
Predicting plant conservation priorities on a
global scale
Tara A. Pelletiera, Bryan C. Carstensb, David C. Tankc,d,e, Jack Sullivanc,d, and Anahí Espíndolaf,1

aDepartment of Biology, Radford University, Radford, VA 24142; bDepartment of Evolution, Ecology & Organismal Biology, The Ohio State University,
Columbus, OH 43210; cInstitute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844-3051; dDepartment of Biological
Sciences, University of Idaho, Moscow, ID 83844-3051; eStillinger Herbarium, University of Idaho, Moscow, ID 83844-3051; and fDepartment of Entomology,
University of Maryland, College Park, MD 20742-4454

Edited by Rodolfo Dirzo, Department of Biology, Stanford University, Stanford, CA, and approved October 18, 2018 (received for review March 7, 2018)

The conservation status of most plant species is currently un-
known, despite the fundamental role of plants in ecosystem
health. To facilitate the costly process of conservation assessment,
we developed a predictive protocol using a machine-learning
approach to predict conservation status of over 150,000 land plant
species. Our study uses open-source geographic, environmental, and
morphological trait data, making this the largest assessment of
conservation risk to date and the only global assessment for plants.
Our results indicate that a large number of unassessed species are
likely at risk and identify several geographic regions with the highest
need of conservation efforts, many of which are not currently
recognized as regions of global concern. By providing conservation-
relevant predictions at multiple spatial and taxonomic scales, pre-
dictive frameworks such as the one developed here fill a pressing
need for biodiversity science.

plantae | conservation | predictive modeling | random forest | IUCN

Biodiversity is essential for ecosystem function (1, 2) yet is
being lost at an unprecedented rate (3). This threat to eco-

system function has downstream economic (4) and cultural (1)
consequences that affect human health and well-being (5, 6).
Plants are the foundation of ecosystem architecture and agri-
culture, and as such, changes in plant species diversity strongly
influence processes such as biomass production, decomposition,
and nutrient cycling (7, 8). Plant diversity is therefore critical for
diversity on other trophic levels (9, 10).
Conserving biodiversity is a complex task that includes scien-

tific, social, and political challenges. Both species (11) and geo-
graphic areas (12) must be identified as targets for conservation
while considering time, monetary costs (13), and community
acceptance (14). For these reasons, the International Union for
Conservation of Nature (IUCN) Red List of Threatened Species
(Red List) is a key conservation tool for both policy makers and
researchers. This list represents the most comprehensive and
consistent listing of conservation status for animal and plant
species worldwide (15). However, despite the essential ecological
role of plant species, plants are not as well represented on the
Red List as animals (13) and are often neglected in favor of
charismatic vertebrates (14). The 2010 Convention on Biological
Diversity (CBD) Global Strategy for Plant Conservation aims to
protect 75% of known threatened plant species, yet only about
one-tenth of plant species are on the Red List (16, 17), whereas
some (1,777) are classified as Data Deficient (DD) and many
unlisted species are likely to be at risk (18, 19). Consequently,
there is an urgent need for more efficient methods of identifying
at-risk species. To meet this need, we developed and evaluated a
predictive protocol that permits a rapid initial assessment of
conservation status for understudied plant taxa.
Our framework assesses risk for all land plant (hereafter, plant)

species with geographic coordinates available on the Global
Biodiversity Information Facility (GBIF). We use a machine-
learning approach to predict plant species Red List status using
open source geographic, environmental, and morphological trait

data for over 150,000 species, allowing us to provide conservation-
relevant predictions at multiple spatial and taxonomic scales.
Random forest (RF), a technique that builds random decision
trees for classification and prediction (20, 21), has recently been
applied to the exploration of biodiversity and conservation (e.g.,
refs. 18 and 22), and we use it to establish a predictive protocol for
at-risk species at continental and global scales. We calculate the
probability of each unlisted or DD species as belonging to a Red
List non-Least Concern (non-LC) category (i.e., likely of being at
risk on some level) and identify variables that are the most im-
portant in predicting conservation risk. We then identify global
conservation hot- and coldspots and provide direct tools for local
and global conservation needs. Our results indicate that a large
number of unassessed species have a high probability of being at
risk, and these probabilities can be used to establish assessment
prioritization. Further, our work identifies global regions in need
of conservation efforts, some of which are not currently recog-
nized as regions of global concern. When appropriate, these re-
sults can be readily applied to direct conservation efforts at both
the species and landscape scales.

Results and Discussion
Unlisted Species with Conservation Risk. Plants represent the base
of both natural and human-modified ecosystems and are central
in sustaining full food chains. However, because of the resources
required to perform detailed species assessments, only a small
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proportion of all described plant species are currently assessed
by the Red List (6.5% according to the Catalogue of Life www.
catalogueoflife.org/). The low representation of these groups
within the Red List appears to be at least partially the result of a
focus on charismatic species, differences in resource allocation
across the globe, and an unbalanced presence of collectors across
the world (16, 23, 24). Here, we respond to the challenge of global
assessment and predict the Red List classification of unassessed
land plant species. We evaluated several downsampling and
resampling schemes to overcome biases in the data, and unless
stated otherwise, the results presented below are based on pre-
dictions from downsampled data with LC vs. non-LC categories,
as these produced the lowest balanced error rates (see SI Ap-
pendix, Supplementary Methods and Results for all analyses).
Demonstrating the need of Red List assessments in plants, an
astonishing 95% (153,057; Table 1) of the taxa databased in
GBIF (with parameters that pass our filters) have never been
assessed under the Red List protocol. The overall accuracy of
our classifiers fell within the same range of those obtained in
other studies (18, 25), at 73 to 82% globally. As we found pre-
viously (22), down- and subsampling balanced the error rates
across categories (SI Appendix, Tables S3–S6) and should gen-
erally be applied in RF analyses in which datasets have unequal
representation across categories (response variables).
Using the best classifiers built for two types of datasets, those

containing only spatial data (“spatial”) and those containing both
spatial and morphological data (“spatial+morpho”), we pre-
dicted Red List status for 213,927 and 17,231 species, re-
spectively, and summarized the number of species predicted as
non-LC and most likely in need of some conservation action
(Table 2). For the spatial dataset, on average, 7.9% (range across
continents, 3.4 to 13.6%) and 29.5% (range across continents,
18.7 to 41.9%) of plant taxa were predicted as non-LC at a
probability of >0.80 and >0.60, respectively. For the spatial+
morpho dataset, on average, 5.1% (range across continents, 0 to
10.1%) and 21.4% (range across continents, 10.2 to 43.3%) were

predicted as non-LC at a probability of >0.80 and >0.60,
respectively.
We identified a core set of species that were consistently

predicted as non-LC at a high probability (Table 3 and Dataset
S1). We also found that the vast majority of species predicted
with the spatial dataset have characteristics that make them good
candidates for further assessment (e.g., restricted ranges, ende-
mism, and exposure to threats), further validating the predictions
made using the RF model. However, this was not true for many
of the species from the spatial+morpho dataset (Table 3 and
Dataset S1). We suspect that the smaller dataset used to con-
struct the classifiers in the spatial+morpho analyses (SI Appen-
dix, Table S1) led to low power of these classifiers in most
regions, and we recommend that these results be considered
carefully.
From a practical perspective, the species-centered predictions

can be used to prioritize risk assessment. Species with the highest
probabilities in one or both datasets represent the most critical
targets for future studies (see Dataset S2 for a complete list of
species probabilities across all predictive models and continents).
Biases in the search and assessment of species are widespread,
and this also biases resource allocations toward species that are
more visually attractive (24). The predictive protocol presented
here is valuable, in that it successfully exploits open-source data,
providing critical information for policy and decision makers
who are responsible for the allocation of resources toward the
investigation of conservation risk, and has the potential to in-
crease the efficiency of conservation efforts and amplify the
impact of biodiversity data in public data repositories. Notably,
the computational requirements of the analyses are relatively
low, permiting the use of personal computers, even for large
datasets. Thus, this protocol is an extremely efficient way to
prioritize species and geographic regions for conservation as-
sessments and enables the optimization of both human and
economic resources for the conservation of biodiversity.

Table 1. Number of species for each IUCN Red List category and those not listed
for each continent

Continent

Red List Category

Not listed, n
Available to build

classifier, nLC NT VU EN CR DD

Africa 941 153 505 335 81 43 23,142 2,015
Asia 1,363 113 184 67 30 64 31,584 1,757
Australia 488 40 48 24 5 5 22,538 605
Central America 351 54 136 91 29 15 14,999 661
Europe 753 66 60 57 29 71 17,597 965
North America 1,181 28 32 22 7 16 31,074 1,270
South America 888 353 872 411 84 63 44,590 2,608
Global species 2,134 130 205 108 32 61 30,424 2,609

Table 2. Number of species predicted as non-LC at probabilities above 0.80 and 0.60 and total number of predicted species
and error rates

Continent

Spatial Spatial+Morpho

Species predicted, n Error rate Non-LC >0.80 Non-LC >0.60 Species predicted, n Error rate Non-LC >0.80 Non-LC >0.60

Africa 23,185 0.1983 1,631 4,352 899 0.1737 81 193
Asia 31,648 0.2462 1,553 9,336 928 0.2998 113 325
Australia 22,543 0.2709 2,854 7,185 7,866 0.2519 580 2,074
Central America 15,014 0.2731 1,115 4,841 1,552 0.2495 158 672
Europe 15,336 0.1825 2,089 5,095 1,247 0.4824 0 170
North America 31,090 0.2500 2,676 13,041 1,125 0.2506 33 115
South America 44,653 0.2520 1,534 9,616 1,295 0.3151 54 275

Global species 30,458 0.2197 1,797 8,303 1,319 0.2654 20 240
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Traits That Predict Extinction Risk. Although we did identify trends
in the variables that contribute the most to at-risk classifiers
across continents, there is no one single global variable that
predicts conservation status. This result highlights the impor-
tance of considering local dynamics and conditions when making
conservation-related decisions. In most cases, the geographic
variables (area, length of latitude, and distance from the equator)
were important predictors for which species are at risk (Fig. 1),
in agreement with other work on conservation and biodiversity
(17, 26). For example, species range size has long been considered
in identifying taxa at risk [represented in Red List criterion B
(27)], in part because small populations are more likely to go
extinct than larger ones (represented in Red List criteria C and D;
refs. 27 and 28). The fact that our analyses identify these variables

as important strongly indicates the adequacy of RF to predict
IUCN conservation status. Indeed, several Red List criteria relate
to the spatial variables used in our analyses, and since RF is a
classification algorithm, the use of these variables can represent an
appropriate way of mechanizing the initial search of species at risk.
Along with the geographic variables, some bioclimatic traits re-
lated to temperature [e.g., temperature seasonality (BIO4) and
temperature annual range (BIO7)], ranked regularly among the
top explanatory variables for all continents. Results from the
spatial+morpho datasets are complementary to the spatial data-
sets. Even though morphological traits were used for all datasets,
the Europe and Central America datasets were the only ones that
identified a single top explanatory variable (woodiness and plant
height, respectively). This result agrees with previous studies
conducted at more restricted taxonomic/spatial scales, which in-
dicate that plant habit can affect diversification rates (e.g., ref. 29).
The full global dataset was more influenced by the bioclimatic
variables pertaining to temperature than by the geographic
variables.
The predictive framework developed here is an example of the

capability for global analyses to complement local studies; in-
vestigations on both scales are thus complementary and impor-
tant for conservation decision-making. We identify both spatial
and morphological traits that are thought to influence the ability
of plants to survive when facing threats. Such identification of
mechanistic processes via the analysis of large datasets not only
demonstrates the utility of information contained in open-source
repositories but also the adequacy of the protocol presented here
to identify species at risk.
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Fig. 1. Variable importance ranked by the MDA for all analyzed continents. Black bars indicate the spatial dataset; gray bars indicate the spatial+morpho
dataset. Only the top five predictor variables for each model are included for simplicity, and they are ordered according to the spatial data.

Table 3. Number of top 30 species predicted as non-LC in the
spatial analysis likely to be listed as non-LC

Region Non-LC support

Africa 29/30
Asia 23/30
Australia 21/30
Central America 20/30
Europe 22/30
North America 28/30
South America 25/30
Global 28/30

Results based on information from bibliographic searches. Results are shown
for all regions. For the full list of species names, see Dataset S1, part 1.
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Global Distribution of Extinction Risk.While our predictions can be
used to prioritize the assessment of species, they also provide
global information about the predicted distribution of expected
conservation hotspots (Fig. 2). By associating each species’ GPS
coordinates with their predicted probabilities (Fig. 2 B and D),
we facilitate the identification of understudied regions in need of
further conservation focus. Our predictions based on the spatial
dataset identified several regions recognized as global bio-
diversity hotspots (30) and currently considered Key Biodiversity
Areas (31) that are expected to harbor a large number of at-risk
species (Fig. 2B). Some of these were the California Floristic
Province, Mesoamerica, southeast North America, southwest
Australia, parts of Sundaland and the Philippines, Madagascar,
and the West African Rainforest. Other regions not recognized
as hotspots (30) but recognized as Key Biodiversity Areas (31)
were also recovered in our analyses, such as the Middle Eastern
coast and Tasmania. Lastly, our results also recovered un-
recognized regions, such as the southern coast of the Arabian
Peninsula. The spatial+morpho dataset identified the West Af-
rican Rainforest, including large portions of central Africa, the
peri-Mediterranean, the Amazon basin, the California Floristic
Province, and Sundaland as those likely to harbor non-LC spe-
cies (Fig. 2D). These results agree with, and complement, other
studies (30–32). An important but troubling result of our analysis
is that currently well-assessed regions (e.g., Europe; Fig. 2 A and
C) do not necessarily match major regions in need of conserva-
tion (Fig. 2 B and D). For instance, there is little overlap between
the number of species assessed in a region and the likelihood of
it harboring at-risk species. This stresses more strongly the im-
portance of our discoveries: Our protocol can assist species as-
sessments in regions where most species are yet to be assessed,
thus translating global conservation predictions into specific re-
gional actions. From another perspective, it is important to note
that even though our methodology and datasets were sub-
stantially different from those used by Brum et al. (32), we re-
cover similar areas likely in need of conservation. Further,

because both Brum et al. (32) and our study considered all or-
ganisms belonging to high taxonomic ranks (mammals in ref. 32;
land plants in our study), the results, together, should be seen as
detecting consistent biodiversity patterns that are likely to be
present across taxa and should therefore be considered in global,
regional, and local conservation decision-making.

Conclusions
Plants are involved in myriad interspecific interactions [e.g.,
pollination, herbivory, and mycorrhizae (33, 34)], contribute to
the diversification of organisms on Earth (35), can prevent nat-
ural disasters [e.g., flooding (36)], and contribute to ecosystem
productivity in general (37). Given the CBD’s Global Strategy
for Plant Conservation, a substantial number of species in need
will go unprotected, resulting in quicker biodiversity loss than we
are already experiencing (38). On a global scale, the level of
threat to plants is much higher than expected. Additionally, our
results indicate that several geographic regions should receive
more attention from conservation biologists and/or decision-makers
(Fig. 2) than they currently do. Both the IUCN Red List and other
soundly defined conservation assessments can have an important
impact on policy-making and conservation actions at various scales
(39–41). Because it can be used for any assessment system that
follows a structured protocol, our approach can be used on the
region for which the system was created (e.g., province, country,
continent, or biome), reflecting in each case the needs and speci-
ficities of the evaluated scale (41). Thus, when exploiting different
scales, our predictive protocol provides researchers and conserva-
tion practitioners with a comprehensive list to assist the decision-
making of resource allocation in conservation, regardless of the
classification system used in each geographic region. Lastly, our
results can be used to develop strategies that establish or sustain
conservation actions to protect important geographic regions,
thereby protecting key ecological systems and ecosystem services
(42). For example, these data can be used in conjunction with
information about how funding levels are distributed globally
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Fig. 2. (A and C) Number of GPS coordinates per grid-cell that are of non-LC categories from the IUCN Red List used in the RF classifier for the spatial (A) and
spatial+morpho (C) datasets. (B and D) Average per grid-cell probability of being listed as non-LC calculated by the RF classifier using the spatial (B) and
spatial+morpho (D) datasets. See scales for values.
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and where conservation measures will have the most impact
(43, 44).

Materials and Methods
Data. All georeferenced occurrence data for land plants were downloaded
from the GBIF biodiversity database in March 2017 (see GitHub for links to all
downloaded datasets, https://github.com/AnahiEspindola/PelletierEtAlPNAS).
Many studies have pointed toward different biases and errors present in
global biodiversity databases, such as taxonomic and spatial biases and
coordinate inaccuracies (16, 23, 45–47). Even though some of these errors
cannot be excluded, we sought to reduce them by taxonomic choice and
checks and by spatial and data manipulations. It has been shown that the
GBIF database harbors a globally good representation of the taxonomic
diversity of land plants (16), indicating that our predictions should have a
low taxonomic bias. However, it is known that GBIF can carry some taxo-
nomic issues, in particular related to the presence of taxonomic synonyms
and poorly taxonomically curated taxa (48). For this reason, we checked all
species and, when needed, corrected their taxonomy using the classifica-
tion function in the R package taxize (49). Lastly, we selected only those
GPS coordinates with “no known coordinate issues” and that had come
from human observation, observation, literature occurrence, specimen,
and material sample. After removing duplicates, we retained species with
five or more GPS coordinates to eliminate species that might be incorrectly
assigned to a continent, and we used GPS coordinates that contained be-
tween one and six decimal values. To evaluate the bias that known
georeferencing errors could bring into our results, we tested the filter pro-
posed in ref. 46, and our results indicated that these errors did not affect our
results in significant ways (SI Appendix, Figs. S4 and S5). We bounded our
search locations by continent, excluding Antarctica, and using most of the
regions defined in the 1:5,000,000 ESRI World Continents shapefile (50). An
exception to this was that we split the original North America designation so
as to include (i) Mexico, Canada, and the United States (“North America”), and
(ii) all countries south of Mexico and north of South America (“Central
America”). There were totals of 1,048,575 geographic coordinates from Africa;
1,821,626 from Asia; 7,329,297 from Australia; 858,234 from Central America;
48,394,349 from Europe; 4,326,043 from North America; and 2,855,312 from
South America (Table 1 and SI Appendix, Fig. S1). Because some species are
present in several continents, we also ran analyses using species endemic to
each continent (seven “endemic” datasets) and those globally present (one
“global” dataset using species that are found on at least two continents). In
parallel, all plant species on the Red List were downloaded by continent from
the IUCN website in March 2017. Species are listed as either DD, LC, Near
Threatened (NT), Vulnerable (VU), Endangered (EN), Critically Endangered
(CR), Extinct in the Wild (EW), or Extinct (EX). Red List categories were assigned
to species present in our GBIF database. IUCN listings from before 2001 were
recoded so that listings were consistent across time periods: Near Threatened
(LR/nt) = NT, Conservation Dependent (LR/cd) = VU, and Least Concern (LR/lc) =
LC; DD was recoded as Not Available (NA) and predicted with our classifiers.
EW and EX taxa were excluded from all analyses. To generalize our results, we
also coded all listed taxa as LC (LC and NT) vs. non-LC (CR, EN, VU), and CR vs.
non-CR. This allowed us to increase the number of observations per predicted
category, which had a direct impact on the quality of our classifiers and
resulted in overall better predictors (SI Appendix, Tables S2–S6). Analyses were
done on three sets of response categories (i.e., all IUCN categories, LC vs. non-
LC, and CR vs. non-CR), but only the LC vs. non-LC category is presented in the
main manuscript (see also SI Appendix, Supplementary Methods and Results).
Based on preliminary analyses, and because of the very different bio-
geographic history of Hawaii, GPS coordinates from these islands were ex-
cluded from the North America dataset.

All analyses were run in R v.3.4.0 (R Core 2017), using custom scripts [data
and scripts are available on GitHub (https://github.com/AnahiEspindola/
PelletierEtAlPNAS)]. For all GPS coordinates retained from the above search, we
extracted data from a series of spatial and environmental variables on a species-
by-species basis using the R packages geosphere (51), raster (52), and plyr (53).
First, coordinates were used to draw a polygon, from which only the area falling
on landmasses was used as a proxy for range area. For latitude and longitude, we
extracted maxima and minima, absolute value of maxima, and median. Lastly,
for each locality, we extracted values for the 19 bioclimatic WorldClim variables
(54) at a resolution of 30 s (∼1 km2) and calculated their mean values and SDs
on a species-by-species basis. We refer to this as the spatial dataset [available
on github (URL: https://github.com/AnahiEspindola/PelletierEtAlPNAS)].

Bioclimatic variables often display a certain level of correlation. Even
though this has been suggested to affect the ability of RF to accurately
identify the contribution of each variable to the classifier (e.g., ref. 55), this
does not influence the predictive ability of the classifier because subsets of

variables are used to create each decision tree (see ref. 56 for a review). To
understand the level of correlation of our variables and its potential impact,
we performed pairwise correlations of all our variables. This analysis in-
dicated that they are overall little correlated (Dataset S3) and display a level
of correlation that falls within ranges demonstrated to not affect the ability
of RF to correctly interpret variable importance (55).

Along with the spatial data, we obtained morphological trait data from
the plant trait database TRY (ref. 57; https://www.try-db.org/). Because the
TRY traits were not equally represented across taxa, and RF does not ac-
commodate missing data, we selected between one and three traits that
were best represented across taxa for each continental dataset. These traits
included woodiness (global and all continents), leaf phenology (global,
Africa, Asia, Europe, and North America), and plant height (global, Europe,
and North America). Some continents (Africa, Europe, and North America)
had species lacking values for traits that belong to families in which more
than 50% of the species had that trait data available; to allow for the
accommodation of missing data, these values were imputed using the
missForest function in the missForest R package (58). Imputation was done
within the family, with replacement, and with the parameter ntree set to
100. We refer to these as the spatial+morpho datasets.

RF with Spatial Data. RF is an appropriate method for global biodiversity
datasets because it can accommodate large amounts of data, including high
numbers of both observations and predictor variables; it does not overfit; and
it circumvents issues associated with variable correlation. It constructs de-
cision trees built on a series of random samples of variables and observations
and is extremely efficient in classification and prediction for complex datasets
(20, 21). The RF method has been shown to perform better than other
machine-learning approaches in predicting ecological status in some re-
stricted clades (18, 25). We used the R package randomForest (59) to build
classifiers based on 1,000 random trees, using the following variables as
predictor variables: range area, maximum distance from the equator, mini-
mum distance from the equator, median latitude, length of latitude (de-
grees the latitude extends), median longitude, and the mean values and SD
of each of the 19 bioclimatic variables. RF samples the data with re-
placement for each decision tree in the forest, and uses the unsampled
datasets (one third of the total dataset) to test the model. This information is
used to build a confusion matrix for the prediction and calculate the out-of-
bag (OOB) error rates.

We conducted RF analyses on six spatial datasets per continent, for both
“all species” and “endemics only”. These datasets contained either (i) all
species, without any manipulation to avoid Red List category imbalance, or
(ii) iterated downsampling of the majority class(es) to match the value of the
minority class (Table 1 and SI Appendix, Tables S1 and S2) (22, 60). For each
of these, we ran RF analyses using (i) all IUCN Red List categories as the
response variable, (ii) IUCN categories coded as either LC or non-LC as the
response variable, or (iii) IUCN Red List categories coded as either CR or non-
CR as the response variable. For RF on the downsampled datasets, we sub-
sampled the majority class(es) 100 times to match that of the minority class,
ran the RF, and then averaged results from these iterations. Lastly, we
conducted two additional LC vs. non-LC RF analyses after removing species
that were misclassified in the model 90% and 80% of the time, in an at-
tempt to improve model accuracy. This was done under the assumption that
some species may be inaccurately categorized by IUCN or contain abnormal
characteristics for being on the Red List, and their removal should therefore
increase the accuracy of the prediction.

RF with Spatial+Morpho Data. We used the R package randomForest (59) to
build classifiers based on 1,000 random trees. Here, we used all spatial var-
iables present in the spatial dataset, but also added the morphological trait
values presented in the Data section and calculated OOB error rates as
above. This dataset was analyzed using approaches similar to those used for
the spatial dataset; however, because the response classes were extremely
imbalanced, we applied downsampling and resampling strategies only on
the LC vs. non-LC coded data (22, 60): (i) downsampling of the majority class
to match the value of the minority class, and (ii) resampling of classes to
double the minority class count (SI Appendix, Table S1). We conducted 1,000
iterations, and the results were averaged.

RF Predictions. For each continent and dataset type (i.e., spatial and spatial+
morpho), we used the OOB error rates to identify the most accurate classi-
fiers, considering both overall OOB error and within-class OOB error (SI
Appendix, Tables S2–S6). We used the predict.randomForest function in the
randomForest R package to calculate the probability of belonging to each
Red List category of nonassessed species from each continent. For all
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downstream analyses and discussion, we refer to the LC vs. non-LC down-
sampled RF results for both the spatial and spatial+morpho datasets (all
predictions found in Dataset S2).

To understand the level of agreement between predictions from the
spatial and spatial+morpho datasets, we calculated the number of species
that were predicted to belong to the same category by both methods, using
a probability threshold of 80% (Dataset S1). Because we suspected the
predictive power of the spatial dataset to be greater than that of the
spatial+morpho dataset, we further evaluated predictions from this spatial
dataset for the top 30 non-LC predicted species for each region (Table 3 and
Dataset S1). We performed online bibliographic searches to identify
whether or not those species already display any indication of being po-
tentially in need of conservation actions (e.g., endemics, restricted ranges,
occupying threatened regions, rare species, etc.).

Variable Importance. The importance of each variable was determined by
measuring the mean decrease in accuracy (MDA) of the prediction after the
removal of each variable from the predictive function. For our downsampling
schemes, we calculated the mean and rangeMDA for all iterations. Lastly, we
compared these results across datasets and for each continent (the top five
variables from each dataset are shown in Fig. 1; the values for the endemic
datasets are reported in SI Appendix, Fig. S2).

Global Distribution of Non-LC. One of our goals was to use our predictions to
inform conservation not only at the species level, but also on a global scale. To
achieve this goal, we associated the probability value of being non-LC for all
unassessed species to each of their own georeferenced GPS coordinates. After
doing so, we used the raster package (52) in R to calculate the average
probability of non-LC for all GPS coordinates within each cell of a 1° × 1° grid
covering the world (see SI Appendix, Fig. S3 for the endemic plots).

All data are deposited on GitHub (https://github.com/AnahiEspindola/
PelletierEtAlPNAS) and further analyses are presented in SI Appendix.
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