Table 3.
Classifier | Dog | Mouse | ||||||
---|---|---|---|---|---|---|---|---|
Trained on HumDiv | Trained on HumVar | Trained on HumDiv | Trained on HumVar | |||||
+TL | — | +TL | — | +TL | — | +TL | — | |
Random Forest | 0.855 | 0.638 | 0.889 | 0.884 | 0.846 | 0.682 | 0.841 | 0.682 |
Polynomial SVM | 0.874 | 0.657 | 0.715 | 0.454 | 0.764 | 0.764 | 0.812 | 0.528 |
Gaussian SVM | 0.686 | 0.662 | 0.753 | 0.618 | 0.655 | 0.539 | 0.833 | 0.560 |
Logistic Regression | 0.908 | 0.667 | 0.855 | 0.701 | 0.777 | 0.576 | 0.875 | 0.565 |
Linear SVM | 0.672 | 0.672 | 0.715 | 0.715 | 0.597 | 0.597 | 0.852 | 0.568 |
In each cell, we present the accuracy rate reached by a classifier. The maximal accuracy values achieved are shown in bold.