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Metabolism links organisms to their environment through its effects on thermo-

regulation, feeding behaviour and energetics. Genes involved in metabolic

processes have known pleiotropic effects on some melanic colour traits.

Understanding links between physiology and melanic colour is critical for

understanding the role of, and potential constraints on, colour production.

Despite considerable variation in metabolic rates and presumed ancestral mela-

nic coloration in vertebrates, few studies have looked at a potential relationship

between these two systems in a comparative framework. Here, we test the

hypothesis that changes in melanosome shape in integumentary structures

track metabolic rate variation across amniotes. Using multivariate comparative

analyses and incorporating both extant and fossil taxa, we find significantly

faster rates of melanosome shape evolution in taxa with high metabolic rates,

as well as both colour- and clade-specific differences in the relationship between

metabolic rate and melanosome shape. Phylogenetic tests recover an expansion

in melanosome morphospace in maniraptoran dinosaurs, as well as rate shifts

within birds (in songbirds) and mammals. These findings indicate another

core phenotype influenced by metabolic changes in vertebrates. They also

provide a framework for testing clade-specific gene expression patterns in the

melanocortin system and may improve colour reconstructions in extinct taxa.
1. Background
Organisms are integrated across genetic, developmental, functional and pheno-

typic levels [1]. Understanding how traits may be correlated or linked is critical

for understanding evolutionary trends and selective regimes affecting one or

more of these traits [2]. Colour provides an integrative framework [3] for testing

how trait correlations might drive macroevolutionary trends. Melanic colour,

the most ubiquitous form of coloration in animals [4], is regulated primarily

by the melanocortin system—a suite of melanocortin hormones, melanocortin

receptors and antagonists that together affect colour as well as organismal be-

haviour and physiology [5]. Pleiotropy within the melanocortin system has

been well studied at the population level (reviewed in [5,6]) and is proposed

to explain links between melanic colour and other organismal traits, including

body mass [7], social behaviour [8], diet and energetics [9] and metabolic rate

[10]. However, few studies have investigated links between melanic colour

and metabolism in a comparative framework or asked how aspects of the mela-

nic colour system itself may evolve with major shifts in energetics [11]. Studying

macroevolutionary trends within the melanocortin system is critical for under-

standing potential constraints on colour evolution and identifying mechanisms

underlying the repeated evolution of links between colour and other phenotypic

traits in vertebrates [6].

Melanin pigments, including yellow to reddish-brown phaeomelanin and dark

brown to black eumelanin [4], are contained in organelles known as melanosomes.

Different forms of melanin have distinct metabolic pathways [12] and may be dif-

ferentially associated with some physiological traits (e.g. oxidative stress) [13].
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Observed relationships between colour and melanosome shape

(e.g. round phaeomelanosomes and cylindrical eumelano-

somes) [14] probably stem from changes in genes influencing

both melanin chemistry and melanosome shape [15–17]. Mela-

nin pigment genes (e.g. POMC) evolve faster in species with

higher metabolic rates [18]. Qualitative studies at broader

taxonomic scales have also recovered evidence for decreased

melanosome shape disparity in heterotherms compared to

homeotherms [19] and in extant large-bodied, flightless birds

relative to volant taxa with higher metabolic rates [20]. These

results have been used to propose a role for the pleiotropic effects

of the melanocortin system to explain these patterns at a macro-

evolutionary scale [19,20]. However, this hypothesis has not

been tested in a quantitative and comparative framework.

Here, we ask whether metabolic physiology explains shifts

in the melanic colour system across amniotes. Specifically, we

hypothesize that pleiotropic interactions within the melano-

cortin system [5] may cause covariation between metabolic

physiology and one melanin trait, melanosome shape. We

tested the following three predictions: (i) metabolic rates will

be associated with increased rates of melanosome shape

evolution; (ii) melanosome shape will relate to metabolic

rate differently for eumelanin-consistent (black or grey) and

phaeomelanin-consistent (yellow or reddish-brown) integu-

mentary colours; and (iii) the relationship between

metabolism and melanosome shape will vary among subclades.

We test these predictions derived from prior qualitative studies

[19,20] using a large synthetic dataset in a multivariate com-

parative framework. Our results have implications for

estimating colour in extinct species and set the stage for further

work on the genetic underpinnings of clade-specific trends in

the melanic colour system across vertebrates.
2. Material and methods
(a) Melanosome morphology
We used published data for melanosome length and diameter

measured from scanning electron microscope images [19,21].

These measurements were taken from integument cross-sections

for various integumentary structures (feathers, hairs, scales) of

known colour (e.g. grey, brown, black). Briefly, cross-sections

were prepared in previous work by embedding samples in

resin, slicing blocks into 5 mm-thick cross-sections with a micro-

tome and imaging the cross-sections on a scanning electron

microscope. Images were analysed and measured in IMAGEJ to

obtain the lengths along the short axis (diameter) and long axis

(length) for several melanosomes per sample. We also took

length and width measurements for melanosomes (n ¼ 10) in a

fossil frog from the Miocene based on published images [22].

(b) Metabolic rates and body size
We used available vetted data on metabolic rates in amniotes

[23,24]. Hereafter, we use ‘metabolic rate’ to refer to both basal

(BMR, for homeotherms) and standard metabolic rates (SMR,

for heterotherms) for non-avian reptiles (lizards, snakes) [23].

Since metabolic rate varies during feeding or movement, stan-

dard metabolic rate (SMR, measured in resting, non-growing

animals) is typically used in the literature [25]. For homeothermic

animals that further regulate their body temperatures (e.g. mam-

mals and birds), basal metabolic rate defines the ‘lower limit of

metabolic heat production’ [23]. Since body size increases

strongly with metabolic rate [25], we computed mass-specific

metabolic rates by dividing metabolic rates (measured in watts)
by body mass (measured in grams) and then log-transforming

these values. For 170 (66%) species without metabolic rate

data, we obtained body masses from published sources for

birds [26], mammals [27], and non-avian reptiles [28], normal-

ized SMR for heterothermic taxa [25], and calculated

mass-derived metabolic rates using published taxon-specific

regression values derived from a muchlarger dataset across domains

of life [25]. All variables were ln-transformed before analysis.

(c) Phylogeny
We combined recent supertrees for non-avian reptiles [29], mam-

mals [11] and birds [30] (with branch lengths from [31]) into a

synthetic amniote supertree. We stitched time-calibrated super-

trees together using the bind.tip function in phytools [32]

based on published divergence times [33] among the three

major clades. We then added 20 species with trait data but not

represented in the final tree using the add species to genus func-

tion in phytools [32]. This conservative approach adds species as

a polytomy to the most recent common ancestor of all congeneric

species. The final extant supertree contained 15 423 extant

species, to which we added 19 additional fossil taxa (see elec-

tronic supplementary material, methods and table S1 for details).

(d) Comparative analyses
(i) Estimating evolutionary rate shifts
To gain a general picture of rate variation in melanosome mor-

phology across amniotes, we reconstructed shifts in rates of

melanosome evolution including fossil taxa using a Bayesian

‘auteur’ approach [34] implemented in the rjmcmc.bm function of

GEIGER [35] (electronic supplementary material, figure S2). We did

a phylogenetic PCA with aspect ratio, melanosome length and mel-

anosome diameter using the phyl.resid function in phytools [32]

with the ‘lambda’ model (to account for phylogenetic signal).

Principal component 1 explained approximately 90% of the data;

therefore, we used this variable in downstream rate shift analyses.

We ran two chains for 1 million generations each and assessed

convergence with the Gelman–Rubin diagnostic [36].

(ii) Comparing rates of morphological evolution and
metabolic rates

To test our first prediction that rates of melanosome shape evol-

ution increase with mass-derived metabolic rate, we used a

modified version of the ratebystate function in phytools [32],

both with species averages and for black (eumelanin-consistent)

and brown (phaeomelanin-consistent) colours separately (R code

available at Dryad). We reconstructed ancestral states of mass-

derived metabolic rates in extant species using the ace function

in ape [37] and computed phylogenetic independent contrasts

for melanosome length and diameter at each node. We then com-

bined these univariate contrasts to calculate per-node multivariate

distances, or rates [38]. We tested significantly for the relationship

between these per-node rates and ancestral estimates of metabolic

rate using p-values obtained by comparing the observed corre-

lation to a null distribution based on 500 trait evolution

simulations [32]. We performed this analysis both in a multivariate

framework and with melanosome length and diameter treated

separately (see electronic supplementary material, table S2).

(iii) Estimating relationships between morphology and
metabolic rate

To test our second prediction that melanosome morphology

relates to metabolic rate differently for brown and black colours,

we used phylogenetic Bayesian mixed models (BPMMs)

implemented in MCMCglmm [39] to account for phylogeny,

multivariate response data and repeated measurements within
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species (e.g. both brown and black colours for some species). We

accounted for a model of trait evolution by fitting models using

different Ornstein–Uhlenbeck (OU) tree transformations (alpha

ranging from 1026 to 1022 in 10 steps) generated with the rescale

function [35] and keeping the fit with the lowest DIC scores [40].

We ran separate analyses for three different datasets: (1) a full

dataset for species with metabolic rate and/or body mass data

(n ¼ 236), (2) a dataset limited to only those species with both

body mass and metabolic rate data (n ¼ 77) and (3) a dataset lim-

ited to only species with melanosome data for both black and

brown integumentary colours (n ¼ 31), analysed with phylo-

genetic linear models [41]. The latter accounts for uneven

sample sizes between black (n ¼ 134) and brown integuments

(n ¼ 78). We then used Wald tests to determine the overall

significance of the model (R code on Dryad).

(iv) Clade-specific changes in colour allometry
To test our third prediction that the relationship between mela-

nosome morphology and metabolic rate has changed through
time in amniotes, we fitted separate multivariate BPMMs for

each subclade to test for clade-specific trends again taking into

account phylogenetic signal. We also compared among clade

differences in evolutionary rates and covariation among traits

in a Bayesian framework using the ratematrix package [42] (see

electronic supplementary material, methods for details).
(e) Discriminant function analysis
Given the potential relationship between melanosome mor-

phology and mass-derived metabolic rate, we asked whether

accounting for body mass could improve colour reconstruction.

We used quadratic discriminant analysis (QDA) to compare

two models: one with melanosome length, diameter and aspect

ratio as predictors (‘no mass’ model) and one with body mass,

melanosome length, diameter and aspect ratio as predictors

(‘mass’ model). We then compared the prediction performance

of these two models using cross-validation tests and self-tests

following [14].
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Figure 2. Black and brown integument colours covary with metabolic rate in different ways. Panels show relationships between mass-derived metabolic rate and
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3. Results
(a) Rates of melanosome shape evolution and

metabolism
We identified two increases in the rate of melanosome shape

evolution within crown mammals (in Carnivora and Roden-

tia), an increase at the base of the Maniraptora clade and a

subsequent increase within crown birds (Passeres; figure 1).

Nodewise rates of melanosome shape evolution increased

significantly with metabolic rate (rate-by-state test, p , 0.01;

see electronic supplementary material, table S2).

(b) Melanic colour system and metabolism
For the full dataset, melanosome length increased with meta-

bolic rate in black (BPMM, pMCMC, 0.001) but not brown

integuments ( pMCMC¼ 0.14, interaction pMCMC, 0.001;

figure 2a; electronic supplementary material, table S3). Mela-

nosome diameter increased significantly with metabolic rate

in black ( pMCMC ¼ 0.012) but not brown integuments

( pMCMC¼ 0.47; figure 2b). For the metabolic rate-only dataset,

the relationship between melanosome morphology and meta-

bolic rate was significant for black (length: pMCMC , 0.001,

diameter: pMCMC¼ 0.046) but not brown colours (length:

pMCMC¼ 0.23, diameter: pMCMC¼ 0.51; electronic supplemen-

tary material, figure S6). For the dataset with species having

both brown and black colours, the difference in melanosome

shape between black and brown integuments increased

significantly with higher metabolic rates (p ¼ 0.037; electronic

supplementary material, figure S7).

(c) Clade-specific changes in colour allometry
Subclade BPMM models revealed colour-specific divergence in

the relationship between melanosome length and metabolic

rate for mammals (i.e. species with higher metabolic rates have

more similar melanosome lengths among black and brown inte-

guments; figure 3c) and birds (species with higher metabolic
rates have less similar melanosome lengths; figure 3a), but not

non-avian reptiles (figure 3e). Melanosome length was signifi-

cantly correlated with metabolic rate in brown bird feathers

(figure 3a), but other subclade relationships were not significant

(figure 3c–f). For black integuments, multivariate rate analyses

showed elevated rates of melanosome shape evolution in birds

and mammals compared with non-avian reptiles (posterior

overlaps , 0.05; electronic supplementary material, figure S4).

Birds also show stronger evolutionary covariation between mel-

anosome length and diameter compared with non-avian reptiles

(posterior overlap less than 0.003; electronic supplementary

material, figure S4). For brown integuments, rates of melano-

some evolution were higher in mammals compared with

non-avian reptiles (posterior overlap ¼ 0.032), but other clade

comparisons were similar (posterior overlap greater than 0.05;

electronic supplementary material, figure S5).

(d) Discriminant function analysis
Incorporating body mass in QDA analyses resulted in

5–6% better performance at predicting colour (electronic

supplementary material, table S4).
4. Discussion
We find that rates of melanosome shape evolution increase sig-

nificantly with metabolic rate. While pleiotropic effects of

melanocortins on energetics and colour across vertebrates

are long remarked, few studies have assessed broader shifts

over macroevolutionary time scales. Qualitative observations

have suggested differences between heterotherms and

homeotherms in melanosome shape variation [19] and

colour-specific shifts in melanosome shape linked to increases

in body size [20]. Recent evidence for selection on Mc1r
suggests a primary role in coloration influenced the evolution

of the melanocortin system more than any other member of the

Mc2-5r groups [43]. Whether physiology is affected by
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correlated response to selection on Mc1r function in coloration

or pigmentation evolves under novel energetic regimes

remains unclear. However, recent studies in Salamandridae

find strong, unambiguous effects on metabolic rate linked to

selection for crypsis achieved via the degree of melanization,

with a non-trivial 60% increase in SMR attributed to costs of

melanogenesis [44]. In nestling barn owls, those with larger

dark spots on their wing tips uniformly showed higher meta-

bolic rates than those lacking the spots at the same ambient

temperatures [8]. Larger-spotted nestlings also grow faster

[45]. Similar to our conclusions here, these authors propose lin-

kages between melanogenesis and energy homeostasis via the

melanocortin system.

Body size, metabolic rate shifts and sexual selection are key

drivers of morphological evolution [46]. Colour-specific trends

between melanosome morphology and metabolic rate

(figure 2) suggest that pleiotropy may explain, at least in

part, the relationship between rates of morphological evolution

and metabolism (figure 1). Birds may express melanocortin
receptors in more parts of the body [47] or use melanocortins

in more non-colour-related functions, strengthening the

relationship between metabolism and melanin-based colour.

By contrast, factors such as colour variation driven by genes

with few pleiotropic effects (e.g. Mc1r) [5], distinct genetic

pathways producing similar colour phenotypes (e.g. in birds

[48] and mice [49]), or adaptive evolution of melanic colour

(e.g. for camouflage) independent of physiology [6] would

blur the relationship between metabolism and aspects of the

melanic colour system. Heterothermic animals that do not

internally regulate their metabolism would be expected to

show even less variation in expression of genes involved in

energetics (e.g. POMC), and interactions between pigment

types might further affect colour expression (e.g. Mc1r
expression mutes the colour effects of Asip [48]). Indeed,

although POMC plays a key role in pigmentation and other

melanocortin pathways, a recent study demonstrated only

weak coevolutionary relationships with other parts of that

pathway [43].
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The inclusion of fossils recovers increased rates of melano-

some evolution in maniraptoran dinosaurs and coincident with

the origin of pinnate feathers [19]. This shift may be consistent

with an increase in metabolic rate in the ancestor of this clade.

Previously proposed increases in melanosome shape disparity

in crown mammals [19]—specifically, in Carnivora and Roden-

tia (figure 1)—are also recovered. Our analysis also recovers a

subsequent rate increase within songbirds (figure 1). These

taxa show only slightly higher metabolic rates [23] but shorter

lifespans and shorter generation times, factors known to

increase evolutionary rates through their effects on mutation

rates [46]. Bayesian phylogenetic mixed modelling suggests

that a crown bird-specific relationship between melanosome

shape and metabolic rate (figure 3a) is driving the relationship

between ancestral metabolic rates and nodewise rates of mela-

nosome shape evolution (figure 1). Elevated rates of pigment

gene evolution in birds and mammals could also explain the

increased rates of melanosome evolution in these clades

(figure 1; electronic supplementary material, figure S4). Correct

estimation of the known colours of extant taxa was improved

when accounting for metabolic rate (electronic supplementary

material, table S3), a result that may have implications for the

clade-specific reconstruction of colour in extinct taxa.

Understanding how morphological traits scale with

body size over macroevolutionary timescales is critical for

determining whether such scaling acts as a constraint on

diversification [50], or if allometry itself evolves [11]—either

by natural [51] or sexual selection [52]. Metabolism may
limit rates of melanic colour evolution in non-avian reptiles,

with a shift in the colour–metabolism relationship expanding

the opportunity for rates of colour evolution in maniraptoran

dinosaurs (figures 1 and 3a). The significant relationship

between morphology and metabolic rate for black colours

at the overall clade level (figure 2a) but not within subclades

(figure 3a) suggests that ‘grade shifts’ [53]—coincident

changes in multiple traits occurring among major clades—

may be driving the pattern across amniotes. The strong

bird-specific link between melanosome morphology and

metabolic rate for brown colours (figure 3a) could be

explained by a more prominent role for sexual selection

and ‘honest’ signalling [54] in birds. Alternatively, selection

on energetics could have had neutral effects on melanin

pigmentation that later became a target of sexual selection.

Future work could illuminate whether convergence is seen

in Mc1r genes in both clades or in other parts of the complex

melanocortin system.
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