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Improvements in the fossil record may
largely resolve current conflicts between
morphological and molecular estimates of
mammal phylogeny

Robin M. D. Beck and Charles Baillie

School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK

RMDB, 0000-0002-7050-7072

Phylogenies of mammals based on morphological data continue to show

several major areas of conflict with the current consensus view of their

relationships, which is based largely on molecular data. This raises doubts

as to whether current morphological character sets are able to accurately

resolve mammal relationships. We tested this under a hypothetical ‘best

case scenario’ by using ancestral state reconstruction (under both maximum

parsimony and maximum likelihood) to infer the morphologies of fossil

ancestors for all clades present in a recent comprehensive DNA sequence-

based phylogeny of mammals, and then seeing what effect the subsequent

inclusion of these predicted ancestors had on unconstrained phylogenetic

analyses of morphological data. We found that this resulted in topologies

that are highly congruent with the current consensus phylogeny, at least

when the predicted ancestors are assumed to be well preserved and densely

sampled. Most strikingly, several analyses recovered the monophyly of

clades that have never been found in previous morphology-only studies,

such as Afrotheria and Laurasiatheria. Our results suggest that, at least in

principle, improvements in the fossil record—specifically the discovery of

fossil taxa that preserve the ancestral or near-ancestral morphologies of the

nodes in the current consensus—may be sufficient to largely reconcile mor-

phological and molecular estimates of mammal phylogeny, even using

current morphological character sets.
1. Introduction
The evolutionary relationships of mammals have been a major focus of research

within systematics for over a century [1–6]. In the last two decades, the increas-

ing availability of molecular data has seen the emergence of a robust consensus

phylogeny of extant mammals. This consensus indicates that several groupings

of placental mammals proposed based on morphological data (such as ‘eden-

tates’, ‘ungulates’ and ‘insectivorans’) are polyphyletic [4–6]. It also shows

that living placentals are distributed among four major clades or ‘superorders’,

probably reflecting their biogeographic history, namely Xenarthra, Afrotheria,

Laurasiatheria and Euarchontoglires [4–6]. Arguably the most striking finding is

that both Afrotheria and Laurasiatheria include ‘insectivoran-grade’ (afrotherian

tenrecs and golden moles, laurasiatherian eulipotyphlans such as hedgehogs,

shrews and moles), ‘ungulate-grade’ (afrotherian proboscideans, hyraxes and

sea cows, laurasiatherian artiodactyls and perissodactyls) and myrmecophagous

(afrotherian aardvarks, laurasiatherian pangolins) members. There is strong mol-

ecular evidence that Laurasiatheria and Euarchontoglires are sister taxa, forming

Boreoeutheria [4–6], and it seems probable that Xenarthra and Afrotheria also

form a clade, named Atlantogenata [4,7,8] (figure 1).

Recent morphology-only analyses of mammal relationships continue to show

numerous areas of conflict with this consensus, and typically recover ‘insecti-

voran’, ‘ungulate’ and ‘edentate’ clades [3,9–11] (figure 1). ‘Total evidence’
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Figure 1. Phylogenies of mammals based on (a) molecular and (b) morphological datasets. The topology shown in (a) is modified from fig. 1 of Meredith et al. [4]
and is based on an 11 000 amino acid alignment from 26 gene fragments, whereas that in (b) is modified from electronic supplementary material, figure S2A of
O’Leary et al. [3] and is based on 4541 morphological characters ( fossil taxa have been deleted). Branches are colour coded according to their membership of the
superorders Afrotheria, Xenarthra, Laurasiatheria and Euarchontoglires. Node numbers in (a) correspond to the predicted ancestors for those nodes in figure 2.
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analyses that combine morphological and molecular data

are largely congruent with the consensus [3,9]. However, ‘arti-

ficial extinction’ (sensu [12,13]) or ‘pseudoextinction’ (sensu
[14]) analyses of such total evidence datasets, in which selected

extant taxa are treated as if they are fossils by deleting their

molecular data, often fail to recover pseudoextinct placentals

within their respective superorders [14] (but see [12,13]).

This has led to suggestions that morphological data are

‘inadequate’ for accurately reconstructing the higher-level

evolutionary relationships of mammals [10,14–16]. In particu-

lar, it raises questions as to whether genuine fossil taxa (for

most of which molecular data are unlikely to ever become

available) can be correctly placed within higher-level mamma-

lian phylogeny, even when using a total evidence approach.

This creates a dilemma, because the inclusion of fossil taxa

may be critically important for phylogenetic comparative ana-

lyses [17–20], and yet such analyses assume that the fossil taxa

are placed accurately in the phylogeny being used.

In general, we should expect increased taxon sampling

to improve phylogenetic accuracy [21–23]. In morphological

and total evidence analyses, fossil taxa are likely to be par-

ticularly important: by exhibiting unique combinations of

plesiomorphic and derived character states, they should

help break up long morphological branches leading to extant

taxa [22,24,25]. The most detailed morphological study of

mammal phylogeny published to date is the character-rich

‘phenomic’ study of O’Leary et al. [3], but this is still highly

incongruent with the consensus [10] (figure 1). However,

O’Leary et al. [3] included only 40 fossil taxa, which is a

tiny fraction of the number likely to have existed during the

Mesozoic and Cenozoic [26]. A key question, then, is whether

improving the taxon sampling of morphological analyses,

particularly of fossil taxa, might be sufficient to resolve the

conflict between morphological and molecular estimates of

mammal phylogeny.
We investigate this by first reconstructing the expected

morphological character states (based on the O’Leary et al.
[3] matrix) of the fossil ancestors of all the clades present in

a comprehensive, family-level phylogeny of extant mammals

that is based on nuclear sequence data [4], and then testing

what impact the inclusion of these predicted fossil ancestors

has on the results of morphology-only analyses. In effect, our

analyses represent a hypothetical ‘best case scenario’ for

morphological studies of mammal phylogeny, in which we

simulate the discovery of direct fossil ancestors.

If the inclusion of these predicted ancestors in

morphology-only analyses is sufficient to result in phylogenies

that are largely congruent with the consensus, then it suggests

that the current conflict between morphological and molecular

estimates of mammal phylogeny might be resolved by improve-

ments in the fossil record and the addition of more fossil taxa to

currently available morphological matrices. In turn, this would

suggest that fossil taxa (including non-ancestral forms), for

which molecular data are unavailable, could still be accu-

rately placed within mammal phylogeny given sufficiently

dense taxon sampling, and hence that phylogenies that

include fossil and extant mammals may become sufficiently

accurate for use in comparative analyses. Conversely, if

morphology-only analyses continue to show major areas

of conflict with the consensus, even under this hypothetical

‘best case scenario’, then it suggests that the conflict will not

be resolved simply by improved taxon sampling, and that

the higher-level relationships of fossil mammals inferred

using current datasets and methods of analysis should not

be viewed with confidence.
2. Material and methods
The morphological matrix used here is that of O’Leary et al. [3];

this ‘phenomic’ matrix is by far the most character-rich
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available for mammals, comprising 4541 characters scored for

46 extant and 40 fossil taxa. We modified the matrix by first

merging the character scores for the fossil notoungulate Thoma-
shuxleya externa with those from a more recent study [27], and

then deleting 407 constant characters. This left a total of 4134

characters: 1170 cranial, 1311 dental, 890 postcranial and 763

soft tissue. For the ancestral state reconstructions (ASRs), all

fossil taxa were deleted from the matrix, and we assumed the

topology present in fig. 1 of Meredith et al. [4] (figure 1a). We

used two different optimality criteria for inferring ASRs:

maximum parsimony (MP) and maximum likelihood (ML).
MP-ASRs for all nodes were calculated using the ‘trace all char-

acters’ command in MESQUITE, whereas ML-ASRs were

calculated in RAXML using the ‘-f A’ command (which calcu-

lates marginal ancestral states), assuming the MK þ GAMMA

model and applying the Lewis correction (absence of invariant

sites) for ascertainment bias [28]. The collective MP-ASRs for

each node were then added to the original matrix (i.e. with all

extant and fossil taxa present), to act as predicted ancestors.

The same was done for the ML-ASRs, resulting in two different

matrices: one with predicted ancestors based on MP-ASRs, and

one with predicted ancestors based on ML-ASRs.
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Unless corrected for, ancestral state reconstruction does not

take into account that certain characters should be scored as

inapplicable given particular scores for other characters; for

example, characters relating to specific dental features should

be scored as inapplicable in a predicted ancestor if it is inferred

as entirely lacking teeth. To correct for this, we downloaded the

character ontology associated with the O’Leary et al. [3] matrix,

which specifies which characters become inapplicable given

other character scores, from the online Morphobank database

(project 773). We then used a custom R script to apply this ontol-

ogy to our MP-ASRs and ML-ASRs, ensuring the biological

plausibility of our predicted ancestors.

Different anatomical partitions differ in their preservation

probability, at least in the form of associated remains: in general,

soft tissue characters are the least likely to preserve, followed by

postcranial characters (although certain postcranial elements,

such as tarsals, may be relatively commonly preserved as isolated

elements), then cranial, and lastly dental characters [29,30]. We

further modified our matrices to take this into account: in the

‘all characters’ version of the matrix, we retained all character

scores for the predicted ancestors; for ‘skeletal only’ we scored

all soft tissue characters as unknown for the predicted ancestors;

for ‘craniodental only’ we scored all soft tissue and postcranial

characters as unknown for the predicted ancestors; for ‘dental

only’, we only included dental character scores for the predicted

ancestors. To further investigate the impact of fossil preservation,

we used a custom R script to only retain character scores for the

predicted ancestors that could be scored in (1) at least one of the

40 ‘real’ fossil taxa in the matrix, simulating a scenario in which

the predicted ancestors are extremely well preserved (¼ ‘max

preservation’), or (2) at least 50% (i.e. at least 20) of the ‘real’

fossil taxa, simulating a scenario in which the predicted ancestors

show a ‘typical’ or ‘average’ degree of preservation (¼ ‘typical

preservation’). Finally, we investigated the effect of incomplete

sampling of predicted ancestors by creating versions of each

matrix that include (1) predicted ancestors for all nodes, (2) pre-

dicted ancestors for nodes above the ordinal level only and (3)

predicted ancestors for nodes representing the superorders and

above (i.e. Xenarthra, Afrotheria, Laurasiatheria, Euarchonto-

glires, Atlantogeneta, Boreoeutheria, Placentalia, Marsupialia,

Theria, Monotremata and Mammalia). All matrices are available

in the electronic supplementary material, data file S1.

For the MP-ASRs, the original matrix and the different ver-

sions of the matrix with predicted ancestors included were

analysed using MP, as implemented by TNT. Tree searches

comprised new technology searches until the same minimum

length was hit 100 times, followed by a traditional search

with TBR branch-swapping among the trees already saved.

All most parsimonious trees were summarized using strict con-

sensus, and bootstrap support values were calculated as

absolute frequencies using 500 replicates. For the ML-ASRs,

the original matrix and the different versions of the matrix

with predicted ancestors included were analysed using

RAXML, again with the MK þ GAMMA model and the Lewis

correction for ascertainment bias. RAXML searches comprised

100 replicates of the default rapid hill-climbing algorithm.

Non-parametric bootstrap support values were also calculated,

with the number of replicates determined by the autoMRE cri-

terion. Standard bootstrap values may be unduly conservative

when one or more ‘rogue’ taxa are present, and so we also cal-

culated support for all our MP and ML trees using the recently

developed ‘transfer bootstrap expectation’ (TBE) method [31],

using BOOSTER. All trees and associated support values are

available in the electronic supplementary material (electronic

supplementary material, data file S2).

After deleting all fossil taxa and predicted ancestors, the trees

from all analyses were quantitatively compared with the same

Meredith et al. [4] topology used to calculate the ASRs. We used
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the normalized Robinson–Foulds (¼ partition) metric (nRF), the

SPR distance (SPRd) and the distortion coefficient (DC); the

latter two metrics are less affected by shifts in the position of

just one or a few taxa [32]. A greater degree of similarity between

trees is indicated by values closer to 0 for nRF, but values closer to

1 for SPRd and DC. In the case of MP analyses that recovered

more than one most parsimonious trees, we compared the indi-

vidual most parsimonious trees, and also the strict consensus of

these, to the Meredith et al. [4] topology.
rg/journal/rspb
Proc.R.Soc.B

285:20181632
3. Results and discussion
Strikingly, in several analyses, the inclusion of predicted

ancestors was sufficient to result in phylogenies that are gen-

erally congruent with the consensus, particularly those that

assumed well-preserved predicted ancestors (table 1 and

figure 2). For example, for the MP analysis assuming ‘max

preservation’ predicted ancestors, the strict consensus recovers

the monophyly of Atlantogenata, Boreoeutheria and all four

superorders (figure 2). Even when strict monophyly of the

four superorders was not recovered, this was often due to

only one or a few taxa being misplaced, as indicated by high

SPRd and DC values (table 1). However, analyses that assume

less well-preserved predicted ancestors (e.g. ‘dental only’,

‘typical preservation’) resulted in phylogenies that were

much less congruent with the consensus (table 1), as did ana-

lyses that included only predicted ancestors for nodes above

the ordinal level, or for superorders and above (electronic

supplementary material, tables S3 and S4).

Bootstrap values are low for most nodes in the MP ana-

lyses, even when using the TBE method (figure 2; electronic

supplementary material, data file S2), but this might be

expected given the inclusion of multiple fossil taxa (both ‘real’

fossil taxa and predicted ancestors) [25,33]. Support values

were generally higher for the ML analyses, particularly when

using the TBE method (figure 2; electronic supplementary

material, data file S2), including for several of the placental

superordinal clades, where recovered (table 1; electronic

supplementary material, data file S2).

With all predicted ancestors included, the MP analyses

recovered more of the placental superordinal clades than

did the equivalent ML analyses (table 1). However, when

comparing across all our MP and ML analyses (table 1; elec-

tronic supplementary material, tables S3 and S4), there was

no significant difference in fit to the Meredith et al. topology

between the two optimality criteria, except as measured by

DC, where ML showed significantly better fit (electronic sup-

plementary material, text file S5). Future studies could see

whether data partitioning [34] improves the performance of

ML. Another obvious area to explore would be the use of

tip-dating approaches [35–37], with predicted ancestors

assigned ages compatible with recent molecular clock ana-

lyses (e.g. [4]); recent work suggests that such approaches

may be better able to identify cases of homoplastic resem-

blance than methods that do not incorporate temporal

evidence [38].

We emphasize that our study represents a hypothetical

‘best case scenario’: we inferred the ancestral states of pre-

dicted ancestors using the same optimality criterion (either

MP or ML using the MK þ GAMMA model) that was sub-

sequently used to analyse the matrix with the predicted

ancestors added, and the predicted ancestors lack any apo-

morphies not present in their descendants (i.e. they
represent ‘perfect’ ancestral morphologies). Both of these

are unrealistic, or at least highly optimistic, assumptions

(although direct ancestors may actually be relatively

common in the fossil record [39,40]).

Nevertheless, we show that the inclusion of hypothetical

ancestors predicted by the molecular consensus of placental

phylogeny is sufficient to result in phylogenies that closely

match this consensus, without the use of constraints or the

addition of molecular data, at least when these predicted

ancestors are assumed to be well preserved and densely

sampled (figure 2 and table 1). Thus, there are at least hypothe-

tical character combinations that can link morphologically

disparate mammalian taxa, such as the ‘insectivoran-grade’,

‘ungulate-grade’ and myrmecophagous members of

Afrotheria and Laurasiatheria. If genuine fossil taxa exhibit

these character combinations, and are sufficiently well pre-

served, then their discovery and inclusion in phylogenetic

analyses might be sufficient to largely resolve the current con-

flict between molecular and morphological analyses, even

using morphological matrices that currently show extensive

conflict with molecular data, such as that of O’Leary et al.
[3]. Finding such well-preserved taxa may prove difficult,

given that the mammal fossil record remains relatively poor

[26], particularly for key regions such as Africa [41], and is

likely to remain dominated by isolated dental remains

[42,43]. However, recent discoveries show that progress is

being made in this direction; for example, well-preserved

remains of Ocepeia from the Palaeocene of Morocco reveal

that it combines features of ‘insectivoran-grade’ and ‘ungu-

late-grade’ afrotherians [44], and other African fossils show

that dental similarities between ‘ungulate-grade’ afrotherians

and laurasiatherians are homoplastic [45].

Although not tested here, a similar principle may apply to

other clades. If so, then we can be optimistic that we may

be able to accurately infer a phylogeny for many clades

using morphological data alone, given a sufficiently good

fossil record. Improvements in phylogenetic methods will

undoubtedly also play a role: these might include better

models of morphological character evolution [46,47], clock

models [35–37], methods that take into account character

non-independence and saturation [48–50] or some combi-

nation of these. However, our results suggest that inclusion

of fossil taxa may prove to be particularly important. In

any case, arguments that morphological data are ‘inadequate’

for accurately inferring the phylogeny of mammals [14–16],

or of the many other clades that currently show extensive

morphological–molecular conflict (such as birds [51–54]),

are at the very least premature.
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