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We report an approach in diagnostic imaging based on nanoscale-
resolution scanning of surfaces of cells collected from body fluids
using a recent modality of atomic force microscopy (AFM), subre-
sonance tapping, and machine-leaning analysis. The surface pa-
rameters, which are typically used in engineering to describe
surfaces, are used to classify cells. The method is applied to the
detection of bladder cancer, which is one of the most common
human malignancies and the most expensive cancer to treat. The
frequent visual examinations of bladder (cytoscopy) required for
follow-up are not only uncomfortable for the patient but a serious
cost for the health care system. Our method addresses an unmet
need in noninvasive and accurate detection of bladder cancer,
which may eliminate unnecessary and expensive cystoscopies.
The method, which evaluates cells collected from urine, shows
94% diagnostic accuracy when examining five cells per patient’s
urine sample. It is a statistically significant improvement (P <
0.05) in diagnostic accuracy compared with the currently used
clinical standard, cystoscopy, as verified on 43 control and 25
bladder cancer patients.

diagnostic imaging | atomic force microscopy | machine learning |
noninvasive methods | cancer diagnostics

New noninvasive diagnostic methods are in high demand in
medicine. When applied for cancer detection, such methods

are key in the progression to defeating this disease (1). Here we
present a method of diagnostic imaging, which is based on
nanoscale-resolution imaging of physical properties of surfaces
of cells collected from body fluids. Collected cells are imaged
using a recent modality of atomic force microscopy (AFM),
subresonance tapping (2, 3), and the obtained images are ana-
lyzed using machine-learning methods. The method is applied to
the detection of bladder cancer, using cells collected from urine.
Bladder cancer is one of the most common cancers and causes

of cancer-related deaths both in the United States (with esti-
mated 81,190 new cases and 17,240 deaths only in 2018,
with >500,000 survivors) and globally (4). The 5-y survival rate
drops from 95% for patients with cancer detected at its early
stage to 10% for those at the metastasis stage (5). The gold
standard for diagnosis includes cystoscopy, biopsy, and tumor
resection for pathology examination. Because of a high (50–
80%) recurrence rate, frequent costly and invasive cystoscopy
examinations (e.g., every 3–6 mo) are required to monitor patients
for recurrence and/or progression to a more advanced stage. The
requirement for frequent cystoscopy makes bladder cancer the
most expensive cancer per patient to diagnose, monitor, and treat.
It is recognized as a major health issue by global authorities in-
curring significant burden in the healthcare systems (6). In addi-
tion, cystoscopy has still limited accuracy for the detection of low-
grade tumors (sensitivity, 61%) (7) although this grade of tumor is
the most frequent; moreover, sensitivity for carcinoma in situ can

be also low (8). It also has a limited ability to detect occult mi-
croscopic cancer and tumors in atypical locations such as the
upper urinary tract and prostatic urethra. A low-cost, accurate,
effective, and noninvasive test will greatly expand participation of
patients in screening and early detection evaluation programs
because it will decrease the patient discomfort and potential
postprocedural complications, while it can assist in improving di-
agnosis, monitoring, and surveillance, acting as adjunctive to
cystoscopy and/or eliminating unnecessary cystoscopies.
At present, there are no such clinically accepted methods that

are noninvasive, accurate, and sufficiently simple. Urinalysis
[search for the blood in urine (9)] and voided urine cytology [VUC,
visual cytologic examination of cellular material present in the
urine by means of optical microscopy (10)], is one of the current
standards-of-care noninvasive examination of cells in urine used to
assist with cancer diagnosis and surveillance, has low sensitivity,
and high interobserver variations (11, 12). Although specificity
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(accuracy of no-cancer detection) of VUC is high (>90%), the
sensitivity is low (20–80%) (13, 14), in particular, for the detection
of low-grade cancer (20–25%) (15, 16). Methods based on non-
invasive analysis of chemical biomarkers show promise but still are
either not sufficiently accurate or repeatable to be adopted for
widespread use (15) and are not currently recommended for di-
agnosis. Physical fluorescent, Raman, infrared, partial-wave opti-
cal, and various cell mechanics testing methods are still under
development (17–19).
AFM was previously used to differentiate between cancer and

normal cells and tissues (19–21). However, it is hard to work with
living cells and tissues in clinical environment. Moreover, there is
still too much uncertainty in the measuring cell mechanics (22).
Another method to image fixed cells with high resolution to detect
cancer cells was suggested in ref. 23. But, it was developed for cell
lines in vitro (not suitable for clinical use) and was very slow.
Here we report an approach to detect cancer using imaging of

cells extracted from body fluids, in this case urine. When using
cells extracted from urine (in a manner similar to VUC method),
and then fixed and imaged with AFM, one may expect the de-
tection of bladder cancer using the method of ref. 23 to identify
malignant cervical epithelial cells in vitro. However, a straight-
forward use of that method does not work because, for example,
not all cells extracted from cancer patients are malignant. Fur-
thermore, the method developed here includes machine-learning
analysis. The machine-learning methods (part of aka artificial
intelligence) have already demonstrated their efficiency in rec-
ognition of different objects and patterns in medical applications
(24, 25). In contrast to the previous analyses, we applied such
methods not to each image directly but to the sets of surface pa-
rameters (e.g., roughness, directionality, fractal properties, etc.)
derived for each image. The considered parameters are used in
engineering to describe material surfaces (see the complete pa-
rameters list in SI Appendix,Materials and Methods). The use of the
parameters instead of images substantially decreases the dimension
of the data space, and therefore allows avoiding the problem of big
data analysis, the need for a large size of the training set.
The presented method is mainly based on the use of AFM

Ringing imaging mode (2, 3). Although it is possible to do the
imaging using standard subresonance tapping (for example,
PeakForce QNM), Ringing mode is substantially faster (5–20×)
and less prone to possible artifacts. The described method
demonstrates statistically significant improvement (P < 0.05) in
diagnosing bladder cancer even in comparison with the currently
used clinically used standard, cystoscopy.

Methods
Urine samples were collected at theDartmouth-HitchcockMedical Center and
Cleveland Clinic as part of an IRB-approved protocol. All of the human
subjects gave informed consent. The samples were studied with AFM under
the appropriate IRB at Tufts University. We analyzed urine samples from 43
individuals without evidence of bladder cancer and 25 cancer patients with
pathologically confirmed bladder cancer (14 low grade and 11 high grade).
Cells were collected in similar manner to VUC (10), then specially fixed,
washed with water, freeze-dried on a glass slide, and imaged using sub-
resonant tapping AFM modalities [PeakForce and Ringing mode (3)]. Details
of samples collection, preparation, imaging, and analyzing the images are
described in SI Appendix.

Results
Fig. 1 shows examples of cell surfaces imaged with the subresonant
tapping AFM modalities (PeakForce and Ringing mode). Cells to
image were randomly chosen with the help of an optical microscope
build-in the AFM, Fig. 1B. On average, six cells per patient were
imaged. Subresonant tapping modes allow for simultaneous imag-
ing of multiple physical properties of cell surface. We chose only
the two most robust channels, sample height and adhesion between
the AFM probe and sample, i.e., the channels that provide images
quantitatively independent of the variation of laboratory conditions.

(Although there are more robust channels in Ringing mode, these
are not used here because to date we have insufficient statistics
obtained solely with this mode as it was introduced very recently.)
Both the height and adhesion channels are well controlled and thus
robust (repeatable when using different AFMs, probes, tempera-
ture, humidity). Fig. 1 C–F shows an example of typical AFM im-
ages of cells collected from noncancer and cancer patients. One can
see a surface covered with microvilli and microridges, which is
common for epithelial cells.
Approximately 25 mL of urine was collected on each patient, a

similar amount to that collected for VUC to obtain adequate
cellularity (26). Nevertheless, 18 out of 43 healthy controls and 1
low-grade cancer sample showed no cells in their urine samples.
Such a large number of samples with no cells could be explained
by the fact that many objects, which would be identified as cells
with just optical microscopy, were not cells, as was clearly seen
only with AFM. Such cell-like objects showed distinctive layered
structures never observed on cells (SI Appendix, Fig. S1) and
therefore can easily be excluded. When analyzing the data, we
considered both cases, taking these no-cell cases into account
and ignoring them. The classification results did not change
noticeably, independently of inclusion of samples with no cells

Fig. 1. The described detection method. (A) The method schematic. (B)
Optical location of a cell with AFM cantilever. (C–F) AFM images (10 × 10-μm2)
of (C and D) height and (E and F) adhesion of the cell surface. Examples of cell
images taken from noncancer (C and E) and cancer (D and F) subjects are
shown. The images were obtained using subresonance tapping mode.
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into the analysis, in particular, when multiple cells are used for
classification (SI Appendix, Tables S4 and S6).
To check that the results are independent of specific machine-

learning algorithm, we evaluated three different machine-learning
methods: Random Forest (27), Extremely Randomized Forest
(28), and Gradient Boosting Trees (29). These methods were
chosen as they are the least prone to overtraining (overfitting),
which is a common problem of machine-learning methods (30).
The first two methods are bootstrap unsupervised, and the last is a
supervised method of building trees (see SI Appendix, Materials
and Methods, item 10 for more detail).
Many machine-learning methods can be subject to artifacts of

training, for example, be overtrained to give higher accuracy for a
specific subset at the expense of accuracy on a more general subset.
To avoid it, the training and testing (validation) are done on two
independent cohorts. Specifically, we split the entire dataset into
the training and testing subsets (cohorts). The decision trees are
built using only the data from the training subset. Then the accuracy
of the diagnosis is found using only the testing subset. The splitting
was done by keeping the data from the same individuals in just one
of the other subsets to avoid artificial overtraining due to the cor-
relation between different cells of the same individual. Note that
such an approach is essentially similar to blind testing. We observed
that ignoring this rule results in artificially high detection accuracy.
To verify that our results do not depend on the way we do

splitting for training and testing, we repeated the above procedure
doing the random split multiple times. Specifically, the obtained

dataset [the sets of surface parameters (input) and diagnoses (out-
put)] were randomly split to have S% of the total data for training
and 100-S% for testing. We considered S = 50, 60, and 70%.
Generating the random splits 1,000 times for each S, one can derive
a full statistical analysis of the machine-learning methods, which
includes the confusion matrix (accuracy, sensitivity, and specificity),
receiver operating characteristic (ROC) curves (true-positive versus
false-positive rates), and the distributions of the area under the
ROC curve. The algorithm is presented in detail in SI Appendix,
Materials and Methods. One can see a quite narrow distribution of
area under the ROC curve (AUC), i.e., virtually independent
of a particular split and the split percentage (Fig. 2).
Fig. 2 demonstrates the strategy described above for an ex-

ample of the Random Forest model. First, we built the ranking
of the surface parameters by their segregation power (“impor-
tance” with respect to Gini-index measure) for the cell images
obtained in height and adhesion channels. Fig. 2 A and B shows
an example of the ranking for the best surface parameters. (The
ranking of all parameters for this and two other models are
presented in SI Appendix, Fig. S7.) It is calculation intensive and
not optimal to consider all parameters for classification. To reduce
dimensionality of the parameter space, we kept Np best parame-
ters for each channel (height and adhesion), which were identified
by (i) their highest segregation power and (ii) low interparameter
correlation (to exclude the parameters that were correlated with
the others, see SI Appendix, Supplementary test, section 1 for detail).
By changing the degree of allowable correlation while keeping

Fig. 2. An example of Random Forest method for the case of one and five cell analyses. One thousand randomly chosen split for training and testing datasets
were used. The most important parameters for segregation between noncancer and cancer patients are identified (using Gini index) for (A) height, (B)
adhesion; the averaged value and one SD of the parameters are shown (see SI Appendix, Materials and Methods for the description of image parameters).
The dependence of accuracy of cancer detection on the number of surface parameters and percentage split between training and testing sets (70–30%,
60–40%, 50–50%; average and one SD) are presented for (C) one-cell and (F) five-cell analysis. (D and G) One thousand ROC curves, (E and H) Statistical
distributions of AUC for (D and E) one-cell, and (G and H) five-cell analysis. One can see high repeatability (robustness) of the classification accuracy of
the method. The average accuracy of cancer detection is 80% (for one-cell) and 90+% (five-cell analysis). The results of accuracy and ROC are obtained using
the adhesion channel.
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the parameters with the highest segregation power, we can find
the behavior of one of the key statistical parameters, accuracy
(defined as the ratio of the total number of correct assessments
to the total number of all assessments).
The accuracy and ROC results in Fig. 2 are shown for the ad-

hesion channel only. The height channel produced almost no useful
information (Table 1), which is in agreement with the previous study
of the fractal dimension (23) and linked to lower resolution of the
images collected in the height channel. It is sufficient to keep the
number of the surface parameters 8–10 to obtain high accuracy, Fig.
2C. Hereafter, we considered 10 top parameters. Interestingly, the
accuracy decreased by taking into account more surface parameters.
This is presumably because the parameters with lower segregation
power bring more noise than signal. Fig. 2C demonstrates ∼80%
accuracy in identification of both cancer and noncancer patients
based on the analysis of just one single cell. This result is statistically
robust (small SD) and independent of the percent split between
training and testing sets (70/30, 60/40, 50/50 are shown in Fig. 2C).
Another important statistical characteristic is the ROC curve

(curves that show sensitivity and specificity defined for different
thresholds separating cancer and noncancer cases). The classi-
fication accuracy is higher when the AUC curves are closer to 1.
Such curves and histograms of the AUC are shown in Fig. 2 D
and E. Each ROC curve was calculated for a specific random
split between training and testing subsets (generated as explained
before). The variations of these curves are rather narrow, which
means that the prediction accuracies do not depend on a specific
choice of training versus testing sets.
To validate our method and demonstrate the absence of any

overtraining artifacts, we also use the following additional approach.
We use the same algorithms and the same dataset as described
above but with artificially randomized diagnosis (50/50% cancer
and normal). If our approach lacks artifacts of training, one should
see generating of diagnostic algorithms with no classification power,
i.e., close to 50% accuracy (or the AUC is 0.5). One can see that the
accuracy of the method indeed dropped to ubiquitous 53 ± 10% (the
result of 1,000 random choices of diagnosis sets, SI Appendix, Fig.
S6), thereby confirming the absence of classification artifacts, i.e.,
the described classification shown in Fig. 2 is factual. To amplify,
these results demonstrate the robustness of the models and the
absence of overfitting, which is a common problem for many
machine-learning methods dealing with multiple parameters.
So far, the presented cancer classification was described for

single cells. Obviously, the diagnosis based on just one cell cannot

be robust because of the possibility of sampling error. Further-
more, not all cells collected from urine are derived from the
bladder (urothelial cells). It is known that a number of cells
collected in VUC can be exfoliated from elsewhere in the urinary
tract (26, 31). Albeit possible, it would be highly speculative to
expect that field carcinogenesis is expanded to the entire urine
tract. To overcome these pitfalls, we consider more than one cell
to establish diagnosis. Simple probabilistic reasoning shows that
such an approach can result in very high accuracy (see SI Ap-
pendix, Materials and Methods, section 2, for detail).
There are multiple ways to extend the algorithm of cancer/

no-cancer diagnosis to the case of using N cells. Here we use the
following algorithm: if at least M cells out of N (M ≤N) are
identified as cells coming from a cancer patient, then the patient is
diagnosed with cancer. Fig. 2 F–H shows the statistical analysis
similar to that described in the case of 1 cell (N = M = 1) but for
an example of N = 5,M = 2. One can see a similar robustness and
94 ± 1% for the accuracy of identification of both cancer and
noncancer individuals. The randomization test described above
shows 50 ± 22% for the AUCs (the result of 1,000 random choices
of diagnosis sets). The higher SD compared with N = M = 1 case
(±10%) is explained by a higher tolerance of the error in the
described N, M method to both presence or absence of cancer
cells; see the previous paragraph.
Table 1 shows examples of the statistical results for several

best cases of detection of cancer and no-cancer patients for all
three machine-learning methods and both channels (see SI Ap-
pendix, Tables S2 and S3 for the statistics of all N, M for N ≤ 5).
This table also shows sensitivity (accuracy of detection of cancer)
and specificity (accuracy of diagnosis of the absence of cancer).
In contrast with the accuracy, sensitivity and specificity are inter-
connected, and cannot be maximized separately. Here we present
two examples of sensitivity/specificity pairs defined for the differ-
ent points on the ROC curves. One example shows higher speci-
ficity while the other one higher sensitivity.

Discussion
Here we present a method of diagnostic imaging exemplified by
the detection of bladder cancer. The method is based on the
utilization of unique information, physical nanoscale images of
the surface of cells extracted from body fluids, urine in the case
of bladder cancer. Other techniques that could provide similar in-
formation are unknown. Current biomarker methods are not cell-
based. The spectroscopic optical methods (Raman, partial wave,

Table 1. Statistics of diagnosis of cancer for an individual by considering N cells and requesting
that M cells out of the considered N (M≤N) were classified as collected from a cancer patient to
put diagnosis of cancer

No. of cells Data

Random forest
Extremely randomized

forest Gradient boosting trees

AUC/accuracy Sens/spec AUC/accuracy Sens/spec AUC/accuracy Sens/spec

N = 1 Height 75/73 50/84 76/69 77/74 53/84 77/70 74/73 46/86 75/68
M = 1 Adh. 88/83 68/90 84/77 88/83 69/90 85/78 87/82 69/89 84/77

N = 3 Height 75/82 36/95 75/68 78/82 42/94 77/69 73/81 34/96 73/66
M = 2 Adh. 91/90 73/96 87/80 90/90 72/96 87/80 89/90 69/96 85/78

N = 5 Height 69/86 34/97 72/61 70/86 39/96 76/64 68/86 36/97 70/61
M = 2 Adh. 91/94 81/98 91/82 90/94 78/97 89/80 91/94 78/98 88/80

Sensitivity and specificity, averaged AUC, and accuracy were calculated for 1,000 random splits of the entire
data onto training and versification sets (70% training and 30% verification split) for all three methods. The
accuracy is found for the smallest error of classification. Sensitivity and specificity are given for that case (the left
column of Sens/spec part of the table); the right column of Sens/Spec part is another example demonstrating
higher sensitivity (the threshold to separate cancer from noncancer cases was chosen to keep the difference
between sensitivity and specificity <5%).
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infrared, fluorescent) are based on the properties of the entire cell,
not its surface. The described method is likely to synergistically
enhance the cancer detection when combined with the other
methods because our imaging method uses physical properties
of the cell surface.
The presented method demonstrates an accuracy of 94%

(examples of sensitivity/specificity pairs are 81/98% and 91/82%;
see Table 1 for detail). Using the most general statistical clas-
sification parameter, the AUC, one can statistically compare our
method (AUC = 0.92 ± 0.09) with the invasive, currently used
clinical standard, cystoscopy (AUC = 0.77, ref. 32; it is also in
agreement with ref. 33). Using one-way ANOVA, one can see
that improvement is statistically significant with the P value <
0.05 even with the present number of tested individuals. Com-
paring to the clinically used VUC, our method demonstrates
higher sensitivity, whereas the specificity is comparable to the
best reported results (sensitivity/specificity 20–80/>90% of VUC
versus, e.g., 81/98% of our method). Furthermore, it is expected
that our method will be free of subjective judgment, i.e., such as
inter- and intraobserver variability, which is a serious problem of
the VUC method (12, 13). The accuracy of our method is already
better than that of currently used noninvasive methods such as
biochemical evaluation of the urine (NMP22, sensitivity/speci-
ficity 40–74/74–99%, BTA, 66–70/65–75%) or cellular analysis
(FISH, 67–87/72–96%) (14, 15, 34) immunocytochemistry (77–
91/68–83%), etc. (34).
Our method has the potential for seamless incorporation into

existing clinical practice as it uses the cells collected from urine
in a manner similar to VUC. Being one of the oldest noninvasive
methods, VUC has several fundamental limitations: a relatively
low resolution of optical examination, the need in subjective
evaluation of cell images, a small number of cells available from
urine of normal and cancer patients with low-grade tumors. Our
method overcomes these limitations with the help of high-resolution
AFM and computer-supported machine-learning methods of data
analysis to improve the accuracy of detection of bladder cancer and
to make a determination that is independent of subjective judg-
ment. Furthermore, our method requires only a small number of
randomly chosen cells to do the AFM imaging and analysis. This is
a substantial departure from traditional VUC, in which a large
number of cells must be screened to find only a few cells that may
look malignant. Our approach is based on the premises of field
carcinogenesis, which has been established as a common event in
many malignancies, in particular, in bladder cancer, in which both
genetic and exogenous milieu risk factors lead not only to a local-
ized tumor but may affect the entire organ area (35–37). In such an
approach, the majority of cells collected from a cancer patient
should carry a degree of the physical signature of cancer. Our re-
sults provide evidence that the described method is sufficiently
sensitive to detect this cancer signature.

Fundamentally, the observed cancer signature presumably
comes from the specific cellular glycocalyx and extracellular
matrix of malignant cells (20, 38), glycosaccharides, and glyco-
proteins of the pericellular glycocalyx. The images show the
nonspecific adhesion between the AFM probe and the cell sur-
face, which is covered with glycocalyx. This is principally different
compared with the previously used AFM methods to segregate
cancer cells, which were based on the observed difference in the
elastic properties of cells (19), not on the imaging the adhesive
properties of cell surface. Furthermore, the previous works were
based on the point indentation, in which one number (the mod-
ulus value) was assigned to the entire cell. The imaging of the
adhesion between the AFM probe and cell surface is key to
identify cancer in our method. The most important parameters
(Fig. 2B) to segregate between cancer and normal cases describe
the distribution of the adhesion over the cell surface, rather than
the overall value of the adhesion. The mechanisms controlling for
self-assembly of particular spatial distribution of glycocalyx on
cells are currently unknown.
It should be noted that despite the 30-y old history of AFM,

this is the only microscopy that has not been used for the medical
purposes as of yet. As we have shown, the accuracy of our AFM
method is higher than that of currently used clinical standard,
cytoscopy, and the currently used noninvasive methods such as
VUC and biochemical evaluation. Thus, our method may result
in a possible first clinical application of AFM. Clearly, additional
larger cohorts of patients will need to be tested to confirm our
results before this method can be introduced into clinical prac-
tice. When introduced, it will help facilitate screening, reduce
overdiagnosis [currently a substantial problem (39)], and conse-
quently, the number of unnecessary and costly medical proce-
dures. We anticipate that the use of the described AFM modality
can also be applied to improve the detection, diagnosis, and
follow-up for other tumor types in which cytology is used to aid
in diagnosis and surveillance (e.g., upper urinary tract, urethra,
colorectal and other gastrointestinal, cervical, aerodigestive
cancers, etc.), including cancer grades. The described approach
can be extended to detect other cancers and other none-malignant
cell abnormalities as well as to the detection of cell reaction to
various drugs (“nanopharmacology”). Therefore, we expect the
described method may be a new direction of biomedical imaging.
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