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Drug-target interactions play an important role for biomedical drug discovery and development.However, it is expensive and time-
consuming to accomplish this task by experimental determination.Therefore, developing computational techniques for drug-target
interaction prediction is urgent and has practical significance. In this work, we propose an effective computational model of dual
Laplacian graph regularized matrix completion, referred to as DLGRMC briefly, to infer the unknown drug-target interactions.
Specifically, DLGRMC transforms the task of drug-target interaction prediction into a matrix completion problem, in which the
potential interactions between drugs and targets can be obtained based on the prediction scores after the matrix completion
procedure. InDLGRMC, the drug pairwise chemical structure similarities and the target pairwise genomic sequence similarities are
fully exploited to serve the matrix completion by using a dual Laplacian graph regularization term; i.e., drugs with similar chemical
structure are more likely to have interactions with similar targets and targets with similar genomic sequence similarity are more
likely to have interactions with similar drugs. In addition, during the matrix completion process, an indicator matrix with binary
values which indicates the indices of the observed drug-target interactions is deployed to preserve the experimental confirmed
interactions. Furthermore,we develop an alternative iterative strategy to solve the constrainedmatrix completion problem based on
Augmented LagrangeMultiplier algorithm.We evaluateDLGRMC on five benchmark datasets and the results show that DLGRMC
outperforms several state-of-the-art approaches in terms of 10-fold cross validation based AUPR values and PR curves. In addition,
case studies also demonstrate that DLGRMC can successfully predict most of the experimental validated drug-target interactions.

1. Introduction

Identifying potential drug-target interactions (DTIs) is a
challenging and meaningful step in precision medicine and
biomedical research [1–8]; it is also crucial during drug
discovery process.With predicted positive DTIs, one can find
novel targets for existing drugs or identify targets for new
drugs [9–12]. Although there are almost 30,000human genes,
only fewer than 400 of them could be used as drug targets
in the treatment of diseases [13]. Therefore, identifying more
DTIs is an extremely valuable task which can bring huge
breakthrough in biopharmaceutical and biomedical research.

The mainly traditional and reliable methods for DTIs
prediction are biochemical experiments, but these methods
are very expensive and time-consuming. Thus, only a small

amount of DTIs have been validated by experiments based
methods. This motivates the development of computational
methods for DTIs prediction. In addition, various experi-
mental data of drugs and genes such asKEGG[14],DrugBank
[15], and Genbank [16] also serve to develop computational
techniques to infer the potential DTIs.

A wide variety of computational techniques for DTIs
prediction have been proposed, and these techniques often
rely on somemachine learning models such as support vector
machine (SVM) [17–20], logistic regression [21, 22] and naive
Bayesian classifiers [23], matrix factorization, and kernel
learning, and network inference. Bai et al. [18] applied genetic
algorithm to screen related compounds, the drug-target
pairs with strong binding capacity were found with SVM
and particle swarm optimization. Garcia-Sosa et al. [21, 23]
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used logistic regression and naive Bayesian classifiers for
classification of compounds. In [24], the experimental vali-
dated targets are employed to train a SVM model and find
potential proteins with similar structure.Matrix factorization
based methods decompose the matrix which represents the
drug-target network into multiple low-rank matrices. The
decomposed matrices consisting of latent features are used
to exploit the drug-target interactions. The Bayesian matrix
factorization [25] and collaborative matrix factorization [26]
are two typical methods. In [27], Ezzat et al. added a dual
Laplacian graph regularization term to the matrix factoriza-
tion model for learning a manifold on which the data are
assumed to lie. The typical kernel leaning methods include
the pair kernel method [28], net Laplacian regularized least
squares [29], and the regularized least squareswithKronecker
product kernel [30]. As to network inference methods, they
usually formulate the drug-target interactions prediction
as a graph leaning problem. Bleakley and Yamanishi [31]
proposed a novel supervised inference method to predict
unknown drug-target interactions by constructing a bipartite
graph; the bipartite local model first predicts target proteins
of a given drug and then predicts drugs targeting a given
protein. As a improved version of the bipartite local model,
Mei et al. [32] considered new drug candidates through its
neighbors’ interaction profiles. By considering the drug-drug
similarities and target-target similarities, Chen et al. [33]
developed a network-based random walk with restart on
the heterogeneous network to predict potential drug-target
interactions. Emig et al. [13] introduced a network-based
approach which integrates disease gene expression signatures
and a molecular interaction network. In order to enhance the
similaritymeasures to include nonstructural information, Shi
et al. [34] introduced a new concept named “super-target”
to handle the problem of possibly missing interactions.
Different to existing methods which are based on the single
view data, Zhang et al. [11] integrated the drug and target
data from different views and proposed a multiview DTIs
prediction method based on clustering. Li and Cai [35] also
extended the single view low-rank representation model to
multiview low-rank embedding for DTIs prediction. In [36],
Zhang et al. proposed a label propagation method with
linear neighborhood information for predicting unobserved
drug-target interactions; the drug-drug linear neighborhood
similarities are used to rank the interaction scores. A brief
review of DTIs prediction can be found in [9].

Although there are somanymethods have been proposed
for DTIs prediction, the results are far from satisfactory. The
key issue of this problem is how to efficiently use the existing
validated DTIs and exploit the useful information hidden
among drugs or targets [37]. For most of existing methods,
the drug-drug similarities and target-target similarities play
important roles [26–28, 31, 34, 38, 39]. Therefore, differ-
ent ways for calculating drug-drug similarities have been
proposed, such as cosine similarity, Gauss similarity, and
Jaccard similarity. In this paper, we propose a Laplacian graph
regularized matrix completion model for DTIs prediction, in
which the drug-drug similarities are used to construct a sim-
ilarity graph for regularizing that drugs with similar chemical
structure are more likely to have interactions with similar

targets and targets with similar genomic sequence similarity
are more likely to have interactions with similar drugs.
During the matrix completion process, the experimental
validated interactions are preservedwell by using an indicator
matrix with binary values which indicates whether there
exists validated interaction between a drug and a target. An
alternative iterative strategy based on Augmented Lagrange
Multiplier algorithm is developed to solve the constrained
matrix completion problem. Extensive experiments on four
benchmark datasets are conducted to validate the efficacy of
the proposed Laplacian graph regularized matrix completion
model (DLGRMC) for DTIs prediction. The architecture of
our proposed method is shown in Figure 1.

2. Materials and Methods

2.1. Materials. In order to evaluate the DTIs prediction
performance of the proposed DLGRMC, four small-scale
benchmark datasets which correspond to four different
target protein types and a large-scale dataset are used in our
experiments, including nuclear receptors (NRs), G protein-
coupled receptors (GPCRs), ion channels (ICs), enzymes
(Es) [40], and DrugBank (DB) [41]. The former four datasets
are publicly available at http://web.kuicr.kyoto-u.ac.jp/supp/
yoshi/drugtarget/. The last DrugBank dataset is a unique
bioinformatics and cheminformatics resource that combines
detailed drug data with comprehensive drug-target
information. The data used in this study was released on
July 03, 2018 (version 5.1.1). The drugs and targets data were
extracted from theDrugBank database website at http://www
.drugbank.ca/. We only use the approved drug-target
interactions in our experiments. Therefore, there are totally
1936 drugs and 1609 targets, respectively. The number of
approved drug-target interactions is 7019. The approved
drug structures and approved target sequences were
downloaded from https://www.drugbank.ca/releases/latest#
structures and https://www.drugbank.ca/releases/latest#
target-sequences, respectively.

Table 1 summarizes the simple statistics of the four
datasets. In Table 1, we present three types of information
for each dataset, i.e., the experimental validated DTIs, the
similarities between drugs, and the similarities between
targets. Specifically, the validated DTIs are obtained from
public datasets including BRENDA [42], KEGG BRITE [43],
DrugBank [44], and SuperTarget [45]. The drug similarities
are calculated via the chemical structures of the compounds,
which are derived from the DRUG and COMPOUND sec-
tions in the KEGG LIGAND dataset [43]. The chemical
structure similarities between compounds are computed by
using SIMCOMP score [46], where SIMCOMP provides a
global similarity score based on the size of the common
substructures between two compounds using a graph align-
ment algorithm. The similarity between two compounds 𝑐
and 𝑐󸀠 is computed as 𝑆(𝑐, 𝑐󸀠) = |𝑐 ∩ 𝑐󸀠|/|𝑐 ∪ 𝑐󸀠|. By applying
this operation to all compound pairs, we can construct a
drug similarity matrix. The target similarities are computed
via the amino acid sequences of target proteins, which are
obtained from the KEGG GENES dataset [43]. The sequence

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Figure 1: Overview of the proposed DTIs prediction method. The chemical structure similarity between drugs and the genomic sequence
similarity between targets are used to serve the matrix completion. Meanwhile, the experimental validated DTIs are preserved by a binary
indicator matrix.

Table 1: The statistics of drugs, targets, and interactions in each dataset.

Datasets NRs GPCRs ICs Es DB
Drugs 54 223 210 445 1936
Targets 26 95 204 664 1609
Interactions 90 635 1476 2926 7019
Average No. of drugs per target 3.46 6.68 7.24 4.41 4.36
Average No. of targets per drug 1.67 2.85 7.03 6.58 3.63
Sparsity of the interaction matrix (%) 93.59 97.00 96.55 99.01 99.77
Percentage of drugs with only one
interaction target (%) 72.22 47.53 38.57 39.78 75.20

Percentage of targets with only one
interaction drug (%) 30.77 35.79 11.27 43.37 30.53

similarities between the proteins are computed by using a
normalized version of Smith–Waterman scores [47].Thenor-
malized SmithWaterman score between two proteins𝑔 and𝑔󸀠
is computed as 𝑆(𝑔, 𝑔󸀠) = 𝑆𝑊(𝑔, 𝑔󸀠)/√𝑆𝑊(𝑔, 𝑔)𝑆𝑊(𝑔󸀠, 𝑔󸀠),
where 𝑆𝑊(⋅, ⋅) means the original SmithWaterman score. By
applying this operation to all protein pairs, we can construct
a target similarity matrix.

2.2. Problem Formulation of DTIs Prediction. In this work,
we use two sets D = {𝐷𝑖}𝑑𝑖=1 and T = {𝑇𝑖}𝑡𝑖=1 to denote 𝑑
drugs and 𝑡 targets, respectively.The experimentally validated
DTIs are represented by a binary matrix 𝑀 ∈ {0, 1}𝑑×𝑡. If a
drug 𝐷𝑖 has been experimentally validated to interact with a
target 𝑇𝑗, then 𝑀𝑖𝑗 = 1; otherwise, 𝑀𝑖𝑗 = 0. The nonzero
elements in 𝑀 are called “known interaction” and can be
regarded as positive observations, while the zero elements
in𝑀 are called “unknown interaction” and can be regarded
as negative observations. In addition, the drug similarities
are denoted as 𝐷𝑆 ∈ R𝑑×𝑑, and the target similarities are
represented as 𝑇𝑆 ∈ R𝑡×𝑡. The aim of DTIs prediction
is to uncover the possible interactions from the negative
observations by using certain prior information of drugs

and targets. The candidate drug-target interactions will be
chosen as predicted interactions according to their predicted
probabilities in descending order.

2.3. Matrix Completion. Matrix completion aims to fill in
the missing entries of a partially observed matrix𝑀. One of
the mostly used model of the matrix completion problem is
to find the lowest rank matrix 𝑋 which matches the matrix𝑀, which we wish to recover, for all entries in the set 𝐸 of
observed entries. The basic mathematical formulation of this
problem is as follows:

min
𝑋

𝑟𝑎𝑛𝑘 (𝑋)
s.t. 𝑋𝑖𝑗 = 𝑀𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐸. (1)

Due to the fact that problem (1) is nonconvex and no efficient
solution can be obtained, (1) is usually transformed to the
following convex problem by relaxing the rank function into
the nuclear norm:

min
𝑋

‖𝑋‖∗
s.t. 𝑋𝑖𝑗 = 𝑀𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐸. (2)
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where ‖ ⋅ ‖∗ is the nuclear norm, which is equal to the sum of
singular values of 𝑋. Equation (2) can be solved by using the
singular value thresholding (SVT) algorithm [48].

2.4. Dual Laplacian Graph Regularized Matrix Completion
(DLGRMC). Supposing there are 𝑑 drugs and 𝑡 targets, if we
use the matrix 𝑀 ∈ R𝑑×𝑡 to denote the drug-target interac-
tions and denote 𝐸 as the validated interaction set, then (2)
can be directly used for potential DTIs prediction. However,
the drug-drug similarities and target-target similaritieswhich
have beendemonstrated useful in previousworks are not fully
exploited to serve the matrix completion model. Thus, we
believe that the two kinds of similarities can advantage the
matrix completion model; of course, better DTIs prediction
results can be expected. In this work, we present a new
objective function through incorporation of the drug-drug
similarities and target-target similarities into the standard
matrix completion framework for DTIs prediction. We use
a dual Laplacian graph regularization term to constrain
that drugs with similar chemical structure are more likely
to have connections with similar targets and targets with
similar genomic sequence similarity are more likely to have
interactions with similar drugs.The optimization problem of
DLGRMC can be formulated as follows:

min
𝑋

‖𝑋‖∗ + 𝛼 ‖𝑋‖2𝐹 + 𝛽 ‖𝐴 ∘ (𝑋 − 𝐴)‖2𝐹
+ 𝜆( 𝑑∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩2𝐷𝑆 (𝑖, 𝑗) +
𝑡∑
𝑝,𝑞=1

󵄩󵄩󵄩󵄩󵄩𝑥𝑝 − 𝑥𝑞󵄩󵄩󵄩󵄩󵄩2 𝑇𝑆 (𝑖, 𝑗))
(3)

where 𝑥𝑖 and 𝑥𝑗 represent the 𝑖-th row and 𝑗-th row of 𝑋,
respectively. 𝑥𝑝 and 𝑥𝑞 represent the 𝑝-th column and 𝑞-th
column of𝑋, respectively. 𝛼, 𝛽, and 𝜆 are three regularization
parameters, and “∘” denotes the Hadamard product of two
matrices. The Tikhonov regularization on 𝑋 is used to
ensure the smoothness of 𝑋. The third term aims to ensure
that the experimental validated interactions can be well
preserved after the matrix completion. 𝐴 is an adjacency
matrix with binary values which is defined to clearly describe
the validated DTIs; i.e., if a specific drug 𝐷𝑖 is confirmed to
be interacted with a target 𝑇𝑗, the entity 𝐴(𝑖, 𝑗) is assigned
1 or otherwise 0. Thus, the adjacency matrix 𝐴 is with size𝑑 × 𝑡. Since 𝐴 is with 0 − 1 values, we use itself as the
indicator matrix to indicate the indices of the observed DTIs.
The forth term regularized by parameter 𝜆 constrains that
drugs with similar chemical structure are more likely to
be connected with similar targets and targets with similar
genomic sequence similarity are forced to have interactions
with similar drugs.𝐷𝑆(𝑖, 𝑗) represents the chemical structure
similarity between drugs 𝐷𝑖 and 𝐷𝑗, and 𝑇𝑆(𝑖, 𝑗) represents
the genomic sequence similarity between targets 𝑇𝑖 and 𝑇𝑗.
2.5. Optimization of DLGRMC. To solve the optimization
problem in (3), we first transform it into the following form:

min
𝑋

‖𝑋‖∗ + 𝛼 ‖𝑋‖2𝐹 + 𝛽 ‖𝐴 ∘ (𝑋 − 𝐴)‖2𝐹
+ 𝜆 (tr (𝑋𝑇𝐿𝑑𝑋) + tr (𝑋𝐿 𝑡𝑋𝑇)) , (4)

where 𝐿𝑑 ∈ R𝑑×𝑑 is the drug Laplacian matrix with 𝐿𝑑 =𝐷𝑑−𝐷𝑆,𝐷𝑑 is the diagonal matrix with𝐷𝑑(𝑖, 𝑖) = ∑𝑗𝐷𝑆(𝑖, 𝑗),𝐿 𝑡 ∈ R𝑡×𝑡 is the target Laplacian matrix with 𝐿 𝑡 = 𝐷𝑡 − 𝑇𝑆,
and 𝐷𝑡 is the diagonal matrix with 𝐷𝑡(𝑝, 𝑝) = ∑𝑞 𝑇𝑆(𝑝, 𝑞).

Since problem (4) contains Hadamard product of two
matrices, it is hard to tackle it directly. Thus, we propose an
alternative iterative algorithm to solve this problem based on
Augmented Lagrange Multiplier (ALM) algorithm [49–52].
We first introduce two auxiliary variables 𝐽 and 𝑍 to make
the objective function separable:

min
𝑋,𝐽,𝑍

‖𝐽‖∗ + 𝛼 ‖𝑋‖2𝐹 + 𝛽 ‖𝐴 ∘ (𝑍 − 𝐴)‖2𝐹
+ 𝜆 (tr (𝑋𝑇𝐿𝑑𝑋) + tr (𝑋𝐿 𝑡𝑋𝑇))

s.t. 𝑋 = 𝐽,
𝑋 = 𝑍.

(5)

The corresponding augmented Lagrange function of (5) is

L (𝑋, 𝐽, 𝑍, 𝑌1, 𝑌2, 𝜇1, 𝜇2)
= ‖𝐽‖∗ + 𝛼 ‖𝑋‖2𝐹 + 𝛽 ‖𝐴 ∘ (𝑍 − 𝐴)‖2𝐹
+ 𝜆 (tr (𝑋𝑇𝐿𝑑𝑋) + tr (𝑋𝐿 𝑡𝑋𝑇)) + ⟨𝑌1, 𝑋 − 𝐽⟩
+ 𝜇12 ‖𝑋 − 𝐽‖2𝐹 + ⟨𝑌2, 𝑋 − 𝑍⟩ + 𝜇22 ‖𝑋 − 𝑍‖2𝐹 ,

(6)

where𝑌1 and𝑌2 are the Lagrangemultipliers, 𝜇1 > 0 and 𝜇2 >0 control the penalties for violating the linear constraints, and⟨⋅, ⋅⟩ represents the standard inner product of two matrices.
Then the variables can be solved alternatively.

2.5.1. Solving 𝐽 with Other Variables Fixed. The variable 𝐽 can
be solved by the following equation with other variables fixed:

min
𝐽
‖𝐽‖∗ + ⟨𝑌1, 𝑋 − 𝐽⟩ + 𝜇12 ‖𝑋 − 𝐽‖2𝐹
= min
𝐽
‖𝐽‖∗ + 𝜇12

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋 − 𝐽 + 𝑌1𝜇1
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

, (7)

where 𝐽 can be solved by singular value thresholding (SVT)
operator ([48]).

2.5.2. Solving 𝑍 with Other Variables Fixed. When other
variables are fixed, 𝑍 can be solved by minimizing following
function:

min
𝑍
𝛽 ‖𝐴 ∘ (𝑍 − 𝐴)‖2𝐹 + ⟨𝑌2, 𝑋 − 𝑍⟩ + 𝜇22 ‖𝑋 − 𝑍‖2𝐹
= min
𝑍
𝛽 ‖𝐴 ∘ (𝑍 − 𝐴)‖2𝐹 + 𝜇22

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋 − 𝑍 + 𝑌2𝜇2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

. (8)

Setting the derivative of (8) with respect to 𝑍 to zero and
using properties of the Hadamard and Kronecker products,
it is easy to get that 𝑍 can be obtained as follows:

𝑅 vec (𝑍) = vec (𝐶) , (9)
where 𝑅 = 2𝛽 diag (vec(𝐴))+𝜇2𝐼, and 𝐶 = 2𝛽(𝐴∘𝐴)+𝜇2𝑋+𝑌2. This is a simple linear system.
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Input: Observed DTIs indicator matrix 𝐴 ∈ R𝑑×𝑡, drug-drug chemical structure similarity matrix𝐷𝑆 and target-target genomic sequence similarity matrix𝐷𝑇, , parameters 𝛼, 𝛽 and 𝜆.
Initialization: 𝑍 = 0, 𝐽 = 0, 𝑌1 = 0, 𝑌2 = 0, 𝜇1 = 10−6, 𝜇2 = 10−6, 𝜇𝑚𝑎𝑥 = 106, 𝜌 = 1.1 and 𝜀 = 10−8.
while not converged do

(1) Update 𝐽 by solving Equation (7);
(2) Update 𝑍 by solving Equation (8);
(3) Update𝑋 by solving Equation (10);
(4) Update multipliers 𝑌1 and 𝑌2 using Equation (12);
(5) Update parameters 𝜇1 and 𝜇2 by 𝜇1 = min(𝜌𝜇1, 𝜇𝑚𝑎𝑥) and 𝜇2 = min(𝜌𝜇2, 𝜇𝑚𝑎𝑥);
(6) Check the convergence conditions: |𝑋 − 𝐽|∞ < 𝜀 and |𝑋 − 𝑍|∞ < 𝜀;

end while
Output: 𝑋.

Algorithm 1: Iterative algorithm for solving DLGRMC.

2.5.3. Solving 𝑋 with Other Variables Fixed. We can solve 𝑋
by dropping other unrelated variables as follows:

min
𝑋
𝛼 ‖𝑋‖2𝐹 + 𝜆 (tr (𝑋𝑇𝐿𝑑𝑋) + tr (𝑋𝐿 𝑡𝑋𝑇))
+ 𝜇12

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋 − 𝐽 + 𝑌1𝜇1
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

+ 𝜇22
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋 − 𝑍 + 𝑌2𝜇2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

, (10)

By setting the derivative of (10) with respect to 𝑋 to zero, we
have

2𝛼𝑋 + 2𝜆 (𝐿𝑑𝑋 + 𝑋𝐿 𝑡) + 𝜇1 (𝑋 − 𝐽) + 𝜇2 (𝑋 − 𝑍)
+ 𝑌1 + 𝑌2 = 0. (11)

Equation (11) is a Sylvester equation [53]. Since 2𝛼 + 2𝜆𝐿𝑑 is
strictly positive definite, (11) has stable solution for 𝑋.
2.5.4. Updating Multipliers. We update the multipliers by

𝑌1 = 𝑌1 + 𝜇1 (𝑋 − 𝐽)
𝑌2 = 𝑌2 + 𝜇2 (𝑋 − 𝑍) . (12)

The variables 𝐽, 𝑍, and 𝑋 are iteratively updated until
convergence. Finally, we obtain the predicted DTIs based
on the completed entities in matrix 𝑋. In summary, the
detailed steps for solving the proposed DLGRMC model
can be described by Algorithm 1. After we recover 𝑋, the
predicted DTIs can be obtained by sorting the element values
of𝑋 in descending order.

3. Results

3.1. Evaluation Metrics. To quantitatively evaluate the per-
formance of our method, computational experiments were
conducted on the above five benchmark datasets. Similar to
previous studies [27, 32, 54], the Area Under the Precision-
Recall (AUPR) curve [55] and precision-recall (PR) curves
were employed as the main metric for performance evalua-
tion. AUPR can penalize the false positives more in evalua-
tion, which is desirable here since we do not want incorrect
predictions to be recommended by the prediction algorithms
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Figure 2: An intuitive showing of the imbalance ratio between inter-
acting and noninteracting drug-target pairs of different datasets.

[55]. Before evaluating the performance of our proposed
method, we give an intuitive showing of the imbalance ratio
between interacting and noninteracting drug-target pairs of
different datasets in Figure 2. As can be seen, the number
of known drug-target interaction pairs is very small, which
demonstrate the urgent need of predicting new drug-target
interactions.

3.2. Experiments Settings. In our experiments, five existing
techniques including bipartite local model using neighbor-
based interaction-profile inferring (BLMNII) [32], weighted
nearest neighbor profile (WNN) [54], collaborative matrix
factorization (CMF) [26], graph regularized matrix factoriza-
tion (GRMF) [27], neighborhood regularized logistic matrix
factorization (NRLMF) [56], and label propagation with
linear neighborhood information (LPLNI) [36] were used to
compare with our proposed DLGRMC. We adopted 5 repeti-
tions of 10-fold cross validation (CV) for each of the methods
on different datasets. In each repetition, the observed DTIs
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Table 2: Average AUPR values of different methods on different datasets under 𝐶𝑉1 (the values following the symbol “±” are the standard
deviations of 5 repetition results).

Methods NRs GPCRs Ics Es DB
BLM-NII 0.641±0.038 0.483±0.019 0.645±0.010 0.624±0.013 0.667±0.024
WNN 0.567±0.024 0.559±0.020 0.583±0.018 0.591±0.016 0.652±0.027
CMF 0.577±0.038 0.674±0.011 0.858±0.008 0.806±0.005 0.883±0.019
GRMF 0.592±0.025 0.679±0.012 0.367±0.015 0.324±0.014 0.704±0.029
NRLMF 0.675±0.034 0.687±0.017 0.889±0.010 0.847±0.007 0.902±0.030
LGRMC 0.696±0.022 0.701±0.014 0.899±0.013 0.874±0.009 0.921±0.016
Table 3: Average AUPR values of different methods on different datasets under 𝐶𝑉2 (the values following the symbol “±” are the standard
deviations of 5 repetition results).

Methods NRs GPCRs Ics Es DB
BLM-NII 0.427±0.045 0.308±0.020 0.289±0.029 0.246±0.021 0.443±0.031
WNN 0.501±0.051 0.286±0.018 0.237±0.034 0.251±0.037 0.543±0.034
CMF 0.465±0.052 0.358±0.016 0.268±0.031 0.203±0.022 0.482±0.026
GRMF 0.481±0.056 0.357±0.017 0.284±0.027 0.252±0.018 0.507±0.024
NRLMF 0.540±0.052 0.361±0.019 0.348±0.031 0.345±0.033 0.575±0.027
LGRMC 0.572±0.054 0.377±0.018 0.364±0.028 0.373±0.020 0.601±0.030
Table 4: Average AUPR values of different methods on different datasets under 𝐶𝑉3 (the values following the symbol “±” are the standard
deviations of 5 repetition results).

Methods NRs GPCRs Ics Es DB
BLM-NII 0.412±0.042 0.332±0.014 0.205±0.011 0.167±0.010 0.446±0.023
WNN 0.517±0.024 0.364±0.009 0.319±0.012 0.385±0.013 0.527±0.016
CMF 0.484±0.035 0.407±0.007 0.352±0.009 0.376±0.006 0.535±0.012
GRMF 0.517±0.026 0.367±0.010 0.343±0.017 0.346±0.010 0.539±0.018
NRLMF 0.491±0.048 0.409±0.042 0.358±0.016 0.395±0.014 0.550±0.029
LGRMC 0.527±0.023 0.415±0.012 0.362±0.015 0.410±0.012 0.574±0.019
indicator matrix 𝐴 was divided into 10 folds. Then each fold
was left out as the test set while the remaining 9 folds were
treated as the training set, and the final AUPR score was the
average over 5 such repetitions.

As can be seen from (3), there are three parameters that
need to be turned in our proposed DLGRMC model, i.e., 𝛼,𝛽, and 𝜆. In our experiments, we have chosen them from{0.001, 0.01, 0.1, 1, 10, 100, 1000} by a grid search manner,
and the best results with optimal parameters were reported.
As to the Gaussian kernel function for calculating the drug
chemical structure similarity, we set the number of nearest
neighbors 𝑘 to be 5 and the kernel width 𝜎 to be 0.1. For the
other methods, we set the parameters to their optimal values
as recommended in the references.

Similar to previous works [9, 26, 57], we conducted CV
under three different settings as follows:

(i) 𝐶𝑉1: CV on drug-target pairs–random entries in𝐴 (i.e., drug-target pairs) were selected for testing,
this setting refers to the DTIs prediction for new
(unknown) drug-target pairs.

(ii) 𝐶𝑉2: CV on drugs–random rows in 𝐴 (i.e., drugs)
were blinded for testing, this setting refers to the DTIs
prediction for new drugs.

(iii) 𝐶𝑉3: CV on targets–random columns in 𝐴 (i.e.,
targets) were blinded for testing, this setting refers to
the DTIs prediction for new targets.

Under 𝐶𝑉1, we used 90% of elements in 𝐴 as training data
and the remaining 10% of elements as test data in each
round. Under 𝐶𝑉2, we used 90% of rows in 𝐴 as training
data and the remaining 10% of rows as test data in each
round. Under 𝐶𝑉3, we used 90% of columns in 𝐴 as training
data and the remaining 10% of columns as test data in each
round.

3.3. DTIs Prediction Results. Tables 2–4 show the predicted
AUPR values of different methods on different datasets under
differentCV settings. As can be seen, our proposedDLGRMC
performs better than other methods on all of the datasets.
Since the drug discovery and development aim to serve the
treatment of disease, in order to predict new targets which
the drugs react, we plot the precision-recall (PR) curves of
the results under 𝐶𝑉3 for all of the datasets. The plots are
shown in Figure 3; the results also show the superiority of
our proposed DLGRMC. We will release the related datasets,
codes, and figures of our algorithm for academic research
with this paper.
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Figure 3: The PR curves of different methods on four datasets.

3.4. Case Study. In order to test the capacity of DLGRMC in
potential DTIs prediction, we randomly chose one drug from
each dataset and reported the top 10 predicted interactions
of different methods under 𝐶𝑉3. The results are shown in
Tables 5–9. As can be seen, our proposed DLGRMC can
successfully predict more of the experimental validated DTIs

when compared with other methods, which indicates that
DLGRMC is capable of predicting novel DTIs for drug
development.

3.5. Parameter Sensitivity Analysis. As mentioned in Sec-
tion 3.2, there are three parameters that need to be tuned
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Table 5:The top 10 interacting targets of drug “D00094” in dataset NRs predicted by different methods (“√” denotes experimental validated
targets and “×” denotes nonvalidated targets).
Rank Targets predicted by different methods

BLM-NII WNN CMF GRMF NRLMF DLGRMC
1 hsa5914 (√) hsa190 (√) hsa6096 (√) hsa6257 (√) hsa5915 (√) hsa5914 (√)
2 hsa5915 (√) hsa6257 (√) hsa6257 (√) hsa5915 (√) hsa190 (√) hsa5915 (√)
3 hsa6257 (√) hsa5915 (√) hsa5915 (√) hsa6256 (√) hsa6096 (√) hsa190 (√)
4 hsa190 (√) hsa6256 (√) hsa190 (√) hsa190 (√) hsa5914 (√) hsa6096 (√)
5 hsa6258 (√) hsa190 (√) hsa6256 (√) hsa6258 (√) hsa6097 (√) hsa6257 (√)
6 hsa6097 (√) hsa6097 (√) hsa5916 (√) hsa5916 (√) hsa6258 (√) hsa6256 (√)
7 hsa2099 (×) hsa5916 (√) hsa2104 (×) hsa5915 (√) hsa5916 (√) hsa6258 (√)
8 hsa4306 (×) hsa2908 (×) hsa2421 (×) hsa2101 (×) hsa6257 (√) hsa5916 (√)
9 hsa5465 (×) hsa2104 (×) hsa4306 (×) hsa2104 (×) hsa367 (×) hsa2099 (×)
10 hsa2104 (×) hsa2421 (×) hsa9970 (×) hsa5465 (×) hsa4306 (×) hsa2908 (×)
Table 6: The top 10 interacting targets of drug “D00255” in dataset GPCRs predicted by different methods (“√” denotes experimental
validated targets and “×” denotes nonvalidated targets).
Rank Targets predicted by different methods

BLM-NII WNN CMF GRMF NRLMF DLGRMC
1 hsa147 (√) hsa150 (√) hsa151 (√) hsa155 (√) hsa155 (√) hsa147 (√)
2 hsa148 (√) hsa146 (√) hsa146 (√) hsa150 (√) hsa147 (√) hsa155 (√)
3 hsa146 (√) hsa155 (√) hsa147 (√) hsa151 (√) hsa146 (√) hsa151 (√)
4 hsa150 (√) hsa153 (√) hsa148 (√) hsa147 (√) hsa150 (√) hsa150 (√)
5 hsa1812 (×) hsa154 (√) hsa155 (√) hsa154 (√) hsa148 (√) hsa146 (√)
6 hsa2550 (×) hsa1234 (×) hsa154 (√) hsa1268 (×) hsa2550 (×) hsa154 (√)
7 hsa2913 (×) hsa1241 (×) hsa2911 (×) hsa135 (×) hsa3361 (×) hsa1128 (×)
8 hsa5739 (×) hsa3354 (×) hsa1241 (×) hsa2911 (×) hsa5729 (×) hsa2911 (×)
9 hsa7201 (×) hsa7201 (×) hsa3354 (×) hsa57105 (×) hsa9052 (×) hsa3269 (×)
10 hsa552 (×) hsa6751 (×) hsa6751 (×) hsa886 (×) hsa2911 (×) hsa3352 (×)
Table 7: The top 10 interacting targets of drug “D00110” in dataset ICs predicted by different methods (“√” denotes experimental validated
targets and “×” denotes nonvalidated targets).
Rank Targets predicted by different methods

BLM-NII WNN CMF GRMF NRLMF DLGRMC
1 hsa6336 (√) hsa11280 (√) hsa6530 (√) hsa6532 (√) hsa6529 (√) hsa6331 (√)
2 hsa6532 (√) hsa6530 (√) hsa6532 (√) hsa11280 (√) hsa6532 (√) hsa6336 (√)
3 hsa6530 (√) hsa6529 (√) hsa11280 (√) hsa6336 (√) hsa6336 (√) hsa6530 (√)
4 hsa11280 (√) hsa6331 (√) hsa6529 (√) hsa6336 (√) hsa6331 (√) hsa6532 (√)
5 hsa6529 (√) hsa6532 (√) hsa6331 (√) hsa6530 (√) hsa11280 (√) hsa11280 (√)
6 hsa2554 (×) hsa2554 (×) hsa6336 (√) hsa6529 (√) hsa9312 (×) hsa6529 (√)
7 hsa2901 (×) hsa9177 (×) hsa2901 (×) hsa1137 (×) hsa93589 (×) hsa1141 (×)
8 hsa3748 (×) hsa773 (×) hsa27012 (×) hsa9312 (×) hsa23704 (×) hsa1137 (×)
9 hsa1134 (×) hsa8514 (×) hsa8973 (×) hsa3762 (×) hsa2892 (×) hsa9312 (×)
10 hsa9177 (×) hsa9311 (×) hsa2560 (×) hsa1139 (×) hsa3756 (×) hsa93589 (×)

for obtaining the best results. In this subsection, in order to
analyse the parameter effect on the final prediction results,
for each dataset, we show the AUPR values versus one of
the parameters with the other two fixed. Figure 4 plots the
AUPR values of DLGRMC with different parameters on
different datasets under 𝐶𝑉3. As can be seen, DLGRMC is
more sensitive to 𝛽 and 𝜆 than 𝛼, which demonstrates the

importance of the Laplacian graph regularization and the
preservation of observed DTIs.

4. Discussion

In this paper, we propose a drug-target interaction prediction
model via Laplacian graph regularized matrix completion.
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Figure 4: The AUPR values versus the parameter (a) 𝛼 with 𝛽 = 𝜆 = 1, (b) 𝛽 with 𝛼 = 𝜆 = 1, and (c) 𝜆 with 𝛼 = 𝛽 = 1 on different datasets.

In detail, we transformed the task of drug-target interaction
prediction into a matrix completion problem, in which the
potential interactions between drugs and targets can be
obtained based on the prediction scores after the matrix
completion procedure.Thenovelties of our proposedmethod
line in two aspects. On the one hand, during the matrix
completion, the pairwise chemical structure similarities
between drugs and genomic sequence similarities between
drugs are fully exploited to serve the matrix completion
by using a Laplacian graph regularization term. On the
other hand, an indicator matrix with binary values which
indicates the indices of the observed drug-target interac-
tions is deployed to preserve the experimental confirmed
interactions. We developed an alternative iterative strategy
to solve the constrained matrix completion problem based
on Augmented Lagrange Multiplier algorithm. The final

experimental results validate the efficacy of the proposed
method, and case studies demonstrate that the proposed
method owns the capacity to predict potential novel drug-
target interactions.

Of course, experimental results also illustrate that there
is still much room for improvement since there are also
missed interactions in case studies. In our recent work,
only one type of representation for drugs or targets is
considered. Practically, each drug or target can have multiple
representations. For example, a drug can be represented by
its chemical structure or by its chemical response in different
cells. A protein target can be represented by its sequence or
by its gene expression values in different cells. In our future
work, we aim to integrate these multiview representations
for drug-target interaction prediction and we believe that the
prediction results can be improved with a large margin.
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Table 8: The top 10 interacting targets of drug “D00002” in dataset Es predicted by different methods (“√” denotes experimental validated
targets and “×” denotes nonvalidated targets).
Rank Targets predicted by different methods

BLM-NII WNN CMF GRMF NRLMF DLGRMC
1 hsa216 (√) hsa108 (√) hsa1725 (×) hsa196883 (√) hsa191 (√) hsa191 (√)
2 hsa108 (√) hsa1725 (×) hsa108 (√) hsa191 (√) hsa196883 (√) hsa1725 (×)
3 hsa1725 (×) hsa191 (√) hsa2936 (√) hsa7498 (√) hsa108 (√) hsa196883 (√)
4 hsa2746 (√) hsa3939 (√) hsa2639 (√) hsa3033 (√) hsa3292 (√) hsa108 (√)
5 hsa196883 (√) hsa3292 (√) hsa115 (√) hsa108 (√) hsa3615 (√) hsa2936 (√)
6 hsa7015 (×) hsa349565 (√) hsa2597 (√) hsa7299 (×) hsa3939 (√) hsa3033 (√)
7 hsa4594 (×) hsa34 (×) hsa3156 (×) hsa84152 (×) hsa3818 (×) hsa349565 (√)
8 hsa3035 (×) hsa8435 (×) hsa51095 (×) hsa590 (×) hsa5536 (×) hsa339221 (×)
9 hsa306 (×) hsa51095 (×) hsa90 (×) hsa3156 (×) hsa34 (×) hsa3156 (×)
10 hsa8435 (×) hsa306 (×) hsa761 (×) hsa34 (×) hsa90 (×) hsa3991 (×)
Table 9: The top 10 interacting targets of drug “DB00171” in dataset DB predicted by different methods (“√” denotes experimental validated
targets and “×” denotes nonvalidated targets).
Rank Targets predicted by different methods

BLM-NII WNN CMF GRMF NRLMF DLGRMC
1 P10398 (√) P00519 (√) P36896 (√) P35626 (√) O95477 (√) Q09428 (√)
2 P36896 (√) P35626 (√) O43681 (√) Q08828 (√) P00519 (√) P49902 (√)
3 P42684 (√) Q9UM73 (√) Q07912 (√) Q9UM73 (√) P35626 (√) O95477 (√)
4 Q9UM73 (√) O43681 (√) P35626 (√) P10398 (√) P10398 (√) P00519 (√)
5 O43681 (√) P36896 (√) P49902 (√) P36896 (√) P42684 (√) P35626 (√)
6 Q07912 (√) Q16671 (√) Q08828 (√) O43681 (√) Q9UM73 (√) Q08828 (√)
7 O95477 (√) O95342 (√) Q9UM73 (√) Q07912 (√) P36896 (√) O14727 (√)
8 P31749 (×) Q13131 (×) P31749 (×) Q15822 (×) O43681 (√) Q9UM73 (√)
9 P20839 (×) P20839 (×) P20839 (×) P53985 (×) Q13131 (×) P10398 (√)
10 Q8NFJ5 (×) P31749 (×) P16219 (×) P31749 (×) O15270 (×) P31749 (×)
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