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Individuals with low empathy often show reduced attention towards social

stimuli. A limitation of this literature is the lack of empirical work that has

explicitly characterized how this relationship manifests itself over time. We

investigate this issue by analysing data from two large eye-tracking datasets

(total n ¼ 176). Via growth-curve analysis, we demonstrate that self-reported

empathy (as measured by the empathy quotient—EQ) predicts the temporal

evolution of gaze behaviour under conditions where social and non-social

stimuli compete for attention. In both datasets, we found that EQ not only

predicted a global increase in social attention, but predicted a different tem-

poral profile of social attention. Specifically, we detected a reliable effect of

empathy on gaze towards social images after prolonged viewing. An analy-

sis of switch latencies revealed that low-EQ observers switched gaze away

from an initially fixated social image more frequently and at earlier latencies

than high-EQ observers. Our analyses demonstrate that modelling these

temporal components of gaze signals may reveal useful behavioural pheno-

types. The explanatory power of this approach may provide enhanced

biomarkers for conditions marked by deficits in empathy-related processes.
1. Introduction
To enable successful interactions with the environment, organisms must prefer-

entially attend to socially significant stimuli. Failure to engage with conspecifics

can result in exclusion and status loss, which are significant and recurrent

fitness threats [1]. Moreover, attending to social stimuli allows the accumulation

of strategically beneficial information such as the physical strength of a poten-

tial rival, the social standing of a potential ally or the genetic fitness of a

potential mate [2]. In humans, such ‘social attention’ is also crucial for the

development of communicative skills such as language acquisition and emotion

recognition [3].

Empathy has been defined as the drive to identify with another person’s

emotions and thoughts, and to respond to these with an appropriate emotion

[4]. In order to identify with another’s emotions and respond appropriately,

it is essential to attend to socially relevant cues such as bodily postures and

facial expressions—which provide important information for decoding the

emotional states of other people [5,6]. Social attention can therefore be concep-

tualized as an essential precursor to an empathic response. Support for this

view has come primarily from case-control eye-tracking studies, which have

demonstrated that individuals with deficits in some empathy related processes

also show deficits in social attention. For instance, a recent meta-analysis

revealed robust evidence that autism spectrum conditions (ASC) are

associated with a reduction in social attention that generalizes across a wide

range of tasks and stimulus conditions [7]. Influential case-control eye-tracking

studies have indicated that individuals with ASC exhibit reduced attention to

biological relative to non-biological motion patterns [8] and exhibit a preference

to direct gaze towards geometric patterns when they compete with videos of

social interactions [9]. However, other studies have called into question whether
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social attention differences are meaningfully related to the

aetiology and maintenance of ASC [10,11]. The heterogeneity

in reported outcomes is possibly due to the heterogeneous

nature of ASC and the small sample sizes resulting from

the practical issues associated with case-control designs. In

this context, it is surprising that there is almost no literature

that has attempted to model individual rather than group vari-

ation in social attention in the neurotypical population. One

recent study has demonstrated that trait empathy is associ-

ated with a gaze bias towards social rewards in the

neurotypical population [12]. Although this observation indi-

cates that social attention is generally reduced in individuals

with low empathy, the features of gaze behaviour underlying

this reduction remain fundamentally unclear.

The output of a typical eye-tracking experiment is a con-

tinuous stream of spatial coordinates that define the location

of an observer’s gaze over time. To describe individual/

group differences in social attention, this time series is typi-

cally collapsed into the total gaze duration towards areas of

interest (AOIs) containing social and non-social stimuli [7].

While total gaze duration is an intuitive and easily interpret-

able metric, it necessarily involves the removal of informative

components of the data contained within the temporal

domain. Such an approach may therefore fail in describing

more subtle differences between individuals that describe

the dynamic nature of social attention. Although some

previous studies of social attention have considered the tem-

poral origin of group differences via divergence analyses

[13–15] none have provided or tested a quantitative model

of the entire time series. To our knowledge, no existing

study has provided an explicit model of the temporal struc-

ture of social attention and tested predictions about

individual-level social gaze behaviour over time.

The motivation for investigating individual differences in

the temporal structure of social attention is not purely data

driven. At the theoretical level, prioritized perception of

socially relevant signals is one of the most important func-

tions of the visual system. As such, there is a major

explanatory burden associated with identifying the features

of gaze behaviour underlying individual variation in this

phenomenon. Neurocognitive theories propose that social

attention is mediated by neural circuits that transduce sen-

sory information about conspecifics and translate that

information into value signals that bias the spatial allocation

of gaze over time [16]. In order to more fully appreciate what

drives humans to attend to social aspects of the world, one

must investigate the individual characteristics that influence

this inherently dynamic process. By extension, this research

effort may have the corollary of informing explanatory

models of disordered social attention. Moreover, influential

models propose that attention involves at least two distinct

components of initial ‘orienting’ to and subsequent ‘main-

taining’ of engagement with stimuli [17]. In global

eye-tracking metrics, these two processes are conflated—

total gaze duration towards social stimuli could reflect some

combination of both the orienting and maintaining mechan-

isms. Delineating these mechanisms requires explicitly

modelling the temporal components of the gaze signal. In

general, we may expect empathy to primarily influence gaze

behaviour some time after stimulus presentation because

arriving at an empathic response may require sampling

many relevant cues from a scene. We may need to attend to

multiple subjects in the scene, determine their event roles,
recognize their facial expressions/bodily postures and inte-

grate this information over time before an empathic response

is triggered. This idea is consistent with the recent observation

that although empathy is predictive of gaze bias towards

social images after prolonged viewing, it does not predict

the initial saccadic deviation towards social images in a

‘global effect’ paradigm [12].

In the context of the preceding discussion, there is a clear

lack of empirical work that has attempted to model the tem-

poral structure of social attention and its relationship with

individual social trait characteristics such as empathy. In

this study, our goals were to (i) characterize the extent of

gaze bias towards social stimuli in a large sample of obser-

vers, (ii) model the time course of this social bias and (iii)

determine how empathy modulates the time course of the

social bias. We report data from two large eye-tracking

datasets, with a combined total of 176 observers.
2. Dataset 1
(a) Method
(i) Participants
Ninety-nine participants (58 females, mean age ¼ 23, s.d. ¼ 5)

were recruited from in and around the University of Reading.

Ethical approval for the study was obtained from the Research

Ethics Committee of the University of Reading (Ethics ID:

2012/070/BC) and all participants provided informed

consent. All participants had normal or corrected to normal

vision. All participants except one female completed the

empathy quotient (EQ) [18], a reliable, behaviourally vali-

dated measure of trait empathy. The mean EQ score was

44.21 (s.d. ¼ 11.27), and the scores ranged from 25 to 73.

This distribution of scores closely resembles that previously

observed in large-scale surveys of the neurotypical population

(e.g. [19]: n ¼ 190, mean ¼ 44.5, s.d. ¼ 10.7).

(ii) Stimuli
Forty pairs of social and non-social reward images were taken

from the International Affective Picture System (18 pairs [20])

and downloaded from publicly available creative commons

licensed images databases such as Flickr (22 pairs). All

images were the same as used in [12], in which social reward

images included one or more humans (e.g. happy

individuals) while non-social reward images included reward-

ing non-social content (e.g. food, scenery and money—see

electronic supplementary material S1). All stimuli in the

experiment subtended 15.4 � 9.15 degrees of visual angle

(DVA), and pairs were separated by 5.29 DVA (figure 1b).

To reduce the influence of extraneous sensory and affec-

tive differences between image pairs, all stimulus pairs

were matched as closely as possible in terms of low level

properties (e.g. luminance, contrast, saliency) as well as per-

ceived valence and arousal—see electronic supplementary

material S1. In addition, to further characterize the influence

of low-level confounds, we presented two stimulus types. All

image pairs were manipulated via randomly rearranging

10 � 10 pixel grids to create a set of ‘scrambled’ images in

addition to the intact images. The logic of this manipulation

is that if simple low-level variability between image pairs

drives a gaze bias towards social images, we would expect

to find a social bias of similar magnitude for both the intact
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and scrambled stimulus types. By contrast, if social bias is

genuinely driven by the semantic content of the images, we

would expect social bias to be substantially reduced for

scrambled stimuli.

(iii) Procedure
Observers were seated 50 cm in front of a Tobii T60 eye-tracker

with an inbuilt 1280 � 1024 pixel resolution monitor (60 hz

refresh rate) and sampling rate of 60 Hz (figure 1a). Stimuli

were presented using E-PRIME 2.0 (Psychology Software

Tools, PA, USA [21]). Following a 5-point calibration, partici-

pants completed the free-viewing task: Observers were

informed that they would be presented with pairs of images

side by side for 3 s, and that they were free to look wherever

they liked during this period. Figure 1b depicts the trial

sequence: observers were presented with a fixation cross for

500 ms, followed by a pair of the social and non-social stimuli

for 3000 ms. To maintain engagement with the task, the colour

of the fixation cross changed from black to blue on 10% of

trials. The participant was asked to report these changes via

button press as rapidly as possible. Observers completed 80

trials in total (40 image pairs, 2 stimulus types).

(b) Results
(i) Aggregated social bias
Data reduction was performed via the ‘eyetrackingR’ package,

implemented in the R programming language [22]. The

display coordinates occupied by the social and non-social

images on each trial were defined as areas of interest (AOIs).

We first analysed the data by aggregating across the time

dimension. To this end, we reduced the raw gaze data for

each participant into the proportion of trial time that gaze

was directed into the social AOI and non-social AOI. This
data was submitted to a general linear model with AOI

(social, non-social) and stimulus type (intact, scrambled) as

fixed effects. Reported significance tests of model coefficients

were conducted via likelihood ratio tests of nested models con-

taining the coefficients versus those without them. There was a

main effect of AOI, indicating gaze bias towards social images

x2
1 ¼ 104:02, p , 0.001. Moreover, the predicted interaction

between AOI and stimulus type was detected x2
1 ¼ 18:92,

p , 0.001 (figure 1c). The bias for social images was larger in

the intact condition (b ¼ 0.12) than scrambled condition

(b ¼ 0.05). Adding EQ to the model revealed a 3 way inter-

action between AOI, stimulus type and EQ x2
1 ¼ 5:90, p ¼

0.020. Higher EQ was associated with a larger social bias for

intact stimuli than scrambled stimuli (figure 1d ).

(ii) Time course of social bias
Having analysed the aggregated data expressed as total gaze

duration, we next aimed to estimate a parsimonious model

that described the time course of social bias across partici-

pants. For each observer, we first removed trials for which

gaze failed to record for more than 60% of a trial (16% of the

data). Next, we reduced each observer’s gaze data into the pro-

portion of gaze within the social and non-social AOI in each

100 ms time bin from the start to end of the trial. We then

removed data from the first 100 ms time bin, since it contained

3 s.d. less than the mean number of valid samples captured

within all time bins. No association was detected between

EQ and the number of remaining data points when this

cleaning strategy was applied r (96) ¼ 20.019, p ¼ 0.851.

Figure 2a depicts the time course of gaze proportion into

the social AOI for intact stimuli. This gaze bias towards social

images is not time invariant (figure 2a), nor is its time course

well described by a linear function (figure 2b). The global pat-

tern is an initial bias towards the social AOI that peaks within
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the first 500 ms, followed by a nonlinear decline and a partial

recovery towards the end of the trial. To model these non-

linear components of the time course, we proceeded via

forward selection and tested the performance of models

that included higher-order time regressors [23]. To protect

against overfitting, we tested the generalization performance

of each model, using standard leave one out (LOO) cross-

validation procedures (see electronic supplementary material

S2 and S3). Once linear and quadratic time regressors were

added, the addition of higher order terms failed to reduce

residuals or improve LOO performance, suggesting that

more complex models were prone to overfitting. Therefore,

a model with AOI and linear and quadratic time regressors

as fixed effects (AIC ¼ 26365.5) was retained as our global

model of the time course of the social bias (figure 2c).

(iii) Effect of empathy on time course of social bias
Having modelled the time course of the social bias pooled across

participants, we next attempted to model variation at the indi-

vidual level. We first tested whether empathy modulates the

time course of the social bias by defining EQ as a predictor of

proportion of gaze in the social AOI within each 100 ms time

bin. An effect of EQ as a predictor of gaze into the social AOI

was detected within 3 ‘clusters’ of contiguous time bins

(figure 2d, see electronic supplementary material S4 for a
rationale for defining clusters). These were located (i) at 100–

900 ms, (ii) at 1500–1600 ms, (iii) at 1800–2900 ms. Given the

multiple tests associated with this analysis, our type 1 error

rate may have reached unacceptable levels. Therefore, to protect

against false positives, we performed a bootstrapped cluster-

based permutation analysis (electronic supplementary material

S4) akin to that typically applied to electroencephalogram data

[24]. After this correction was applied, there was no detectable

effect in the second cluster ( p ¼ 0.316), whereas the chances of

obtaining the summed statistics observed in the first and last

cluster under the null hypothesis were estimated to be at p ¼
0.003 and p ¼ 0.002 respectively.

With this temporal influence of empathy established, we

next proceeded to test models that added EQ as a fixed

effect to our initial global model of the time course (electronic

supplementary material S5). We first specified a reduced
interactive model, which constrained EQ to interact only with

AOI but not the time regressors. This led to improved model

fit x2
2 ¼ 337:47, p , 0.001, consistent with the previously

observed generalized increase in social bias associated with

high EQ. Next we specified a fully interactive model, which

removed this constraint and allowed EQ to additionally

interact with the time regressors. This further improved on

the reduced interactive model x2
4 ¼ 72:70, p , 0.001. To aid

interpretation of this model, its predictions are plotted with
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the empirical data for five observers (figure 2e), whose EQ is

ordered from left to right (low to high). The model predicts

that EQ is associated with a generalized increase in gaze

bias towards the social AOI (i.e. the vertical offset between

the blue and green lines), but that this effect is particularly pro-

nounced at the start and end of the trial. Given the complexity

of this fully interactive model, we again protected against

overfitting via another LOO analysis, which confirmed

that this model had the superior performance (electronic

supplementary material S5).

In good agreement with the results of our cluster-based

analysis, this confirms that EQ is not only associated with a

generalized increase in social bias, but also with a different

temporal profile of social bias. Inspection of figure 2e reveals

that EQ predicts an initial increase in social attention, but also

a more sustained component that maintains social attention

at the later portions of the trial.

One plausible mechanism for this sustained component is

that, after being initially fixated, social images hold attention

for longer durations in high-empathy individuals than low-

empathy individuals. To test this possibility, we split trials

according to the AOI that was initially fixated and analysed

the latency at which observers switched their gaze to the

alternate AOI. We reasoned that if empathy was associated

with sustained attention on social images, this would be

manifested in an interactive effect of EQ and initial AOI on

gaze switch latency. Figure 3a depicts the proportion of

observers who switched AOI as a function of the initial

AOI, EQ (median split for visualization) and time. Inspection

of this figure reveals that low-EQ individuals switched from

the social AOI more frequently and at earlier latencies than

high-EQ individuals. The predicted interaction between EQ

and initial AOI on switch latency was detected x2
1 ¼ 4:56,

p ¼ 0.030. Higher EQ was associated with later switching

from the social AOI relative to the non-social AOI (figure 3b).
3. Dataset 2
Our analyses of the first dataset indicate a robust effect of

empathy on the time course of social attention. To further vali-

date our initial findings, we next tested their generalization

performance via a re-analysis of an existing, independent

dataset [12].
(a) Method
(i) Participants
Seventy-seven participants (42 females; mean age ¼ 21 years,

s.d. ¼ 3 years) drawn from in and around the University of

Reading campus completed the FV task. All participants

had normal or corrected to normal vision. Sixty-eight (38

female) participants completed the online EQ questionnaire.

The study was approved by the University of Reading

Research Ethics Committee (Ethics ID: 2010/86/BC).

(ii) Stimuli
The images and image pairings were the same as those

described for Dataset 1.

(iii) Procedure
The only procedural differences from those described in Data-

set 1 were as follows. Participants were seated at 100 cm from a

1600 � 1200 pixel resolution colour monitor (75 hz refresh

rate). Eye movements were recorded via a video based eye-

tracker with a sampling rate of 500 hz (Eyelink 2, SR research).

Stimuli were presented via EXPERIMENT BUILDER software [25].

The presentation duration of stimuli in this task was 5000 ms

and stimuli subtended 5.59 � 4.19 DVA.

(b) Results
(i) Aggregated social bias
Inspection of figure 4 reveals a pattern of results that very clo-

sely mirror those obtained from Dataset 1. There was again the

same main effect of AOI x2
1 ¼ 91:40, p , 0.001 and interaction

between AOI and stimulus type x2
1 ¼ 28:61, p , 0.001

(figure 4a). The bias for social images was similarly larger in

the intact condition (b ¼ 0.13) than scrambled condition (b ¼

0.04). Adding EQ to the model revealed the same three-way

interaction between AOI, stimulus type and EQ x2
1 ¼ 18:21,

p , 0.001. Higher EQ was associated with a larger social bias

for intact stimuli, but not scrambled stimuli (figure 4b).

(ii) Time course of social bias
We used the same data reduction strategy as reported for

Dataset 1. We removed 2.85% trials due to trackloss and

again removed data from the first 100 ms time bin. No associ-

ation was detected between EQ and the number of remaining
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data points when this cleaning strategy was applied

r (67) ¼ 20.003, p ¼ 0.981. The forward selection strategy

revealed that a model involving AOI and linear and quadratic

time regressors as fixed effects (figure 4c) again provided the

best fit to the data (AIC 29639.3) and had the best generaliz-

ation performance (see electronic supplementary material S6).

(iii) Effect of empathy
An effect of EQ as a predictor of social bias was detected within

a cluster from 2800 to 5000 ms (corrected p ¼ 0.009—figure 4d).

We again tested models that added EQ as a fixed effect to our

initial model of the global data. The reduced interactive model

again improved model fit x2
2 ¼ 335:98, p , 0.001. Moreover,

a fully interactive model further improved on the reduced

interactive model x2
4 ¼ 85:14, p , 0.001. EQ was primarily pre-

dictive of social bias towards the end of the trial (figure 4d ).

An analysis of switch latencies did not detect an inter-

action between initial AOI and EQ x2
1 ¼ 3:52, p ¼ 0.060, but

the effect was similar in magnitude and direction to that
observed in Dataset 1. Higher EQ was again associated

with later switching to the social AOI relative to from the

non-social AOI (figure 4e,f ).
4. Discussion
In this study our major novel contributions were as follows:

We (i) provide an explicit model of the time course of social

attention, (ii) determine how the parameters of this model

are modulated by social trait characteristics of the observer,

(iii) test this model by making quantitative predictions

about the allocation of an individual’s gaze over time.

Across two large datasets, we found a number of similar find-

ings. (i) Observers exhibit a robust gaze bias towards social

images. (ii) EQ is reliably associated with an increase in this

bias. (iii) This effect of EQ is not time invariant—a model

that allowed empathy to interact with the temporal com-

ponents of the gaze bias provided a superior fit to a model
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that assumed a time-invariant effect of empathy. Specifically,

empathy was found to reliably maintain gaze bias towards

social images after prolonged viewing. (iv) Higher EQ was

associated with less frequent and later switching from an

initially fixated social image.

At the most fundamental level, our finding that gaze

behaviour is predicted by the social trait characteristics of

the observer emphasizes that the mechanisms underlying

social attention are deeply enmeshed with other aspects of

social cognition. The dynamic influence of empathy on gaze

behaviour suggests that empathy is not a passive affective

resonance with the emotions of others and that wider contex-

tual influences play feed-forward roles in how emotions are

perceived and experienced. This fits with neurocognitive

theories of empathy, which propose that empathy is

implemented by a network of recursively connected cortical

and subcortical sites [26]. It also fits well with multi-stage

models of empathy, which propose that prolonged attention

to social stimuli reflects a form of evidence gathering so that

appropriate empathic responses can be generated [27,28].

Our findings appear consistent with recent pharmacologi-

cal work, which indicates that administration of oxytocin

(associated with the experience of empathy in humans and

mesolimbic dopaminergic activity involved in responding to

rewards) predicts maintained periods of eye-contact in maca-

que monkeys [14]. We speculate the similarity of these

findings with our own reflect some common mechanism that

promotes prolonged perceptual selection of socially relevant

inputs. Computational models of alternative forced choice be-

haviour have been proposed that explicitly relate gaze

behaviour to value coding. The ‘gaze cascade model’ proposes

that gaze and value coding mutually interact, resulting in an

increased gaze towards preferred stimuli over time [29]. A con-

sistent observation from both of our datasets is that trait

empathy is better able to predict gaze towards social rewards

towards the end of the trial. One potential interpretation of

this observation is that trait empathy is related to enhanced

motivational salience of social stimuli. By extension, we specu-

late that the individual differences in the temporal evolution of

eye-movement behaviour observed in our study reflects some

online behavioural correlate of the value-coding process. This

inference relies on electrophysiological studies that show

value-coding is a dynamic process, and requires accumulation

of evidence over time [30]. This interpretation of empathy being

related to the value coding of social rewards is also consistent

with the observation that higher empathy is associated with

greater reward-related striatal activation in response to social

reward stimuli [31]. Our free-viewing task, of course, did not

require observers to make an explicit choice between two

stimuli. Recent computational modelling of binary choice be-

haviour indicates that impressive predictions of choice

behaviour can be generated by models that incorporate gaze

behaviour and the reward value of competing stimuli [32]. In

this context, an interesting question concerns whether empathy

similarly predicts different trajectories of social attention and

different gaze cascade effects in choice-based paradigms.

In interpreting our findings, it is important to acknowledge

that gaze behaviour in response to complex rewarding scenes is

likely to reflect the output of many dissociable and fundamen-

tal processes. As such, the pattern of results we found could

also be driven by some combination of component processes

found to vary as a function of empathy. This may include

individual differences in gaze perception [33], expression
recognition [34], temporal integration [15] and a precedence

of local over global processing [35]. Our data cannot clarify

the relative contribution of these factors. Moreover, gaze behav-

iour is strongly determined by low-level properties, such as

luminance contrast and spatial frequency profile. Although

we attempted to protect against these issues with our matching

procedures and use of scrambled control stimuli, our stimuli are

still not immune to these issues. However, no study involving

complex, naturalistic visual stimuli is completely resistant to

these potential confounds.

In the absence of longitudinal data, a claim about the

directionality of the causal relationship between empathy

and social attention observed here is clearly over-reaching.

Based on the available developmental literature, however,

there are sensible grounds for proposing that some aspects

of social attention precede empathy. Newborns exhibit

robust orienting responses to conspecific stimuli (particularly

faces) [36], whereas the cognitive components of empathy

(such as theory of mind) emerge several years into develop-

ment [37]. In this context, our study could motivate well-

controlled developmental studies that track the temporal

structure of social attention across development and its

shared trajectory with the development of empathic abilities.

Our findings have several important implications for the

design of future studies. We observed that empathy can take

effect on behaviour several seconds after stimulus onset. Spon-

taneous mimicry, related to certain components of empathy

[38], can also take effect several seconds after stimuli onset

(e.g. in response to reward [39]). Findings like these may ques-

tion the sensitivity of methods that rely on much briefer

stimulus exposures, such as visual probe paradigms [40–42]

in detecting differences between groups that vary in empathic

traits. There is widespread enthusiasm for the idea that electro-

physiological methods with high temporal resolution may

further clarify the temporal brain dynamics of empathy

[43,44] and distinguish between competing explanatory

models. Based on the findings reported in this paper, we are

additionally enthusiastic about the prospect of paradigms

that employ concurrent recording of both EEG and gaze

data. Capitalizing on the high temporal resolution shared by

these methods may lead to theoretical advancement by provid-

ing insight into the time course of the neural signatures

underlying empathy and their behavioural correlates. Motiv-

ated accounts of empathy suggest that observers may

dynamically increase or decrease attention to social cues to

regulate their emotional responses [28]. Paradigms that concur-

rently monitor gaze allocation and autonomic arousal over

time could explicitly test the predictions of such models.

In general, our data demonstrate that considering the

temporal structure of gaze signals may provide impetus

towards enhanced behavioural phenotypes for conditions

marked by deficits in one or more empathy-related processes

(ASC, psychopathy, bipolar disorder, schizophrenia [45–47]).

More broadly, follow-up experimentation of this variety can

also help us answer the more fundamental question: what

features of gaze behaviour differentiate between individuals

with and without these conditions? Failing to capitalize on

the high-dimensional, time-varying nature of gaze signals

necessarily entails restricting the information available for

answering this question.
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