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Multiple-input and multiple-output (MIMO) technology is one of the latest technologies to enhance the capacity of the channel as
well as the service quality of the communication system. By using theMIMO technology at the physical layer, the estimation of the
data and the channel is performed based on the principle of maximum likelihood. For this purpose, the continuous and discrete
fuzzy logic-empowered opposite learning-based mutant particle swarm optimization (FL-OLMPSO) algorithm is used over the
Rayleigh fading channel in three levels. 'e data and the channel populations are prepared during the first level of the algorithm,
while the channel parameters are estimated in the second level of the algorithm by using the continuous FL-OLMPSO. After
determining the channel parameters, the transmitted symbols are evaluated in the 3rd level of the algorithm by using the channel
parameters along with the discrete FL-OLMPSO. To enhance the convergence rate of the FL-OLMPSO algorithm, the velocity
factor is updated using fuzzy logic. In this article, two variants, FL-total OLMPSO (FL-TOLMPSO) and FL-partial OLMPSO (FL-
POLMPSO) of FL-OLMPSO, are proposed. 'e simulation results of proposed techniques show desirable results regarding
MMCE, MMSE, and BER as compared to conventional opposite learning mutant PSO (TOLMPSO and POLMPSO) techniques.

1. Introduction

In the field of communication systems, the wireless com-
munication branch is rapidly growing, and fast technology
developments are needed to meet the requirement. Wireless
communication uses wireless channels instead of wireline
channels. 'e rapid growth of the wireless communication
system needs technological advances. Wireless connection
provides a variety of services ranging from voice to data and
multimedia. Due to the physical properties of the channel,
the signal is affected, and unwanted effects occur in wireless
communication. Interaction of wireless signals with the
environment is very complex. Some problems happen on the
channel between the transmitter and receiver because of
large objects, diffraction of the electromagnetic waves
around obstructing objects, and also signal scattering. Due to

these interactions, the signal arriving at the receiver copes
with different attenuation, distortion, delays, and phase shift.
'e inference of these multipaths may be constructive or
destructive. 'e signal power can be slightly diminished
when the destructive interface occurs.

It is essential for optimum performance of wireless
communication systems to provide accurate channel state
information (CSI) for coherent detection of the signal
received at the receiver end. A noncoherent method dif-
ferential demodulation technique is used for de-
modulation and detection of the transmitted signal when
CSI is not available at the receiver. 'e deployment of the
noncoherent method costs about 3-4 dB loss in SNR as
compared with the coherent detection method. Due to
such massive loss by the noncoherent detection method,
research directed toward coherent detection for providing
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CSI at the receiver in wireless communication systems
[1, 2].

Multiuser detection (MUD) as the receiver technology
uses compressive sensing (CS) for the detection of inferring
signals. If most of the devices are not in the active state,
then the transmitting signal vector because of a large
number of nonzero elements has a sparse property. Hence,
decoding of the transmitted signal would become a com-
pressive signal problem. For a system that has a small
number of high activity users, the long-term evolution is
more suitable [2, 3].

In modern communication systems, the primary issue is
to enhance the channel capacity of the system without af-
fecting the service quality of the system. 'e multiple-input
and multiple-output (MIMO) method is found to be ef-
fective in enhancing the data rates and resolving the issue of
the channel capacity [1, 4–6]. In this method, algorithms are
used to estimate the signals at both the sender and the
receiver ends of the antennas [7], due to which the data rates
increase as well as the bandwidth of the channel capacity
[8–11]. Few transmitter antennas and beneficiary radio wires
are utilized in this technique to enhance the correspondence
technique of the system. 'e transmit information is cal-
culated on various transmission paths depending on the
amount of data conveyed by the MIMO framework in-
crements [12].

On the receiving end, some antennas collect the in-
formation received, and different calculations are performed
to reassemble the information and reestablish the data at the
receiver’s end accordingly. Due to the increment in the range
and the amount of the information without any additional
transmitting power or the data transfer capacity, the MIMO
innovation is considered as the midpoint for remote com-
munication [13, 14].

'e medium MIMO innovation technique can also be
utilized along with multicarrier code-division multiple ac-
cess (MC-CDMA) and orthogonal frequency-division
multiplexing (OFDM) to enhance the significant volume
growth for numerous correspondences [7–9].

'e maximum likelihood (ML) method is one of the
optimal detectors in MUD, but ML is complicated to use it
for achievement of exponential complexity. In a less-
complicated situation, the suboptimal MUD detectors like
the zero-forcing or null-steering detector, minimum mean
square error (MMSE) detector in M2M, and maximum a
posteriori or marginal likelihood detectors are used. 'e
primary concern of the multiuser detection is based on the
knowledge of strategies to demodulate the data sent si-
multaneously by several servers to share a multiaccess
channel. 'e last two suboptimal approaches use matrix
inversion and also are very simple. Some evolutionary al-
gorithms like repeated weighted boosting search (RBS),
fuzzy adaptive differential evolution (FADE), and differ-
ential evolution algorithms (DEAs) are helpful for channel
estimation (CE) and multiuser detection [6]. For the CE
problem, the continuous search space is used, and for
multiuser detection, the discrete search space is used, and for
improvement of the spectral efficiency multiuser-MIMO
(MU-MIMO), broadcasting approaches are mostly used

[10, 13]. At the transmitter because of course knowledge of
channel state information, the quality of transmitting pre-
coding to dominate the multiuser inference degraded [10].
'erefore, the system throughput may get affected by the
interface from coscheduled user equipment.

'e alternate emerging numerous strategies like particle
swarm optimization (PSO) [15], partial opposite mutant
particle swarm optimization (POMPSO), total opposite
mutant particle swarm optimization (TOMPSO) [7, 9, 10],
genetic algorithm (GA), island GA, differential equation
(DE), and island DE can be used to further enhance the
performance of the digital communication system [15]. In
this article, we performed the channel estimation for high
data rates in correspondence to both the sender and the
receiver ends. As some distortion adds up to the signal
during communication through the channel, the signal
strength weakens and the receiver end might not be able to
collect the accurate information. To overcome this issue,
fuzzy logic is implemented to improve the data and channel
estimation process [9, 10]. In this article, fuzzy logic
empowered the opposite particle swarm optimization-based
new variant for the communication system and imple-
mented it using the PSO technique.

In this research work, we consider the MIMO system
that consists of different numbers of users. It also assumed
that the channel is flat fading and cyclostationary. 'e main
contributions of the paper are listed as follows:

(a) We formulate an optimization problem in which the
objective is to minimize the MMSE and BER.

(b) A fuzzy logic-empowered opposite learning-based
mutant particle swarm optimization (FL-OLMPSO)
algorithm has been proposed for the estimation of
the user data and the channel coefficients.

(c) We compare our proposed method with other
studied algorithms like TOMPSO and POMPSO in
the literature. Simulation results show that the
proposed algorithms give attractive results as com-
pared to different algorithms.

'e rest of the paper is organized as follows: the MIMO
system model is explained in Section 2. 'e FL-OLMPSO-
based optimization problem is formulated in Section 3.
Section 4 presents the simulation results and discussion.
Finally, the research work is concluded in Section 5.

2. System Model

'ere are A transmitting antennas and B receiving antennas.
'e flat fading channel is implemented. 'e channel is
expected to be stationary during the communication process
of Q symbols. 'e received signal at the receiver antenna b is
as follows [1]:

rb(i) � 􏽘
A

a�1
hb.ada(i) + vb(i), (1)

where i is the index of the symbol, hb.a is the flat fading
channel coefficient that links the transfer antenna a to the
receiver antenna b, da(i) is the ith symbol transmitted from
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the antenna a taking value from the symbol set {−1,+1} of
binary phase shift key (BPSK), and vb(i) is the additive white
Gaussian noise (AWGN) with E[|vb(i)|2] � 2σ2V.

'e following MIMO channel equation will represent
the complete system:

r(i) � Hd(i) + v(i), (2)

where v(i) represents AWGN:

v(i) � v1(i) v2(i) . . . vB(i)􏼂 􏼃
T
. (3)

'e transmitted symbol vector is

d(i) � d1(i) d2(i) . . . dA(i)􏼂 􏼃
T
, (4)

and the received signal vector is

r(i) � r1(i) r2(i) . . . rB(i)􏼂 􏼃
T
. (5)

'e channel gain at the receiver antenna can always be
normalized to unity:

􏽘

A

a�1
hb,a

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 1, (6)

where H(b, a) � hb.a.
Now define a received data matrix with B × V di-

mensions and transmitted data matrix with A ∗ V di-
mensions as follows [1]:

R � [r(1) r(2) . . . r(Q)], (7)

D � [d(1) d(2) . . . d(Q)], (8)

respectively. 'en, the PDF of the received signal matrix R
conditioned on the MIMO channel matrix H and the
transmitted data matrix D can be written as follows:

Prob
R

H,D
􏼠 􏼡 �

1
2πσ2vBQ

e
− 1/2σ2v( ) 􏽘

Q

i�1
||r(n)−Hd(i)||

2
. (9)

'eML estimation of the transmitted symbolsD and the
MIMO channel matrix H can be obtained by maximizing
Prob(R/(H,D)) over H and D mutually. Equally, the joint
ML estimation can be obtained by minimizing the following
cost function:

JML( 􏽥D, 􏽥H) �
1

B x Q
􏽘

Q

i�1
||r(i)− 􏽥H􏽥d(i)||2. (10)

Namely, the joint ML CDE is obtained as follows:

JML( 􏽥D, 􏽥H) � arg min
􏽥S,􏽥H

JML( 􏽥D, 􏽥H)􏼨 􏼩. (11)

Equation (10) demonstrates that the search for the op-
timal joint ML solution is over the discrete space of the
transmitted symbols and the continuous space of the MIMO
channel matrix mutually.

2.1. ImprovedCost Function. Equation (10) can be written as
follows:

JML( 􏽥D, 􏽥H)

�
1

B∗Q
􏽘

Q

i�1
r2(i)− 2􏽘

Q

i�1
r(i) 􏽥H􏽥d(i) + 􏽘

Q

i�1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽥H􏽥d(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
⎡⎣ ⎤⎦

�
1

B∗Q
􏽘

Q

i�1
r2(i)− 2􏽘

Q

i�1
r(i) 􏽥H􏽥d(i) + 􏽘

Q

i�1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽥H􏽥d(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦,

(12)

where B represents the receiver antennas and Q symbols are
transmitted. It is also shown that H and D accrue in second
and third terms. 'en, we let

CML( 􏽥D, 􏽥H) � 2􏽘

Q

i�1
r(i) 􏽥H􏽥d(n)− 􏽘

Q

i�1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽥H�d(i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2
. (13)

Substituting the values from equation (13) in equation
(12), we get

JML( 􏽥D, 􏽥H) �
1

B x Q
􏽘

Q

i�1
r2(i)−CML( 􏽥D, 􏽥H)⎡⎣ ⎤⎦. (14)

Equation (12) can be written as follows:

JML( 􏽥D, 􏽥H) � min
􏽥D, �H

􏽘

Q

i�1
r2(i)−CML( 􏽥D, 􏽥H)⎡⎣ ⎤⎦⎡⎣ ⎤⎦. (15)

It means the joint ML CDE can be written as follows:

JML( 􏽥D, 􏽥H) � max
􏽥􏽥D,

�􏽥H

CML( 􏽥D, 􏽥H).
(16)

In this article, we have consigned fuzzy logic-empowered
opposite learning mutant particle swarm optimization (FL-
OLMPSO) for the joint channel and symbol estimation for
the MIMO system. We have used three-layered methods. At
one layer, a continuous version of FL-OLMPSO was exploited,
and at the next layer, a soft version of discrete FL-OLMPSOwas
applied as shown in Table 1. FL-OLMPSO is the updated
version of theOLMPSOalgorithms proposed byKhan et al. [10].

'e accumulative function (15) is considered as fitness
function of the MIMO system and is used to compute the
performance of the proposed algorithm as shown in Table 1.

3. Proposed Fuzzy Logic-Empowered Opposite
Learning Mutant Particle Swarm
Optimization (FL-OLMPSO)

Fuzzy logic-based opposite mutant PSO is used in which
velocity of the particle is updated using the fuzzy logic
controller taking two inputs: local intelligence and global
intelligence, on the bases of these input parameters and giving
the updated velocity of the particle as shown in Tables 1–3.

Mathematically and graphically I/O variables member-
ship functions (MFs) which are used in updating the velocity
of the swarm given in the proposed FL-OLMPSO are shown
in Table 2.

'e fuzzy system consists of four core components. 'ey
are fuzzy prepositions, lookup table, inference engine, and
defuzzifier as shown in the following sections.
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Sections 3.1 to 3.4 describe how we update the velocity
using the fuzzy logic system in detail.

3.1. FuzzyPrepositions. A fuzzy compound proposition is an
alignment of minute fuzzy propositions using the connec-
tives “or,” “and,” and “not” which represent the fuzzy union,
intersections, and complement, respectively. Here, l, g, pv,
and Uv variables represent local intelligence, global in-
telligence, previous velocity, and updated velocity. 'en, the
following fuzzy propositions hold:

t : l × g × pv⟶ Uv. (17)

All input and output variable values are mapped from
real ranges to probability ranges because the fuzzy expert
system works on probability (range 0-1).

Here, the function t-norm for the final layer in equation
(17) is defined as follows:

t : [0, 1] ×[0, 1] ×[0, 1]⟶ [0, 1]. (18)

Equation (18) transforms the membership functions of
fuzzy sets of local intelligence, global intelligence, previous

Table 1: Proposed fuzzy logic-empowered opposite learning mutant particle swarm optimization (FL-OLMPSO) algorithm.

S. no. Steps
Level 1
1 Start
2 2.1. Initialization of data populaces Dp � { Dp1, Dp2, ..................Dpa} and velocity Wd

2.2. Initialization of channel populaces Dk � { Dk1, Dk2, ..................Dka} and velocity Wk
3 Compute the wellness of population utilizing the cost work given in (14)
4 Compute lower bound value (MBp, MBi) and upper bound value (HBp, HBi) from Dp and Dk separately

Calculate the opposite populace

5

For FL-TOLMPSO For FL-POLMPSO
5.1. Opposite data population 5.1. Opposite data population

ODp � {ODp1, ODp2, ..................ODpa} ODp � {ODp1, ODp2, ..................ODpa/2}
ODpi � {ODpi,1, ODpi,2, .................. ODpi,M} ODpi � {ODpi,1, ODpi,2, .................. ODpi,M}

ODpi,j � MBp + HBa − Dpi,j ODpi,j � MBp + HBa − Dpi,j
5.2. Opposite channel population 5.2. Opposite channel population

ODk � {ODk1,ODk2, ..................ODka} ODk � {ODk1,ODk2, ..................ODka/2}
ODki � {ODki,1, ODki,2, .................. ODki,M} ODki � {ODki,1, ODki,2, .................. ODki,M}

ODki,j � MBi + HBi − Dki,j ODki,j � MB + HBi − Dki,j
6 Compute the fitness of both opposite populations (ODp andODk) using the cost function given in equation (16)

7
Select the local best particle of the following:
7.1. Data population Mbdp from Dp and ODp

7.2. Channel population Lbdk from Dk and ODk

8
Select the global best particle of the following:

8.1. Data population Nbdp � min(Mbdp)
8.2. Channel population Nbdp � min(Lbdp)

Level 2: global best data vector is fixed and continuous FL-OLMPSO algorithm works on the channel population

9 Update velocities of each particle of channel population using FIS:
Whim(n) � Whim(n−1) + FLC (LI, GI, Whim(n−1))

10

Update the position of each particle channel population
Calculate the mutant operator (MO)

Moh(i) � 􏽐
k
j�1(whij/k)

Dkim(n) � Dkim(n−1) + Moh(i) ∗ rand()
11 Compute the fitness of mutated particles of channel population using equation (16)
12 Update the channel population Dk

13 If (number of cycles > required NoC) go to step 14
Else go to step 9

Level 3: in this level, the discrete FL-OLMPSO algorithm is used for estimating the data symbols

14 'e global best particle of the data population is chosen and update the velocity:
Whim(n) � FLC (LI, GI, Whim(n−1))

15

Update position of each particle of data population
Compute the mutant operator (MO)

Mod(i) � 􏽐
k
j�1Wdij/k

Dpim(n) � Dpim(n−1) + Mod(i) ∗ rand()
16 Compute the fitness of particles of data population using (16)
17 Update the data population Dp

18 If (number of cycles > required NoC) go to step 20
Else go to step 14

Level 4: next sample of the received signal is taken and execution goes to level 2
19 Stop
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velocity, and updated velocity for a final layer of the pro-
posed fuzzy inference system among membership functions
of the intersection of local intelligence, global intelligence,
previous velocity, and updated velocity, that is,

t μL(l), μG(g), μPv
Pv( 􏼁􏽨 􏽩 � min μL(l), μG(g), μPv

pv( 􏼁􏽨 􏽩 .

(19)

In equation (19), for the function t to get qualified as an
intersection, the following axioms must be satisfied and the
function will be called as t-norm:

Axiom t1. Bounded condition:

t(0, 0) � 0; t(Ω, 1) � t(1,Ω) � Ω. (20)

Table 2: I/O variables membership functions used in the proposed FL-OLMPSO.

S. no. Input variables Mathematical representation of membership functions (MFs) Graphical representation of MFs

1 LocalInt
((μlocalint(l))

μlocalint,small(l) �
(0.35− l)/0.35, 0≤ l≤ 0.35
0, else􏼨 􏼩

μlocalint,medium(l) �
(l/0.35), 0≤ l≤ 0.35
(0.65− l)/0.3, 0.35≤ l≤ 0.65􏼨 􏼩

μlocalint,large(l) �
(l− 0.35)/0.35, 0.35≤ l≤ 0.65
(1− l)/0.35, 0.65≤ l≤ 1􏼨 􏼩

μlocalint,v.large(l) �
(l− 0.65)/0.35, 0.65≤ l≤ 1
0, else􏼨 􏼩

1

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input variable "local intelligence"

Small Medium Large V. large

2 GlobalInt
(μglobalInt(G))

μglobalint,small(G) �
(0.35−g)/0.35, 0≤g≤ 0.35
0, else􏼨 􏼩

μglobalint,medium(G) �
g/0.35, 0≤g≤ 0.35
(0.65−g)/0.3, 0.35≤g≤ 0.65􏼨 􏼩

μglobalint,large(G) �
(0.35−g)/0.35, 0≤g≤ 0.35
0, else􏼨 􏼩

μglobalint,v.large(G) �
g/0.35, 0≤ g≤ 0.35
(0.65− g)/0.3, 0.35≤g≤ 0.65􏼨 􏼩 Input variable "global intelligence"

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.5

0

Small Medium Large V. large

3 Prevelocity
(μprevelocity(PV))

μprevelocity,v.slow(PV) �
(0.5−pv)/0.5, 0≤pv≤ 0.5
0, else􏼨 􏼩

μprevelocity,slow(PV) �
pv/0.25, 0≤pv≤ 0.25
(1−pv)/0.75, 0.25≤pv≤ 1􏼨 􏼩

μprevelocity,medium(PV) �
(pv− 1)/0.75, 0.25≤pv≤ 1
(1.5−pv)/0.5, 1≤pv≤ 1.5􏼨 􏼩

μprevelocity,fast(PV) �
(pv− 1.5)/0.5, 1≤pv≤ 1.5
(2−pv)/0.5, 1.5≤pv≤ 2􏼨 􏼩

μprevelocity,v.fast(PV) �
(pv− 2)/0.5, 1.5≤pv≤ 2
0. else􏼨 􏼩

1

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V. slow Slow Medium Fast V. fast

Input variable "previous velocity"

4 Output, UV
(μoutput,UV(UV))

μUV,v.slow(UV) �
uv/0.2, 0≤ uv≤ 0.1
(0.4− uv)/0.2, 0.1≤ uv≤ 0.2􏼨 􏼩

μUV,slow(UV) �
(uv− 0.3)/0.2, 0.1≤ uv≤ 0.25
(0.5− uv)/0.2, 0.25≤ uv≤ 0.4􏼨 􏼩

μUV,medium(UV) �
(uv− 0.8)/0.2, 0.3≤ uv≤ 0.45
(1− uv)/0.2, 0.45≤ uv≤ 0.6􏼨 􏼩

μUV,fast(UV) �
(uv− 0.8)/0.2, 0.5≤ uv≤ 0.65
(1− uv)/0.2, 0.65≤ uv≤ 0.8􏼨 􏼩

μUV,v.fast(UV) �
(uv− 0.8)/0.2, 0.7≤ uv≤ 0.85
(1− uv)/0.2, 0.85≤ uv≤ 1􏼨 􏼩

V. slow Slow Medium Fast V. fast
1

0.5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Output variable "updated velocity"
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Axiom t2. Commutativity:

t(Υ, Γ) � t(Γ, Υ). (21)

Axiom t3. Nondecreasing:

if Υ≤Υ′ and Γ ≤ Γ′, then t(Υ, Γ)≤ t Υ′, Γ′( 􏼁. (22)

Axiom t4. Associativity:

t[t(Ω,Υ), Γ] � t[Ω, t(Υ, Γ)]. (23)

Equation (19) can be written regarding t-norm as
follows:

μL∩G∩Pv l, g, pv( 􏼁 � t μL(l), μG(g), μPv
pv( 􏼁􏽨 􏽩. (24)

From equations (19) and (24),

μL∩G∩Pv l, g, pv( 􏼁 � min μL(l), μG(g), μPv
pv( 􏼁􏽨 􏽩. (25)

3.2. Lookup Table. 'e lookup table for the proposed FL-
OLMPSO contains 10 input-output rules from 80 as shown
in Table 3.

Fuzzy IF-THEN rules are the conditional statement
applied to the membership functions. 'ese rules are ele-
ments of the fuzzy rule base. Others components like the
rules surface and rules viewer are dependent upon the fuzzy
rule base, so the fuzzy rule base is a major element of FIS.'e
fuzzy rule base of our expert system has 80 rules. Rules are
denoted by Rvη,where 1≤ η≤ 80.

Rv1 � IF local intelligence is small AND global in-
telligence is small AND previous velocity is very slow,
THEN updated velocity is very slow
Rv2 � IF local intelligence is medium AND global
intelligence is small AND previous velocity is slow,
THEN updated velocity is slow
Rv3 � IF local intelligence is medium AND global
intelligence is medium AND previous velocity is slow,
THEN updated velocity is medium
Rv80 � IF local intelligence is large AND global in-
telligence is large AND previous velocity is fast, THEN
updated velocity is very fast

3.3. Inference Engine. Fuzzy inference is the way toward
mapping from an offered contribution to a yield utilizing fuzzy
logic. 'e main component of fuzzy inference is MFs, FL
operators, and IF-THEN rules. A single fuzzy relation is created
by all rules in the fuzzy rule base. It lies under the inner product
on the input which can be seen as an only fuzzy IF-THEN rule.

All rules in the fuzzy rule base are combined into a single
fuzzy relation that lies under the inner product on input
universes of discourse, which is then viewed as an only fuzzy
IF-THEN rule.

Let Rvη be a fuzzy relation that represents the fuzzy IF-
THEN rule of the final layer of the proposed FL-OLMPSO
expert system, which is

Rv
η

� L
η

× G
η

× P
η
v⟶ U

η
v . (26)

Equation (26) can be written as follows:

μL∩G∩Pv l, g, pv( 􏼁 � μL(l)∩ μG(g)∩ μPv
pv( 􏼁􏽨 􏽩. (27)

'e rules of the final layer are interpreted as a single
fuzzy relation defined by

R80 �∪80
η�1

Rv
η
. (28)

'is combination of rules is called the Mamdani combi-
nation. Assume i andΨ be any two fuzzy sets and also the input
and output of the fuzzy inference engine, respectively. To view
R80 as a single fuzzy IF-THEN rule by using the comprehensive
modus ponens, we obtain the output of the FIE as follows:

μvery slow∩slow∩medium∩fast∩very fast(Ψ)

� supi∈ L,G,Pv( )t μi l, g, pv( 􏼁, μR80
l, g, pv, UV( 􏼁􏽨 􏽩.

(29)

'e product inference engine (PIE) of the proposed FL-
OLMPSO expert system can be written as follows:

μξ updated velocity

� max
1≤η≤80

􏼢supi∈ L,G,Pv( )􏼠 􏽙

80

j�1
􏼠μL,G,Pv

L, G, Pv( 􏼁,

· μA1iA2i ,A3i
a1, a2, a3( 􏼁􏼡􏼡􏼣.

(30)

3.4. Defuzzifier. One of the most essential components of an
expert system is the defuzzifier. It carries out the process of
mapping the fuzzy sent to the crisp output. 'ere are three
types of the defuzzifier: center of gravity (CoG) defuzzifier,
center of average defuzzifier, and maximum defuzzifier.
From these, the best defuzzifier is the “center of gravity
defuzzifier.” In the proposed FL-OLMPSO-based system, the
CoG defuzzifier is used. 'e CoG defuzzifier specifies ₤∗ as
the center of the area covered by the MF of Ψ, that is,

₤∗ �
􏽒ξ μξ (ξ )dξ
􏽒μξ (ξ )dξ

. (31)

'e graphical representation of the defuzzifier of the
proposed FL-OLMPSO-based system is shown in Figures 1–3.
Figure 1 shows that if local intelligence is small tomedium and

Table 3: Lookup table for the proposed FL-OLMPSO.

Rules Local
intelligence

Global
intelligence

Previous
velocity

Updated
velocity

1 Small Small Very slow Very slow
2 Small Small Slow Slow
3 Small Small Medium Slow
4 Medium Small Slow Slow
5 Medium Medium Medium Medium
6 Medium Small Medium Medium
7 Medium Medium Very fast Fast
8 Large Large Medium Fast
9 Very large Large Very fast Very fast
10 Very large Very large Very fast Very fast
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global intelligence is small, then updated velocity is very slow.
If local intelligence is small to medium and global intelligence
is small, then updated velocity is slow. If local intelligence is
between medium and large and global intelligence is medium,
then updated velocity is slow tomedium. If local intelligence is
large and global intelligence is medium to large, then updated
velocity is fast. If local intelligence is very large and global
intelligence is very large, then updated velocity is very fast.

Figure 2 shows that if local intelligence is slow to me-
dium and previous velocity is very slow to slow, then
updated velocity is very slow. If local intelligence is large to
very large and previous velocity is slow to medium, then
updated velocity is slow. If local intelligence is medium to
large and previous velocity is medium, then updated velocity
is medium. If local intelligence is medium and previous
velocity is medium to fast, then updated velocity is fast.
If local intelligence is large to very large and previous ve-
locity is breakneck, then updated velocity is very fast.

If global intelligence is medium to large and previous
velocity is very slow, then updated velocity is very slow. If
global intelligence is medium and previous velocity is slow,
then updated velocity is slow. If global intelligence is be-
tween medium and above and previous velocity is medium
to fast, then updated velocity is medium. If global in-
telligence is large and updated velocity is fast to very fast,
then updated velocity is fast. If global intelligence is large to
very large and previous velocity is very fast, then updated
velocity is very fast as shown in Figure 3.

3.5. Lookup Diagrams. Figures 4–8 show the lookup dia-
grams of the proposed fuzzy logic-empowered opposite
learning-based mutant swarm optimization with all possible
cases of the updated velocity.

Figure 4 shows that if the local intelligence value is small,
the global intelligence value is small, and previous velocity is
very slow, then the updated velocity is very slow.
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Figure 1: Rule surface for updated velocity of local intelligence and global intelligence.
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Figure 4: Lookup diagram showing that updated velocity is very slow for the proposed FL-OLMPSO.
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Figure 5: Lookup diagram showing that updated velocity is slow for the proposed FL-OLMPSO.
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Figure 5 shows that if the local intelligence value is
medium, the global intelligence value is small, and previous
velocity is slow, then the updated velocity is also slow.

Figure 6 shows that if both (local and global) intelligence
values are medium and previous velocity is medium, then
the updated velocity is also medium.
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Figure 6: Lookup diagram showing that updated velocity is medium for the proposed FL-OLMPSO.
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Figure 7: Lookup diagram showing that updated velocity is fast for the proposed FL-OLMPSO.
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Figure 7 shows that if both (local and global) intelligence
values are high and previous velocity is medium, then the
updated velocity is fast.

Figure 8 shows that if local intelligence is high, global
intelligence is medium, and previous velocity is very fast,
then the updated velocity is also very fast.

4. Results and Discussion

'e CDE-MIMO system is implemented using binary phase
shift key signalling, and the data sequences length wasQ � 50.

'e transmitters are each outfitted with A � 3 transmit an-
tennas, while the base station has B� 3 antennas.'eRayleigh
selective fading channel was implemented in four parts. 'e
Doppler frequency of 25Hz corresponds to the transmitter
using 900MHz carrier frequency, moving at a speed of 30 km/
h.'e channel taken for simulation is a 3 ∗ kMIMOwith k �

10 users, data populace is 100, and NoC for both algorithms
are 5, as we have chosen the populace size to be 5 ∗ Ph, where
Ph is the channel matrix size.

However, in the imitation, the performance can also be
measured byminimummean channel error (MMCE), which is
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Figure 8: Lookup diagram showing that updated velocity is very fast for the proposed FL-OLMPSO.
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MMCE �
1

A∗B
􏽘

A

a�1
􏽘

B

b�1
ha,b − 􏽥H

∗
(a, b)􏽨 􏽩. (32)

Figures 9 and 10 represent the performance of the
proposed FL-OLMPSO for channel and data estimation of
the MIMO system in terms of minimum mean square error
(MMSE) and bit error rate (BER), while Figure 11 represents
the performance of the proposed FL-OLMPSO regarding
MMCE, respectively.

Figure 9 shows the number of cycles (NoC) vs MMSE
of the proposed FL-OLMPSO-based MIMO system with
SNR � 25 dB and the number of users of 15. 'e 1st and 3rd
curves from top to bottom show that POMPSO and TOMPSO
converge at 160 and 180 iterations to achieve the MMSE of
10−3 and 10−5.4, respectively.'e 2nd and 4th curves from top
to bottom are for the proposed FL-OLMPSO schemes. 'e
2nd curve from top to bottom shows that the proposed fuzzy
logic-empowered partial opposite learning mutant particle
swarm optimization (FL-POLMPSO) achieves the MMSE of
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Figure 10: SNR vs BER of the proposed FL-OLMPSO with number of users � 15 and number of cycles (NoC) � 180.
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10−3.5 at 150 iterations. 'e 4th curve from top to bottom
shows that the proposed fuzzy logic-empowered total opposite
learning mutant particle swarm optimization (FL-
TOLMPSO) achieves the MMSE of 10−5.5 at 160 iterations.
It can be easily seen that proposed fuzzy logic-based schemes
give excellent results as compared to conventional approaches
regarding fast convergences as well as MMSE.

Figure 10 shows the signal-to-noise ratio (SNR) vs BER
of the proposed FL-OLMPSO-based MIMO system with
NoC � 25 dB and the number of users of 15. 'e 1st and 3rd
curves from top to bottom show the conventional POMPSO
and TOMPSO schemes, while the 2nd and 4th curves from
top to bottom are for the proposed FL-OLMPSO schemes. It
can be easily seen that BER comes down by increasing the
SNR and proposed fuzzy logic-empowered OLMPSO; both
variants give attractive results as compared to conventional
OLMPSO variants.

Figure 11 shows the NoC vs MMCE of the proposed
FL-OLMPSO-based MIMO system with SNR � 25 dB and
the number of users of 15. It can be seen from the 1st and 3rd
topmost curves that the conventional schemes (POMPSO
and TOMPSO) need 200 iterations to achieve approximately
10−2 and 10−4, respectively. And 2nd and 4th topmost curves
show that proposed fuzzy logic-empowered schemes (FL-
POLMPSO and FL-TOLMPSO) need 200 iterations to
achieve approximately 10−3 and 10−4.2, respectively. It means
that proposed schemes give better results as compared to
conventional systems.

5. Conclusion

A blind FL-OLMPSO model has been designed for joint
channel and data estimation (CDE).'e proposedmodel is a
three-layered model. At the top layer, data and channel
population is prepared. At the next level, parameters of the
channel are estimated, and at the last level, these parameters
are used along with discrete FL-OLMPSO for estimation of
transmitted symbols. 'is article presents two variants of
fuzzy logic-based opposite learning mutant particle swarm
optimization methods. 'e performance of the proposed
fuzzy logic-based opposite learning mutant PSO (FL-
OLMPSO) is evaluated in comparison with that of other
swarm algorithms in the literature. Moreover, it is seen that,
due to the included fuzzy logic-based velocity factor and
opposite-based learning of the swarm, the FL-TOLMPSO
gives attractive results regarding MMSE, BER, and MMCE.
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