1 = 0.9 , β2 = 0.999 and ǫ = 10−8 . ADAM can be com-
bined with weight decay, and then will perform ℓ2 regu-
larization. This results in parameter update:

Dropout and its Bayesian interpretation
Dropout is applied by sampling of binary vectors z1 and 
z2 in each epoch from two Bernoulli distributions, i.e. 
z1 ∼ Bernoulli(p1) and z2 ∼ Bernoulli(p2) , and setting 
1− p1 of the inputs and 1− p2 of the outputs to zero. This 
leads to an extension of Eq. (1) as follows:

The dropped weights of z1W1 and z2W2 are usually 
scaled by 1/p1 and 1/p2 , respectively, to maintain con-
stant output magnitude. The surviving nodes have to 
stand in for those that are omitted, which forms another 
form of regularization that has been shown to be effec-
tive in preventing over-fitting [25]. Dropout can be inter-
preted in several ways [26, 27]. Gal and Ghahramani [15] 
showed that dropout is mathematically equivalent to a 
variational approximation of a Bayesian deep Gaussian 
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(11)ŷ = σ(X(z1W1)+ b)(z2W2).
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process. The goal of Bayesian prediction is the posterior 
predictive distribution [28], which for the test input X∗ is:

where p(ŷ∗|X∗,ω) is the likelihood of the test output 
(response) and ω = {z1W1, z2W2,b} . The posterior dis-
tribution of the training data p

(

ω|X, y
)

 is usually analyti-
cally intractable, but the variational distribution q(ω) can 
be defined as:

where {i = 1, 2} , 
{

j = 1, . . . , ki−1

}

 , Mi is a random varia-
tional matrix and pi are the dropout probabilities. p1 and 
p2 were set to 0.5 for all NN configurations in this study.

Then, the idea behind variational inference is to mini-
mize the Kullback–Leibler (KL) divergence between q(ω) 
and p

(

ω|X, y
)

 through maximization of the log evidence 
lower bound:

which results in the approximate predictive distribution:

Note that the loss function is equal to the negative log-
likelihood, i.e. L

(

y, ŷ
)

= −log p
(

y
∣

∣X,ω
)

 , and that the 
dropout model can be interpreted as Bayesian ridge 
regression with a spike-and-slab g-prior [29]. Sampling 
from Eq. (13) is straightforward. Start by sampling T  sets 
of vectors 

{

zti,j

}T

t=1
∼ Bernoulli(pi) , combine with Wi to 

obtain 
{

Wt
i

}T

t=1
 and perform one gradient descent opti-

mization per t with some predefined values of the weight 
decay. ADAM will automatically adapt the learning rate. 
Iterate until T  to get predictions 

{

ŷ∗t
}T

t=1
 and calculate 

MSEt for each iteration:

Plot the MSEt against the iteration number to deter-
mine at which iteration ts the chain has converged. The 
first moments (expectations) of the parameters ω are 
approximated as:
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whereas the predictive variances for the parameters are:

Moreover, the model’s averaged MSE can be calcu-
lated based on the MSE from each t of the stationary 
part of the chain yielding:

Data
Simulated data with dominance
The original data was produced for the QTLMAS2010 
workshop and intended to mimic a real breeding live-
stock population [30]. The number of individuals is 
3226, and these are structured in a pedigree with five 
generations. The pedigree is founded by 20 individuals 
(5 males and 15 females), and it was created assuming 
that each female mates once and gives birth to approxi-
mately 30 progeny. Five 100 Mbp long autosomal chro-
mosomes were simulated. A neutral coalescent model 
was used to simulate the SNP data. The algorithm cre-
ated 10,031 markers, including 263 monomorphic and 
9768 biallelic SNPs. The mean LD ( r2 ) between adja-
cent SNPs with a minor allele frequency (MAF) higher 
than 0.05 is estimated at 0.100 (SD = 0.152).

The continuous quantitative trait was created from 37 
quantitative trait loci (QTL), including nine controlled 
genes and 28 random genes. The QTL were modelled 
as additive effects, apart from two pairs of additive epi-
static QTL and three paternal imprinting QTL. The 
controlled genes were selected based on their high 
polymorphism as well as their high linkage disequilib-
rium (LD) with markers. The additive effects of all con-
trolled QTL were equal to +3 (i.e. half the difference 
between the means of the homozygotes). The random 
genes were selected from the simulated SNPs and then 
their effects were sampled from a truncated normal dis-
tribution, N (0, 10) , and accepted if the absolute value of 
the additive effect was less than 2. The resulting addi-
tive effects of the random genes varied between − 1.98 
and 1.93. The two epistatic pairs of QTL are on chro-
mosomes 1 and 2, respectively, and determined by four 
controlled additive QTL with an additional epistatic 
effect of 4 for the lower homozygote pairs. Each sim-
ulated QTL was surrounded by 19  to  47 polymorphic 
SNPs (MAF > 0.05) positioned within a 1-Mb distance 
from the QTL. A total of 364 SNPs were in moderate to 
high LD with the QTL ( r2 > 0.1).
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Furthermore, one dominance locus was positioned at 
SNP 9212 on chromosome 5 by giving the heterozygote 
(1) an effect of 5, and the upper homozygote (2) a value of 
5.01 (for numerical reasons). One over-dominance locus 
was produced at SNP 9404 by assigning the heterozy-
gote an effect of 5, the lower homozygote (0) an effect of 
− 0.01, and the upper homozygote (2) an effect of 0.01. 
Finally, one under-dominance loci was created at SNP 
9602 by assigning a value of − 5 to the heterozygote, and 
giving the lower homozygote (0) an effect of − 0.01 and 
the upper homozygote (2) an effect of 0.01. The values 
of the genotypes of these new SNPs were added to the 
original y-values. SNPs with a MAF lower than 0.01 were 
removed resulting in a final sample of 9723 SNPs.

Real data
Cleveland et  al. [31] published a pig dataset comprising 
3534 individuals with high-density genotypes, pheno-
types, and estimated breeding values for five anonymous 
traits. Genotypes were obtained with the PorcineSNP60 
chip, and after quality control, 52,842 SNPs remained. 
Missing genotypes were imputed using a probability 
score. SNPs with both known and unknown positions 
were included and imputed. The map order was rand-
omized and the SNP identities were recoded. The num-
ber of SNPs was further reduced in this study by a more 
stringent MAF (< 0.01), which produced a final number 
of 50,276 SNPs.

Most of the genotyped animals were measured for all 
five purebred traits (phenotypes in a single nucleus line). 
Heritabilities ranged from 0.07 to 0.62. In this study, trait 
3 with a heritability of 0.38 was used. The phenotypic 
data points were adjusted for environmental factors and 
rescaled by correcting for the overall mean. Individuals 
with missing phenotype data were removed which, at the 
end, resulted in 3141 observations.

Implementation
All NN models were implemented in the Python version 
of MXNet [32] using the ADAM optimizer with default 

settings. The Python code is available at https​://githu​
b.com/patwa​67/ABNN. Predictions were also obtained 
for Bayesian LASSO (BLASSO) and genomic best lin-
ear unbiased prediction (GBLUP) (using default settings 
in the R-package BGLR; [33]). For the simulated QTL-
MAS2010 datasets, individuals in generations 1  to  4 
(2326 individuals) were used as training data and in gen-
eration 5 (900 individuals) as test data. Individuals in the 
real pig data were divided into different cross-validation 
(CV) sets with test datasets of sizes between 627 and 631. 
The MSE was averaged over these CV sets.

Results
Simulated data
The Monte Carlo Markov chains of the GBLUP and 
BLASSO analyses were run for 60,000 iterations, and 
a burn-in of 10,000 and thinning of 10 resulted in a 
final sample of 5000 iterations. The resulting testing set 
MSE was 88.42 and 89.22 for the GBLUP and BLASSO, 
respectively (Table  1). Initially, two NN were tested in 
which the first one was designed to have one hidden layer 
and one node, and the second to have two hidden layers 
with two and one node, respectively. The weight decay 
were varied between 1.0 and 1.5 for both NN. The ABNN 
analyses were run for 6000 iterations and the first 1000 
were considered as burn-in. Overall, the model averaged 
test MSE and its standard deviation were smaller for the 
first NN than for the second NN (Table 1). This NN also 
produced the smallest test MSE with an estimate of 82.69 
for a weight decay of 1.4.

The MSE quickly converged to a stationary phase for 
this NN (Fig.  1). One larger NN with three layers (3, 
2 and 1 nodes, respectively) was run only for a weight 
decay of 1.4. The resulting test MSE was equal to 93.55 
with a standard deviation (sd) of 1.424. In addition, the 
best model was evaluated with tanh and relu activation 
functions. The resulting test MSE were equal to 85.68 
(sd = 0.166) and 83.72 (sd = 0.248), respectively.

In order to investigate the effect of possible outli-
ers in the test predictions, we also calculated the model 

Table 1  Test set MSE for GBLUP, BLASSO and ABNN evaluated on the simulated QTLMAS2010 data

Two architectures were evaluated for the ABNN were k refers to the number of units per hidden layer. MSEM is the model-averaged MSE and SD is the standard 
deviation over iterations excluding burn-in. The best model MSE is indicated in italic characters

GBLUP 88.42

BLASSO 89.22

ABNN Weight decay �1
1.0 1.1 1.2 1.3 1.4 1.5

# units k = 1

 MSEM (SD) 83.64 (0.272) 83.26 (0.216) 83.27 (0.243) 83.50 (0.256) 82.69 (0.218) 83.51 (0.256)

# units k = 2.1

 MSEM (SD) 88.40 (0.940) 87.94 (0.733) 89.31 (1.167) 88.12 (0.840) 87.42 (0.714) 88.01 (0.727)

https://github.com/patwa67/ABNN
https://github.com/patwa67/ABNN
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averaged mean absolute error (MAE) for the most impor-
tant models. MAE was equal to 7.640 and 7.635 for the 
BLASSO and GBLUP, respectively. The smallest MAE 
was 7.407 for the small ABNN model with a weight decay 
of 1.5. The MAE for the larger ABNN model was 7.675, 
which indicates overall the same pattern as for MSE.

The model’s averaged weights E[W1] were calcu-
lated for the best model. The additive genetic effects 
were then obtained from the two homozygotes as 
a = −E[W1,Hom0] + E[W1,Hom2] and are plotted in Fig. 2. 
It can be seen that the ABNN detects the two major addi-
tive loci on chromosome 3 (SNPs 4354 and 5327) and 
the additive part of the epistatic effect on chromosome 
1 (SNP 931) as well as the additive part of the dominance 
locus (SNP 9212). Then, the dominance genetic effects 
were obtained from the heterozygote as d = E[W1,Het1] 
and are plotted in Fig.  3. It is clear that dominance, 

over-dominance and under-dominance loci were identi-
fied at SNP positions 9212, 9404 and 9602, respectively.

Real data
The analyses of the real data were run with the same 
number of iterations as for the simulated data. For the 
GBLUP and BLASSO, the MSE estimates were equal to 
0.8759 and 0.8741, respectively (Table  2). In the ABNN 
analyses, weight decays were optimized for values 
between 21 and 25 based on the two smallest NN. Again, 
the model averaged MSE and its standard deviation were 
overall smaller for the first NN than for the second NN, 
with MSE estimates of 0.8653 and 0.9221, respectively, 
for a weight decay of 23 (Table 2). For the third NN, the 
test MSE was equal to 0.9236 (sd = 0.00447). The analyses 
of the best model with tanh and relu activation functions 
resulted in test MSE of 0.894 (sd = 0.000383) and 0.867 
(sd = 0.000781), respectively.

MAE of 0.6863 and 0.6865 were obtained for the 
BLASSO and GBLUP models, respectively. The smallest 
MAE was 0.6811 for the small ABNN model with a weight 
decay set to 22. The second ABNN model yielded a MAE 
of 0.7153 for a weight decay of 22. Hence, the pattern of 
MAE is very similar to the MSE pattern for both datasets.

The model-averaged weights were extracted from the 
best model. Based on these, additive and dominance 
genetic effects were calculated and plotted (Figs.  4, 5), 
which shows that six SNPs have quite high dominance 
effects. The same SNPs were found to be important in an 
earlier study [34].

Discussion
Alternative designs to fully-connected feed-forward 
NN differ in the way neurons are arranged and acti-
vated, and the architecture needs to be tailored to 

Fig. 1  Trace plot of test MSE for the best model (one-neuron, 
one-layer and linear activation function) on the simulated 
QTLMAS2010 data

Fig. 2  Mode-averaged weight plots for the additive genetic effects 
for the best model (one-neuron, one-layer and linear activation 
function) on the simulated QTLMAS2010 data. The two major additive 
loci are SNP 4354 and 5327 (red circles) and the additive part of the 
epistatic effect at SNP 931 is indicated by a red circle) and the additive 
part of the dominance locus at SNP 9212 by a blue circle

Fig. 3  Model-averaged weight plots for the dominance genetic 
effects for the best model (one-neuron, one-layer and linear 
activation function) on the simulated QTLMAS2010 data. The 
dominance, over-dominance and under-dominance loci were 
identified at SNPs 9212, 9404 and 9602, respectively (blue circles)
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specific applications. Shallow NN have few layers and 
neurons, whereas deep NN consist of many layers, 
often with a large number of neurons, connected in 
various patterns. A one-layer and one-neuron NN with 
a linear activation function is equivalent to a standard 
multiple regression model. Many different architectures 

have been developed for deep-learning, the most 
important being convolutional neural networks (CNN), 
which are widely used for modelling images [35], and 
recurrent neural networks (RNN) for sequential data 
[36]. Restricted Boltzmann machines and autoencod-
ers have been developed for unsupervised learning [37]. 
The number of software packages for deep-learning and 
computational sophistication have increased in recent 
years. However, application of NN in genetics is still 
relatively scarce, but tends to increase [8].

Here, we showed that regularization of genome-wide 
data can be obtained by a combination of weight decay 
and dropout in NN, and that this provides an efficient 
method, which can be used both for GWP and GWAS. 
Extensions to more complex NN resulted in overfitting 
and worse prediction accuracy on both simulated and 
real data. Hence, one can argue that it is more impor-
tant to focus on efficient regularization and sparsity 
than on modelling of complex structures when genomic 
data consists of SNPs. Glória et  al. [19] also found 
that more complex NN designs reduced the predic-
tive accuracy compared to a simple one-layer one-node 
net when evaluated on simulated genotype/phenotype 
data.

A recommended strategy for optimization of the NN 
structure and the associated weight decays is to start 
with a simple model with one layer and one node, and 
monitor the MSE over a range of weight decays. Then, 
one can increase the complexity of the NN and evaluate 
if the test MSE decreases. Of course, cross-validation 
or some other form of test data is needed to obtain the 
minimum test MSE. The dropout probability can be set 
to a value between 0 and 1, but it turned out that the 
best result in terms of minimum test MSE was always 
obtained when setting this parameter to 0.5. Although, 
one should be aware that one of the dimension reduc-
tion properties of a NN structure is that once a variable 
from a layer is dropped, all the terms that are above it in 
the network also disappear [29]. Initially, it is important 

Table 2  Test set MSE for GBLUP, BLASSO and ABNN evaluated on the real Cleveland pig dataset

Two architectures were evaluated for the ABNN were k refers the number of units per hidden layer. MSEM is the model-averaged MSE and SD is the standard deviation 
over iterations excluding burn-in. The best model MSE is indicated in italic characters

GBLUP 0.8759

BLASSO 0.8741

ABNN Weight decay �1
21 22 23 24 25

# units k = 1

 MSEM (SD) 0.8688 (0.000796) 0.8675 (0.000790) 0.8653 (0.000722) 0.8676 (0.000741) 0.8687 (0.000728)

# units k = 2.1

 MSEM (SD) 0.9230 (0.00432) 0.9233 (0.00440) 0.9221 (0.00399) 0.9233 (0.00430) 0.9235 (0.00439)

Fig. 4  Model-averaged weight plots for the additive genetic effects 
for the best model (one-neuron, one-layer and linear activation 
function) on the Cleveland pig dataset

Fig. 5  Model-averaged weight plots for the dominance genetic 
effects for the best model (one-neuron, one-layer and linear 
activation function) on the Cleveland pig dataset
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to evaluate values of the weight decay and the dropout 
using a broad range of parameter values and then con-
secutively shorten down the interval.

A positive outcome of our results is that the weights 
can be interpreted as regression coefficients and there-
fore will be useful for the identification of important 
SNPs which is the main goal of GWAS. The one-hot 
encoding means that both additive and dominance 
effects can be detected as illustrated by the figures of 
both datasets. It is much more difficult to interpret 
weights for complex NN that include non-linear activa-
tion functions, pooling and feedback. Hence, the use-
fulness of deep-learning for GWAS is limited, although 
some techniques exist for variable importance analysis 
e.g. [19, 38].

Although SNPs are positioned on chromosomes, it is 
often sufficient to assume that the SNPs behave as inde-
pendent data units due to recombination. However, it 
should be pointed out that the structures of SNP chip 
data and DNA sequence data differ. Some recent stud-
ies have tried to account for the structure at the DNA 
level in various prediction settings. Alipanahi et  al. [39] 
introduced the DeepBind model based on deep CNN for 
the detection of protein binding sites in DNA sequences. 
The DeepBind model was shown to outperform other 
methods, to recover known and novel sequence motifs, 
and quantify the result of sequence alterations and detect 
functional single-nucleotide variants (SNVs). Quang and 
Xie [40] proposed DanQ, a novel hybrid convolutional 
and bi-directional long short-term memory recurrent 
(LSTM) neural network framework for predicting non-
coding function de novo from DNA sequences. The idea 
behind DanQ is that the convolution layer captures regu-
latory motifs, while the recurrent layer takes care of long-
term dependencies between the motifs. DanQ was shown 
to have outstanding prediction properties. It is likely that 
both CNN and RNN will become more important in the 
near future for GWP as sequence data becomes more 
abundant, but the computational demands for whole-
genome analyses of large samples of individuals will be 
huge.

In future studies, it would be interesting to combine 
the ABNN with convolutional and recurrent structures 
in order to incorporate possible LD. Another option that 
would be worth testing would be to replace weight decay 
(i.e. ridge regularization) with the ℓ1 penalty (i.e. lasso 
regularization) of the weight parameters. Further studies 
on other datasets are also needed before general conclu-
sions can be drawn.

Conclusions
This study shows how the drop-out technique can be 
applied to neural networks and result in an approximate 
Bayesian (ABNN) model that provides a computationally 
efficient approach with good prediction performance. 
ABNN is suitable for prediction of unknown phenotypes 
using large-scale genome-wide SNP data, and as a tool 
for the detection of the SNPs that contribute informa-
tion to the prediction when simple linear NN are favored. 
Our results show that, compared with the GBLUP and 
BLASSO methods on simulated data and real pig data, 
ABNN has lower prediction error and that a simple one-
neuron one-layer network is preferred over deeper and 
more complex structures.
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