
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Doodnauth SA, Grinstein S,

Maxson ME. 2019 Constitutive and stimulated

macropinocytosis in macrophages:

roles in immunity and in the pathogenesis of

atherosclerosis. Phil. Trans. R. Soc. B 374:

20180147.

http://dx.doi.org/10.1098/rstb.2018.0147

Accepted: 8 September 2018

One contribution of 11 to a Theo Murphy

meeting issue ‘Macropinocytosis’.

Subject Areas:
immunology, cellular biology

Keywords:
macropinocytosis, macrophage, calcium-

sensing receptor, atherosclerosis, cd36, oxLDL

Author for correspondence:
Sergio Grinstein

e-mail: sergio.grinstein@sickkids.ca
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Constitutive and stimulated
macropinocytosis in macrophages:
roles in immunity and in the
pathogenesis of atherosclerosis

Sasha A. Doodnauth1,2, Sergio Grinstein3,4,5 and Michelle E. Maxson3

1Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada M5G 1L7
2Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
3Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4
4Department of Biochemistry, University of Toronto, 1 King’s Circle, Toronto, ON, Canada M5S 1A8
5Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 290 Victoria Street,
Toronto, ON, Canada M5C 1N8

SG, 0000-0002-0795-4160

Macrophages respond to several stimuli by forming florid membrane ruffles

that lead to fluid uptake by macropinocytosis. This type of induced macro-

pinocytosis, executed by a variety of non-malignant and malignant cells, is

initiated by transmembrane receptors and is involved in nutrient acquisition

and mTOR signalling. However, macrophages also perform a unique type of

constitutive ruffling and macropinocytosis that is dependent on the presence

of extracellular calcium. Calcium-sensing receptors are responsible for this

activity. This distinct form of macropinocytosis enables macrophages to

continuously sample their microenvironment for antigenic molecules and

for pathogen- and danger-associated molecular patterns, as part of their

immune surveillance functions. Interestingly, even within the monocyte line-

age, there are differences in macropinocytic ability that reflect the polarized

functional roles of distinct macrophage subsets. This review discusses the

shared and distinct features of both induced and constitutive macropino-

cytosis displayed by the macrophage lineage and their roles in physiology,

immunity and pathophysiology. In particular, we analyse the role of macro-

pinocytosis in the uptake of modified low-density lipoprotein (LDL) and its

contribution to foam cell and atherosclerotic plaque formation. We propose

a combined role of scavenger receptors and constitutive macropinocytosis

in oxidized LDL uptake, a process we have termed ‘receptor-assisted

macropinocytosis’.

This article is part of the Theo Murphy meeting issue ‘Macropinocytosis’.
1. Introduction
Macrophages are key components of the innate immune system that play

important roles in homeostasis and in the control of the disease. They are pro-

fessional phagocytes, exceptionally specialized in fighting infection, bridging

innate and adaptive immunity, and supporting tissue development, mainten-

ance and remodelling. Central to the diverse functions of macrophages is

their ability to survey, sample and recognize microbial and apoptotic targets

for engulfment. While recent advances have identified various subsets of

macrophages based on their characteristics and observed abilities in distinct

tissue environments, these subsets are ultimately unified by their fundamental

ability to efficiently internalize, degrade and process extracellular material.

Small molecules and ligands can be internalized through the endocytic path-

way by most cells. However professional phagocytes, like macrophages, can

additionally internalize larger material through the receptor-guided process of
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phagocytosis, or the uptake of large volumes of the fluid phase

via macropinocytosis. Macrophages continuously sample their

environment through actin-dependent ruffling and membrane

extension [1], which are associated with the formation of large

sealed vacuoles or macropinosomes. As a result, phagocytes

have the remarkable ability to internalize the equivalent of

their entire surface area approximately every 30 min [2].

The formation of macropinosomes shares important

features with phagocytosis. Both processes depend on tightly

regulated phosphoinositide signalling at the plasma membrane

[3–5]. Plasmalemmal phosphatidylinositol-4,5-bisphosphate

(PtdIns(4,5)P2) is converted by phosphatidylinositol

3-kinase (PI3K) to phosphatidylinositol-3,4,5-trisphosphate

(PtdIns(3,4,5)P3) and these inositides jointly contribute to

recruit RhoG, Rac1, Cdc42 and actin-nucleating factors to

form and extend lamellipodia and ruffles during both

processes [6–12]. PtdIns(3,4,5)P3 also plays a role in the termin-

ation of Rho-GTPase activity and, together with the subsequent

disappearance of PtdIns(4,5)P2, fosters the breakdown of actin

that facilitates ruffle closure and macropinosome/phagosome

internalization [13–17].
20180147
2. Constitutive versus inducible macropinocytosis
Macropinocytosis has been studied in a variety of cell types fol-

lowing stimulation by growth factors. Phagocytes are also

stimulated to perform macropinocytosis by growth factors,

and additionally by chemokines like CXCR4 [18–20]. Such

‘induced’ macropinocytosis plays an important role in the nutri-

ent acquisition, delivering extracellular solutes to the

endosomal system. Induced macropinocytosis transports pro-

teins and amino acids to lysosomes [21] and is therefore

intimately tied to intracellular metabolic pathways controlled

by the mTOR complex 1 (mTORC1). Peak levels of

PtdIns(3,4,5)P3 and the related inositide PtdIns(3,4)P2 can

recruit proteins such as Ras and Akt that, combined with lumi-

nal amino acids, activate mTORC1 [22]. This complex promotes

cell growth and proliferation through the upregulation of

protein, lipid and nucleic acid biosynthesis and

the downregulation of catabolism by autophagy [23].

mTORC1 activation has been reported to occur in conjunction

with platelet-derived growth factor (PDGF), macrophage

colony stimulating factor (M-CSF) and CXCR4-induced macro-

pinocytosis [19,24]. Cancerous cells, which often bypass the

normal checkpoints in growth factor signalling, dysregulate

both macropinocytosis and mTOR activity [22,23]. For example,

cancer cells use the CXCL12/CXCR4/mTOR axis to stimulate

nutrient uptake by macropinocytosis, while promoting

angiogenesis, tumour progression and metastasis [25–29].

In many transformed cells, the process of macropinocytosis

is ongoing, owing to the expression of oncogenes. Oncogenic

mutations in H-Ras, v-Src and K-Ras all result in ‘constitutive’

macropinocytosis [30–35]. Such constitutive macropinocytosis

associated with cancerous reprogramming represents an

adaptation strategy to fuel unrestricted cellular growth [36].

In particular, oncogenic forms of Ras and Src are associated

with ongoing macropinocytosis and simultaneously hyper-

activate mTORC1, promoting unchecked proliferation [22].

Since macropinocytosis stimulated by oncogenic Ras

mutations promotes tumour cell feeding [32,37], inhibition

by the amiloride analogue EIPA blocks the growth of the

transformed cells on albumin [32].
Moreover, the growth of cells in nutrient-poor regions of

pancreatic tumours is dependent on the scavenging of extra-

cellular proteins by macropinocytosis [38]. Thus, constitutive

macropinocytosis can act as a cancer survival mechanism to

promote the acquisition of macromolecules present in the

extracellular fluid. As such, enhanced macropinocytosis is

now considered a hallmark of cancer metabolism [23].

However, unlike transformed cells, stimulation is necess-

ary for the induction of macropinocytosis in most non-

malignant cells. Macrophages and immature dendritic cells

are a rather unique exception, as they exhibit ‘constitutive’

macropinocytosis, in addition to the induced macropinocytic

response [1,39–44]. Macrophages and dendritic cells depend

on their ability to avidly sample their environment for

antigens to present to lymphocytes, and constitutive macropi-

nocytosis fulfils this function [45]. It delivers antigen to both

MHC Class I and Class II [43,46,47]. In addition, constitutive

macropinocytosis also results in the internalization of solutes

bearing pathogen- and danger-associated molecular patterns

that can be recognized by innate immune sensors in endo-

membranes or in the cytosol [48,49] (discussed in §4).

Clearly, constitutive macropinocytosis contributes to the

sentinel functions of these professional phagocytes [2,43].

Another previously unappreciated function of macrophage

also depends on constitutive macropinocytosis. Macrophages

are able to take up low-density lipoproteins by macropino-

cytosis, including native and modified LDL [39,50–54]; these

are implicated in foam cell formation and atherosclerotic

pathology in coronary heart disease (discussed in §5).

Recent work has investigated the signalling mechanisms

involved in induced versus constitutive macropinocytosis.

Both induced and constitutive forms of macropinocytosis

are dependent on PI3K, Rho-GTPases and actin rearrange-

ments (figure 1b and [7–9,14,57,58]), although the size of

the resulting vacuoles differs: the macropinosomes formed

constitutively are notably smaller than those induced by

growth promoters (figure 1d and [48]). Regarding PI3K, the

particular isoforms expressed can vary by cell type, but in

macrophages, pharmacological studies have suggested the

involvement of the Class I p110 d and/or g catalytic subunit

isoforms in macropinocytosis [19] or at least in the M-CSF

receptor signalling that is associated with macropinosome

generation [59,60], although another study disputes the

involvment of Class I PI3Ks [40]. Nonetheless, wortmannin

and LY294002, used at concentrations applied routinely to

inhibit Class I kinases, block both induced and constitutive

macropinocytosis [14,48,61]. In addition, as expected,

both forms of macropinocytosis are sensitive to actin inhibi-

tors such as latrunculin [48]. However, upstream of the

initiation of PI3K signalling, the mechanisms of induced

and constitutive macropinocytosis differ. The constitutive

macropinocytosis of macrophages and dendritic cells is

associated with the ongoing generation of high levels of

phosphatidic acid at the plasma membrane, which—by

means that are poorly understood, and have been extra-

polated from cell line studies—stimulates ruffling by

activation of Rac1 and Cdc42 [1,40]. Moreover, constitutive

macropinocytosis is considerably less sensitive to amiloride

and its analogues [38], which are prototypical inhibitors of

stimulated macropinocytosis.

While induced macropinocytosis is initiated by growth fac-

tors or chemokines that bind to receptors or G protein-coupled

receptors (GPCR; figure 1b), constitutive macropinocytosis is



GM-CSF and/or 
IFN-g or LPS

pro-inflammatorypro-inflammatory anti-inflammatoryanti-inflammatory

70 kDa dextran70 kDa dextran +Ca+Ca2+2+ +Ca+Ca2+2+

−Ca−Ca2+2+

M-CSF

M-CSF ± IL-4 

RTK
PI3K

PI3K

M-CSFM-CSF/
M-CSFRM-CSFR

CXCL12CXCL12/
CXCR4CXCR4

 

induced
macropinocytosis

PI3K

SFK?

constitutive
macropinocytosis

SFK

CaSRCaSR Ca2+

+M-CSFcontrol

(a) (b)

(c) (d) (i) (ii)

Figure 1. Regulation of induced and constitutive forms of macropinocytosis and their modulation by macrophage polarization. Pro-inflammatory macrophages (a),
commonly differentiated by incubation with GM-CSF and/or IFN-g or LPS, do not perform appreciable constitutive macropinocytosis. Note the paucity of macropino-
somes. However, anti-inflammatory macrophages (b), which can be generated by incubation in M-CSF+ IL-4, are capable of both induced and constitutive forms of
macropinocytosis. Induced macropinocytosis commonly occurs downstream of receptor stimulation by growth factors (e.g. M-CSF) or chemokines (e.g. CXCL12). In the
case of the M-CSF receptor, traffic to and from the macropinosome, and downstream signalling pathways activated by M-CSF stimulation have been studied in some
detail [55,56]. After such receptors activate tyrosine kinase activity, PI3K is recruited to stimulate the production of PtdIns(3,4,5)P3 from plasmalemmal PtdIns(4,5)P2,
which promotes the recruitment of cytosolic factors (i.e. Rho-GTPases, SCAR/WAVE, WASP, Arp2/3 complex) that promote ruffling and remodel the actin cytoskeleton
leading to macropinosome formation. Constitutive macropinocytosis occurs in the absence of growth factor stimulation, but is dependent on extracellular calcium, which
stimulates calcium-sensing receptors (CaSR). There is preliminary evidence that tyrosine kinases are involved in CaSR-mediated signalling, but their role in constitutive
macropinocytosis has not been fully characterized. Like induced macropinocytosis, PI3K is required for the ruffling and actin polymerization dynamics involved in
constitutive macropinocytosis. (c) Isolated human peripheral blood mononuclear cells were incubated for 5 days in GM-CSF (25 ng ml21), followed by 2 days in
LPS (500 ng ml21) plus IFN-g (10 ng ml21), to generate pro-inflammatory macrophages. These cells were then incubated with fluorescently labelled 70 kDa dextran
(25 mg ml21) for 15 min at 378C, and the number of dextran-positive macropinosomes was visualized by confocal microscopy. Cell outline is shown with a dotted line.
Scale bar, 5 mm. (d ) Isolated human peripheral blood mononuclear cells were incubated for 7 days in M-CSF (25 ng ml21) to generate anti-inflammatory macro-
phages. These cells were then incubated with fluorescently labelled 70 kDa dextran (25 mg ml21) in the presence (i) or absence (ii) of M-CSF (200 ng ml21) for
15 min at 378C, in medium with (i,ii) or without calcium ((ii) inset). Dextran-positive macropinosomes were visualized as in (c). Cell outlines are shown with
dotted lines. Scale bars, 5 mm. CSFR, colony stimulating factor receptor; IL-4, interleukin 4; RTK, receptor tyrosine kinase; SFK, Src family kinases.
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maintained by the ongoing activity of the calcium-sensing

receptor (CaSR). As such, it is exquisitely dependent on the

presence of extracellular calcium and pharmacological inhi-

bition of CaSR arrests constitutive ruffling and

macropinocytosis in macrophages [48]. On the other hand,

induced macropinocytosis is seemingly calcium independent

(figure 1d(ii), inset). The types of receptors capable of eliciting

inducible macropinocytosis are more varied: they include tyro-

sine kinase receptors and also GPCRs. Non-receptor tyrosine

kinases, mainly Src family kinases (SFK), are often involved

[14,41,62–64], leading to the recruitment and activation of

PI3K and the stimulation of Rac1 and Cdc42, [9,57,58]. Prelimi-

nary experiments suggest that SFKs may also be involved in

constitutive macropinocytosis [65,66], but definitive evidence

is still lacking.
3. Macropinocytosis and macrophage
polarization

Not all macrophages have comparable macropinocytic activity.

Macrophage polarization dictates macropinocytic ability and

the observed differences are related to the diverging function

of the specific cell types in the host. Macrophage polarization

into distinct populations occurs in the tissue microenvironment

as a result of exposure to select cytokines, chemokines and other

stimuli including bacterial lipopolysaccharides. Though now

appreciated to be a continuum [67], polarization is best studied

analysing extreme phenotypes such as the markedly pro-

inflammatory (M1) or predominantly anti-inflammatory (M2)

macrophages (figure 1a,b). Anti-inflammatory macrophages

are generated by the exposure to M-CSF+ interleukin 4 (IL-4)
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(figure 1b) and have a variety of immunoregulatory functions:

they dampen inflammation, prime type II adaptive responses

and promote angiogenesis and tissue remodelling. Owing to

their anti-inflammatory predisposition, this subset of macro-

phages is poised to survey, sample and discriminate a variety

of host- or pathogen-associated molecules, without eliciting

unneeded inflammation, in a manner similar to immature den-

dritic cells [45]. To this end, anti-inflammatory macrophages

readily perform constitutive as well as induced macropinocyto-

sis (figure 1d and [48,61]). As discussed in more detail in §6, these

two types of macropinocytosis differ in their mode of induction

and signalling (figure 1b). Pro-inflammatory macrophages are

generated by stimulation with granulocyte-macrophage colony

stimulating factor (GM-CSF) and/or interferon gamma (IFN-g)

or lipopolysaccharide (LPS) (figure 1a) and are characterized

by robust microbicidal activity (via generation and delivery to

phagosomes of reactive oxygen and nitrogen species), high

capacity to present antigens and the secretion of pro-

inflammatory cytokines like IL-12, all key to priming type I

adaptive immunity. These macrophages no longer perform

sentinel functions like antigen sampling and, as such, human

pro-inflammatory macrophages do not perform constitutive

macropinocytosis (as measured by fluid-phase uptake of

70 kDa dextran; figure 1c and [48,61]). Both human [61] and

murine [68] pro-inflammatory macrophages have been shown

to exhibit induced macropinocytosis under some conditions.

It is noteworthy, however, that macrophages are plastic and

can interconvert between polarization states, or even exhibit

mixed identities, depending on the tissue microenvironment

[69]. While macrophage polarization was once seen as a linear

continuum, it is now perceived as a modular spectrum of acti-

vation, to account for this plasticity and versatility [70].

Therefore, an individual macrophage can display a blend of

pro-inflammatory, regulatory and wound-healing functionality

that fluctuates as environmental signals change [70]. How this

plasticity affects macropinocytic ability remains to be

illuminated, but likely will depend on the local requirements

for macrophage-regulated inflammation versus surveillance.

Anti-inflammatory (M2) macrophages exhibit active

constitutive macropinocytosis and can be further stimulated

by agents like M-CSF. By comparison, pro-inflammatory

(M1) macrophages are rather quiescent. Their much-reduced

constitutive macropinocytic activity has been attributed to the

lower abundance and activation of PI3K, which in turn regu-

late Ras-related C3 botulinum toxin substrate 1 (Rac1) and

Ras homology growth-related (RhoG) activity [61]. However,

the machinery required for macropinocytosis is present and

capable of activation in M1 cells. Indeed, stimulation of

pro-inflammatory cells with LPS or CC chemokine ligand

19 (CCL19) results in macropinosomes formation [61].
4. Macropinocytosis and innate immunity
As mentioned above, constitutive macropinocytosis is of par-

ticular interest because it has a unique role in macrophage

function. The constant environmental sampling that results

from constitutive macropinocytosis contributes to antigen pres-

entation and to priming the adaptive immune response.

Interestingly, this form of macropinocytosis is also able to

modulate macrophage innate function by providing ligands to

pattern recognition receptors like cytosolic nucleotide-binding

oligomerization domain-containing protein 2 (NOD2) [48]
and endosomal/lysosomal Toll-like receptors 3, 7, 8 and 9

(TLR3, 7, 8 and 9) [49], which can initiate nuclear factor (NF)-

kB-mediated inflammatory and microbicidal responses [45].

Induced macropinocytosis can be initiated through TLR4

[39,41] and may boost the uptake of antigens and of pathogen-

or danger-associated signals. It may also contribute to the

nutrient acquisition, as is thought to be the case for growth fac-

tors. While the complete sphere of macrophage responses

influenced by macropinocytosis remains to be characterized,

these initial studies nonetheless provide unique perspectives

into the role of macropinocytosis in normal physiology.
5. Macropinocytosis, modified lipoprotein uptake
and atherosclerosis

The inordinate amounts of extracellular fluid taken up by

macropinocytosis, while essential for the normal function of

macrophages, can also contribute to disease. Indeed, macro-

pinocytosis had been proposed to mediate the uptake of

lipoproteins by phagocytes, thereby contributing to plaque

development during atherosclerosis [71]. Atherosclerosis, a

major health problem in developed countries, is a consequence

of endothelial barrier dysfunction leading to sub-endothelial

retention of low-density lipoprotein (LDL) in the intimal

space of the vasculature. Athero-prone endothelium displays

impaired barrier function in areas that experience disturbed

laminar flow, such as branched arteries, allowing for the

entry of LDL into the arterial intima where lipoproteins

are subjected to oxidative modification through exposure to

lipoxygenase, myeloperoxidase and reactive oxygen species

[72–74]. The resulting oxidized LDL (oxLDL) can be inter-

nalized by macrophages, in part by macropinocytosis.

Additionally, excess LDL that reaches the sub-endothelial

space can be retained by anchoring to the extracellular

matrix through its interaction with glycosaminoglycans,

facilitating its subsequent modification to oxLDL within the

arterial wall [75]. Anchorage to the extracellular matrix can

lead to aggregation of oxLDL; such bound aggregates are

thought to be targets for phagocytosis by the macrophages.

Both modes of internalization are illustrated in figure 2a.

Of the various myeloid cells involved in plaque develop-

ment, monocyte-derived macrophages contribute importantly

to lesion formation, accounting for roughly 50% of the

immune cells present in the atherosclerotic lesions [76].

Such macrophages identify and respond to oxLDL through

scavenger receptors (discussed below). Chronic exposure to

lipoproteins within an inflammatory environment prompts

macrophages to internalize them and process the associated

lipids. Subsequent cholesterol accumulation within these

macrophages prompts their conversion to lipid-laden ‘foam’

cells. When the lipid burden becomes excessive, foam cells

experience apoptosis [77]; moreover, because the lipid-laden

macrophages have reduced phagocytic activity, a failure in

efferocytosis of the apoptotic foam cells causes them to undergo

necrosis [78]. The accumulation of inflammatory cells around

the resulting necrotic core, combined with thinning of the

lesional fibrous cap, can cause the plaque to become larger

and less stable, making it increasingly prone to rupture, thereby

initiating acute thrombotic vascular events (i.e. heart attacks

or strokes).

Scavenger receptors, first described by Brown and Gold-

stein [79,80], were first associated with the ability to bind
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Figure 2. The role of constitutive macropinocytosis in the uptake of modified lipoproteins. (a) In vivo, low-density lipoprotein (LDL) can become oxidized by reactive
oxygen species (ROS), myeloperoxidase and/or lipoxygenase within the inflammatory environment of the arterial intima. Scavenger receptors, such as CD36 or SR-A, bind
and anchor the resulting oxidized LDL (oxLDL) to the membrane, facilitating internalization by constitutive macropinocytosis stimulated by CaSR. PI3K is activated down-
stream of CaSR ligation, resulting in phosphorylation of PtdIns(4,5)P2 to PtdIns(3,4,5)P3. This leads to recruitment and activation of Rho-GTPases (i.e. Rac1) that facilitate
Arp2/3-mediated F-actin polymerization. Phospholipase C gamma (PLCg) activation, either through CaSR signalling via active G alpha subunit (Ga) or through interaction
with PtdIns(3,4,5)P3, mediates the breakdown of PtdIns(4,5)P2 into Ins(3,4,5)P3 and diacylglycerol (DAG). Formation and modification of DAG leads to the recruitment of
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arrestin1, which provides a docking site for SFKs, enabling their activation. Active SFKs can further promote constitutive macropinocytosis through activation of Rac1. Within
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tyrosine kinases (e.g. FAK, SFK and SYK) and activation of Rho-family GTPases, resulting in large-scale F-actin polymerization. (b) Mouse bone marrow-derived macro-
phages (BMDMs) were generated by a 7-day treatment with M-CSF (10 ng ml21). These cells were then incubated with fluorescently labelled 70 kDa dextran
(25 mg ml21) and oxLDL (2 mg mL21) in a calcium-containing medium for 15 min at 378C. Positive overlap of oxLDL and dextran channels is shown in yellow.
Scale bar, 10 mm. The significance of the co-localization between oxLDL-647 and 70 kDa-TMR-dextran was quantified as the Manders overlap coefficient, which averaged
0.892+ 0.073 and is highly significant ( p , 0.001). (c) BMDMs were generated as in (b). These cells were then incubated with fluorescently labelled 70 kDa dextran
(25 mg ml21) and oxLDL (2 mg ml21) in medium containing calcium (i) or in nominally calcium-free medium (ii) for 15 min at 378C. The spatial localization of oxLDL
and presence of dextran-positive macropinosomes were visualized by confocal microscopy. Merged images are shown in the rightmost panels. Cell outlines are shown with
dotted lines. Scale bar, 10 mm. PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; IP3, inositol 1,4,5-trisphosphate.
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modified lipoproteins [81]. Since then, researchers have gone

on to identify a handful of scavenger receptors able to

mediate binding and internalization of oxLDL. These include

CD36, scavenger receptor A (SR-A), lectin-like oxidized LDL

receptor 1 (LOX-1) and macrophage receptor with collage-

nous structure (MARCO). CD36 has been shown to mediate

�60% of oxLDL uptake by macrophages in vitro [82], while

in vivo CD36 and SR-A reportedly mediate about 90% of

foam cell formation, with CD36 responsible for �70% of

this phenotype [83,84]. Accordingly, foam cell formation is

notably decreased in CD36-null macrophages [85]. It war-

rants recognition that in the absence of CD36 and SR-A,

mild plaque burden can still establish in vivo, but is unable

to progress to complex, advanced stage lesions [86,87]. This

mild plaque development may be owing to macrophage-

mediated fluid-phase pinocytosis of LDL in vivo [52,88].
Nonetheless, a plethora of literature exists outlining the

importance of scavenger receptors in the binding of modified

LDL and in foam cell formation.

Although structurally unrelated, the various types of

scavenger receptors share the presence of conserved clusters

of cationic patches in their ligand-binding domain, which

allow for binding of negatively charged targets such as

oxLDL and apoptotic cells that expose phosphatidylserine.

Remarkably, while the binding event is envisaged to result

from an electrostatic association, it remains unclear how

scavenger receptors convey signals to mediate internalization

of their ligand. Indeed, in the case of CD36, the N- and

C-terminal cytosolic domains are extremely short (only 7

and 13 residues long, respectively [89]) and lack obvious

intracellular signalling domains or motifs. Thus, the mode

of internalization of oxLDL remains a mystery.
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The signalling pathways activated in macrophages in

response to oxLDL treatment have been studied extensively

in an effort to understand how internalization of this impor-

tant ligand occurs. SFK-dependent activation downstream of

focal adhesion kinase (FAK) has been shown to occur upon

oxLDL treatment, which is lost in CD36-null peritoneal

macrophages [90]. This likely reflects an interaction between

CD36 and integrins, which is thought to contribute to macro-

phage trapping in the arterial intima. Additionally, CD36

engagement by oxLDL triggers activation of the SFK

member Lyn, the mitogen-activated protein kinases

(MAPK) family member MEKK4 and JNK1/2. Furthermore,

SFK-mediated activation of Rho-family guanine nucleotide-

exchange factors (RhoGEFs) Vav1, Vav2 and Vav3 was

reported and interference with this process disrupted

oxLDL uptake and foam cell formation in vitro and in vivo
[91,92]. Despite these observations, the mode of entry of

oxLDL and the upstream signalling events leading to the

internalization remain poorly understood.

Although conflicting data exist with regard to the mode of

modified LDL uptake, there is a consensus on a crucial step

needed for this process to occur: actin cytoskeletal

reorganization is required for oxLDL internalization. Pharma-

cological inhibition of F-actin formation using latrunculin B or

cytochalasin D had been shown to cause a marked (�80%)

reduction in oxLDL internalization [52,93]. Additionally, acti-

vation of Rac1 and Cdc42 that leads to actin reorganization

promoted uptake of CD36 into vesicles that were smaller

than conventional induced macropinosomes [42]. Although

we initially concluded that oxLDL uptake was part of an

actin-dependent process separate from macropinocytosis [52],

we were not aware at the time that macrophages exhibited

constitutive macropinocytic behaviour in the absence of

exogenous stimulants. The realization that an alternative

form of macropinocytosis exists constitutively in macrophages

and gives rise to smaller vacuoles offers us a reason to revisit

the possibility that macropinocytosis may be an important

mode of entry for oxLDL in macrophages.

It is worth considering that macropinocytosis is not

merely a means to engulf bulk fluid and soluble ligands

but is a very effective means of internalizing vast areas

of the plasma membrane. This distinction is particularly

relevant for constitutive macropinocytosis, where smaller

vesicles with a greater surface-to-volume ratio are formed.

We therefore propose that cells expressing a sizable density

of scavenger receptors like CD36 and SR-A and undergoing

constitutive macropinocytosis would thereby internalize

significant amounts of ligands, particularly oxLDL. We

propose to designate this process as ‘receptor-assisted macro-

pinocytosis’, which implies that the uptake is not simply the

internalization of ligands suspended in the bulk fluid but is

aided by the concentrative effect of the receptors that bind

and immobilize additional ligands on the cell surface prior

to vacuole sealing (figure 2a). This concept aligns well with

the observation that oxLDL uptake occurs largely through

an actin-dependent process. The ruffling behaviour that is

necessary for constitutive macropinocytosis can also aid

oxLDL binding by creating zones that allow for increased

CD36 clustering at the cell membrane [94].

Recent observations in our laboratory, using improved

imaging methods, support the notion that much of the

oxLDL enters macrophages via constitutive macropino-

cytosis. When added to bone marrow-derived murine
macrophages, labelled oxLDL was found in the same com-

partment where 70 kDa dextran was located (figure 2b).

Owing to its large hydrodynamic radius, this type of dextran

is felt to be excluded from clathrin-coated pits and caveolae

and is preferentially internalized via macropinocytosis.

More importantly, oxLDL uptake was markedly depressed

when constitutive macropinocytosis was inhibited by the

removal of extracellular calcium, as was the uptake of dextran

(figure 2c). In the latter case, oxLDL was observed lining

the surface of the cells, confirming its ability to bind to

scavenger receptors and the requirement for macropino-

cytosis for its entry. The removal of extracellular calcium does

not significantly affect the endocytic uptake [48]. Together,

these findings support the notion of receptor-assisted

macropinocytosis.
6. Macrophage polarization and oxLDL uptake
The relative importance of pro-inflammatory (M1) and anti-

inflammatory (M2) macrophages to the formation of foam

cells and the development of atherosclerotic plaque has

been an ongoing topic of discussion. Various authors have

sought to determine whether pro- or anti-inflammatory

macrophages are involved in the exacerbation or in the resol-

ution/stabilization of the plaque. For the development of

atherosclerosis, pro-inflammatory macrophages are thought

to contribute to the inflammatory milieu of the arterial

intima. Secretion of their pro-inflammatory mediators (i.e.

TNF-a, iNOS, IL-1b, MCP-1, proteolytic enzymes) primes

surrounding myeloid cells, upregulates adhesion molecules

on endothelial cells and aids in extracellular matrix break-

down, resulting in disease progression [95,96]. On the other

hand, anti-inflammatory macrophages aid in tissue remodel-

ling, increasing collagen production and secretion of anti-

inflammatory mediators (i.e. TGF-b, IL-10) [96]. It would

therefore seem easy to glean that pro- and anti-inflammatory

macrophages would exacerbate and resolve arterial lesions,

respectively. However, the presence and abundance of these

macrophages are heterogeneous within the lesion, with

their spatial and temporal distribution changing as the

plaque progresses. Anti-inflammatory macrophages were

found to predominate during early lesion development,

while pro-inflammatory macrophages were found largely in

advanced lesions [97]. As a result, a fierce debate as to

whether a macrophage phenotypic switching occurs within

the lesion has developed over the past decade [97–100]. In

this context, it is interesting that anti-inflammatory macro-

phages express higher levels of CD36 and SR-A compared to

pro-inflammatory macrophages, an observation validated by

both RNA-seq and protein quantification [101]. This informs

the observation that anti-inflammatory macrophages inter-

nalize significantly more oxLDL than pro-inflammatory

macrophages [102], consistent with the notion that these cells

are important during the early stages of lesion development.

In accordance with the receptor-assisted macropinocy-

tosis idea, anti-inflammatory macrophages were shown to

have an eight-fold increase in constitutive macropinocytosis

compared to pro-inflammatory cells [61]. This could be

owing to a greater accumulation of PtdIns(3,4,5)P3 at the

plasma membrane, downstream of CaSR activation [48],

which would in turn allow for the recruitment/activation

of Rho GEFs and stimulation of Rho-GTPase activity and
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actin polymerization (figure 2a). Alternatively, more active

SFKs could account for the enhanced macropinocytosis

[52,103]; SFK activity has been linked to GPCR signalling,

through the adaptor protein b-arrestin. b-arrestin, which

binds to active GPCRs, provides a docking site for SFKs by

interacting with their SH3 and catalytic domains [66,104],

enabling kinase activation of downstream effectors. Of note,

activation of CaSR has been shown to recruit b-arrestin1 to

the plasma membrane, facilitating membrane ruffling

through a cytoskeletal-signalling module [65,105]. As such,

CaSR is capable of recruitment and activation of SFK to pro-

mote the actin-dependent ruffling necessary for

macropinocytosis.
Phil.Trans.R.Soc
7. Concluding remarks
We believe that the emerging evidence that oxLDL is able to

enter macrophages through constitutive macropinocytosis
sheds light on the process of foam cell and plaque formation.

Although uptake of modified lipoproteins through

fluid-phase uptake had been suggested previously, the

receptor-assisted macropinocytosis model serves to account

for the high efficiency of the process, without the need to

invoke scavenger receptor-initiated signalling.
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