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Membrane transporters fulfill essential roles in maintaining normal cellular function in health. In cancer, transporters likewise
facilitate the aberrant characteristics typical of proliferating tumor cells. Pancreatic ductal adenocarcinoma is remarkable in its
aggressiveness, and its metabolism is supported by a variety of membrane transporters. Glucose transporter 1 is upregulated in
pancreatic cancer, enables rapid cellular uptake of glucose, and contributes to the invasiveness and metastatic ability of the disease.
Likewise, the machinery of glycolysis, enzymes such as pyruvate kinase type M2 and hexokinase 2, is particularly active and
ultimately leads to both lactate and tumor formation. Lactic acid channels and transporters include monocarboxylate transporters
1 and 4, connexin43, and CD147. In conjunction with glucose transporters and glycolytic metabolism, lactic acid transport helps
perpetuate tumor cell metabolism and contributes to the formation of the unique tumor microenvironment in pancreatic cancer.
These transporters may serve as potential therapeutic targets.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a horrible
disease with a five-year survival of 8% [1]. In spite of
ongoing research, there have been few clinical improvements
over the past 50 years. One familiar observation in many
cancers, including PDAC, is a profound reprogramming
of cellular metabolism. When this reprogramming involves
a transition to aerobic glycolysis, it is commonly referred
to as the Warburg effect. As with all cells, energy in the
form of ATP is derived from glucose. Tumors exhibiting
the Warburg effect however do not fully oxidize glucose
to its potential. This feature has recently received renewed
attention in the literature. Accordingly, this review focuses
specifically on the metabolite transporters that are active
in PDAC, namely, the conduits of glucose and lactic acid.
Their roles in facilitating abnormal metabolism, formation
of the tumor microenvironment, and possible therapeutic
implications are discussed.

2. Glycolysis and Glucose Transporters

It has been well known for decades that malignant cells
require high levels of glucose compared to normal cells.

In a phenomenon first described by Otto Warburg in the
1920s, glycolysis is often the dominant source of ATP, even
in oxygen-rich conditions [2]. This is now known as the
Warburg effect, and it characterizes the use of inefficient
metabolism by cancer cells. To further emphasize the issue,
metabolic reprogramming was recognized as an emerging
“hallmark of cancer” by Hanahan and Weinberg in 2011
[3]. The possible advantages of this reprogramming have
been extensively discussed, but the Warburg effect and other
characteristic phenotypes of cancer metabolism are not com-
pletely understood. There must be benefits in addition to ATP
production that cancer cells receive from what are otherwise
inefficient means. Glycolytic intermediates serve as precur-
sors of nucleotides, phospholipids, and other biomolecules
via the pentose phosphate pathway [4]. Thus, the accumu-
lation of biomass and formation of solid tumors is central
to the role of cancer cells. Indeed, it appears that abnormal
metabolism may in itself drive cancer progression through
a preference for enzymatic isoforms that favor anabolism
[5]. For instance, pyruvate kinase type M2 and hexokinase
2, key enzymes in the glycolytic pathway of PDAC cells,
contribute to the invasive potential and metastatic ability of
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the tumor [6, 7]. Dysregulated metabolism further manifests
itself in several ways that contribute to a “cancer syndrome” in
which systemic metabolism is deleteriously affected leading
to specific cancer-induced muscle and adipose wasting, or
cachexia [8]. The mechanisms leading to cachexia in PDAC
are complex and varied, but dysregulated metabolism plays
a role. Cachexia is a particularly burdensome facet of the
disease and contributes greatly to mortality [9]. To similar
deleterious effect, the use of glycolysis eliminates radical
oxygen species that are generated during oxidative phospho-
rylation [10, 11]. This serves to preserve the genotype of viable
tumor cells.

Glucose transporters (GLUTs), which belong to the solute
carrier (SLC2A) family of transport proteins, are known to
mediate glucose uptake by cells [12]. GLUTs are present in
many tissues across the body and facilitate a number of roles.
GLUT-1 has been most extensively studied in PDAG; it is
thus the principal focus of this review. GLUT-1 is expressed
in tissues with high glucose demand that principally undergo
glycolysis. This includes normal cells that display the Warburg
effect, such as hematopoietic stem cells [13, 14]. GLUT-1
thereby mitigates the first rate-limiting step in metabolism
which is the transmembrane transport of glucose [15]. While
GLUT-1 is responsible for basal glucose uptake in high-
requirement cells, it plays additional roles central to both
tumorigenesis and hypoxia [16]. GLUT-1 provides much
needed substrate to tumor cells that express the Warburg
phenotype in the presence of oxygen. GLUT-1 likewise
provides glucose for cells to perform anaerobic glycolysis in
hypoxic environments. Such is the case in PDAC: tumors are
characterized by both acidity and hypoxia and, in distinct
portions, hyperperfusion driven by neoangiogenesis [17].

3. Gene Expression in the Hypoxic Tumor
Microenvironment

Solid tumors have the potential to thrive in otherwise hypoxic
microenvironments by means of metabolism not seen in
normal physiology. There are several factors that beneficially
follow a localized hypoxia that protect the cell from stress
and promote tumor growth, including the hypoxia-inducible
factors (HIFs). In PDAC, HIF-lalpha functions to upregulate
proteins that are essential to survival in oxygen-deprived
states [18]. HIF-lalpha has been extensively studied for many
years and directly activates the transcription of GLUTs,
enzymes essential to tumor cell glycolysis, vascular endothe-
lial growth factor (VEGF) and other proteins essential to
cellular proliferation [19]. Notably, an increased level of HIF-
lalpha is specifically associated with increased expression
of GLUT-1 that allows the aforementioned flux of glucose
down its concentration gradient [20]. In addition to HIF-
lalpha, increased expression of sirtuin 1, a lysine deacetylase
with several enzymatic targets, has been implicated both in
increased GLUT-1 expression and the glycolytic reprogram-
ming of pancreatic tumor cells [21]. In a similar manner,
GLUT-3 is upregulated by tumor cells under hypoxic stress
[22]. The expression of GLUTs is also induced by the Ras
and Src signaling pathways, both of which are canonical
mechanisms of pancreatic oncogenesis [23]. There are two
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opposing explanations accounting for the high expression
of GLUT-1 that illustrate its role in hypoxic and oncogenic
pathways (or both combined due to secondary changes
to the microenvironment): (1) glucose is used in excess
via glycolytic pathways leading to intracellular depletion
of glucose and the subsequent recruitment of facilitative
transport enables a sustained high metabolic rate, and (2) the
increased expression of GLUT-1 allows accelerated glycolysis
by increasing intracellular glucose concentrations beyond
normal physiological limits. Both mechanisms explain the
high level of GLUT-1 found in response to upregulation and
the Warburg effect in simplistic terms. In clear cell variants
of PDAC, GLUT-1 is associated with cytoplasmic glycogen
accumulation supporting the later hypothesis [24]. Clear
cell features are however only observed in 24% of studied
PDAC tumors [25]. GLUT-1 expression is also dependent on
insulin levels, and the incidental insulin resistance frequently
observed in PDAC may contribute to and propagate a
glycolytic phenotype [26].

In either case, the ability of pancreatic tumors to overex-
press glucose transporters corresponds to the other actions
of transcription regulators in the hypoxic microenviron-
ment that is the upregulation of glycolysis enzymes. Key
checkpoint enzymes such as pyruvate dehydrogenase kinase
1 and lactate dehydrogenase A are controlled when HIF-
lalpha is silenced, confirming that HIF-lalpha mediates the
transcription of numerous proteins in addition to GLUT-
1 [27]. Additionally, when HIF-lalpha and HIF-2alpha are
suppressed, there is a decrease in glucose utilization and
lower lactic acid production [28]. This corresponds to an
attenuation of glycolysis. Furthermore, it has been noted that
suppression of HIF-lalpha and HIF-2alpha directly inhibits
tumor growth, invasion ability, and migration of pancreatic
cancer cells [27, 28]. HIF-2alpha, which has not been as
thoroughly investigated as HIF-lalpha, has been found to
interact with beta-catenin and form a particularly stable
conformation that specifically promotes the epithelial-to-
mesenchymal transition and stem cell qualities of certain
tumor cells via the Wnt signaling pathway [29]. As these
factors induced by hypoxia contribute profoundly to the
invasiveness of cancer, their role as prognostic markers has
likewise been considered (see Figure 1).

4. Histological Markers of Hypoxia

Increased expression of HIF-lalpha and sirtuin 1 is associated
with poorer overall survival in PDAC [20, 24]. Both result
in increased GLUT-1. Mechanistically, forced overexpression
of GLUT-1 as a result of hypoxia-mediated transcription
increases the activity of matrix metalloproteinase 2 (MMP-
2) which hastens the development of invasive PDAC [30].
HIFs also lead to downregulation of tryptophanyl-tRNA
synthetase (TrpRS) which has been studied in both colorectal
and pancreatic cancers for its significance in prognosis [31].
TrpRS is downregulated in hypoxia and may function in the
development of tumors with high metastatic ability. In addi-
tion to increasing GLUT-1 levels, sirtuin 1 is associated with
the loss of cell cycle and apoptosis regulator 2 (CCAR2) which
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FIGURE 1: Several signaling pathways lead to the expression of GLUT-1 in PDAC cells. These include canonical Ras and Src pathways in
addition to the adaptive response to a hypoxic microenvironment. Other factors associated with GLUT-1 expression are represented that

characterize the aberrant physiology of tumor cells.

accordingly stimulates unchecked growth and proliferation
[21].

In spite of these findings, there is significant controversy
in recent literature surrounding the prognostic relationship
between GLUT-1 and PDAC. Most sources suggest that
high GLUT-1 expression on immunohistochemical assays of
resected tumors corresponds to a tumor size greater than
2cm (T2 and greater), nodal involvement (N1), and shorter
overall patient survival [32]. Profound GLUT-1 increases
have also been correlated positively to histological grade in
many cancers of the biliary system, including cancers of
the gallbladder, bile duct, and ampulla of Vater [24, 33].
Cellular proliferation, as measured by Ki-67, is also related
positively to GLUT-1 expression [34]. However, others find
correlations only between GLUT-1 and poor overall survival
[35]. Nevertheless, there is concord that both GLUT-1 and
GLUT-3 may serve as a prognostic marker [36]. The literature
is similarly divided with regard to 18F-fluoro-2-deoxyglucose
(FDG) uptake in positron emission tomography/computed
tomography (PET/CT); some findings correlate increased
maximal standardized uptake value to GLUT-1 expression
[34, 35, 37, 38]. The lack of validated proportionality is
surprising given the nature of FDG uptake in PET/CT
evaluation [39]. Other families of glucose transporters, such
as the sodium-dependent glucose transporters (SGLTs) have
also been studied in tumors using immunohistochemical
mapping [40]. Notably, SGLT-2 is expressed in PDAC cells;
this has immediate implication due to the possible use
of SGLT inhibitors in preventing further cellular glucose
uptake.

5. Lactate Transport and Tumor Stroma

In the absence of oxidative phosphorylation, it follows
that glycolytic cancer cells with metabolism driven by the
facilitated transport of glucose would necessitate a corre-
sponding facilitated release of glycolysis’ end product, lactic
acid. One mechanism couples proton and lactate efflux via
monocarboxylate transporters (MCTs) [41]. The MCT family
plays a significant role in many body tissues, including
red blood cells, T-lymphocytes, white muscle, and tumor
cells; all tissues that typically undergo glycolysis in aerobic
conditions [42]. In particular, MCT-1, the most ubiquitous of
the MCT isoforms across all tissue types, assists in restoring
the pH of cells undergoing glycolysis through proton efflux
[43]. The expression of MCT-1 parallels that of GLUT-
1 with regard to tissue localization. The coordination of
MCTs is furthermore useful in tumorigenesis, as the more
glycolysis-driven centers of solid tumors can with transport
rapidly provide the periphery—which has been superiorly
perfused via neoangiogenesis secondary to VEGF expression
in hypoxia—with substrate (lactate) for complete oxidation
via electron transport and oxidative phosphorylation [44].
Studies have specifically associated MCT-4 to pancreatic
cancer cell migration, and MCT-1 and MCT-4 have been
linked to invasion ability [45]. Recently CD147—also known
as basigin—has been identified as a regulator of several
transporter proteins, including the MCT-1 and MCT-4,
and that CD147 expression is mediated by the synthesis
of matrix metalloproteins in tumor-associated fibroblasts
[46, 47]. Indeed, tumorigenicity is inhibited in vivo when
CD147 expression is silenced through RNA interference by



increasing the intracellular concentration of lactate through
inhibition of MCT-1 and MCT-4 expression in cells bearing
a Warburg phenotype [48]. Of further note, CDI147 has
also been associated with glutamine transport and calcium
signaling, and thus may serve as an ideal therapeutic target
due to its role in multiple metabolic pathways [46, 47].

When studied via gap junctions, lactate is more rapidly
discharged from cancer cells than protons, which are highly-
buffered by a variety of intracellular bases [41]. Extracellular
lactate thus was found to produce an alkalinized rim directly
surrounding the pericellular space. This microenvironment
at this rim of tumor cells further favors tumor growth,
particularly when the intermediates of aerobic glycolysis
provide the building blocks of tumor biomass [10, 41]. Con-
nexin43 (Cx43), a component of competent gap junctions in
the pancreas, has been identified as an important conduit
for lactate, stabilizing and functioning as a component of
intercellular gap junctions [41]. By serving as a channel,
Cx43 facilitates the alkalization of proliferating tumor cells
in an otherwise acidic environment. Lactate is sequestered
away from hypoxic microscopic foci in the developing tumor
to better perfused recipient cells where it may serve as
a substrate for oxidative phosphorylation; this schema of
metabolite sequestration parallels the actions of MCT-1 and
MCT-4 described previously. The utilization of lactate as
substrate for further oxidation is a third benefit of the War-
burg effect [10]. These actions of Cx43 allow for the dynamic
interplay between glycolysis and oxidative phosphorylation
that enables pancreatic cancer cells to thrive [49].

Besides serving as a channel for lactate dissipation, Cx43
mediates cellular communication between cancer and tumor-
associated stromal cells. For example, pancreatic stellate cells
express Cx43 and type 1 collagen in proliferation [50]. The
dysregulation of Cx43 is also well known to parallel the
progression of pancreatic cancer. In pancreatic intraepithe-
lial neoplasia (PanIN), Cx43 is localized to the basolateral
membrane of pancreatic duct cells [51]. As tumorigenesis
progresses, Cx43 becomes more associated with the sur-
rounding stroma. Cx43 normally exists in different states of
phosphorylation [52]. These phosphoisoforms are believed to
reflect the localization of Cx43, patency of the gap junction,
and ability to participate in epithelial-stromal communica-
tion [51]. Extracellular signal-related kinase (ERK) modulates
Cx43 localization and contributes to malignancy in response
to growth factor stimulation [53]. To further characterize the
relationship, ERK and various epidermal growth factors are
expressed at increased levels in PanINs [54]. In contrast to
these findings, advanced pancreatic tumors and cancer stem
cells typically do not express Cx43, and gap junction function
is interrupted [55]. These changes in the competency of gap
junctions has been implicated in therapy, both in regard
to novel approaches and in consideration of mechanisms
underlying the resistance to conventional chemotherapy.

6. Conclusion

Transporters play a facilitative role in the metabolism that
characterizes PDAC tumor cells. There is much evidence
that the overexpression of glucose transporters and glycolytic
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enzymes positively influence tumor growth and increase
mortality. The alterations in glucose handling by tumor cells
may represent a systemic cancer syndrome that contributes to
the profound symptoms of aggressive tumors such as found
in PDAC. Of note, the discharge and localization of lactic
acid are necessary for tumorigenesis by creating an ideal
tumor microenvironment. There are multiple transporters
involved in the reprogrammed metabolism PDAC, including
GLUT-1, MCT-1 and -4, CD147, and Cx43; all may serve
as potential therapeutic targets, particularly when combined
with standard therapies.
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