Table 1.
S. no. | Steps | |
---|---|---|
Level 1 | ||
1 | Start | |
2 | 2.1. Initialization of data populaces Dp = { Dp1, Dp2, .................. Dpa} and velocity Wd | |
2.2. Initialization of channel populaces Dk = { Dk1, Dk2, .................. Dka} and velocity Wk | ||
3 | Compute the wellness of population utilizing the cost work given in (14) | |
4 | Compute lower bound value (MBp, MBi) and upper bound value (HBp, HBi) from Dp and Dk separately | |
Calculate the opposite populace | ||
5 | For FL-TOLMPSO | For FL-POLMPSO |
5.1. Opposite data population | 5.1. Opposite data population | |
OD p = {ODp1, ODp2, .................. ODpa} | OD p = {ODp1, ODp2, .................. ODpa/2} | |
OD pi = {ODpi,1, ODpi,2, .................. ODpi,M} | OD pi = {ODpi,1, ODpi,2, .................. ODpi,M} | |
ODpi,j = MBp + HBa − Dpi,j | ODpi,j = MBp + HBa − Dpi,j | |
5.2. Opposite channel population | 5.2. Opposite channel population | |
OD k = {ODk1,ODk2, .................. ODka} | OD k = {ODk1,ODk2, .................. ODka/2} | |
OD ki = {ODki,1, ODki,2, .................. ODki,M} | OD ki = {ODki,1, ODki,2, .................. ODki,M} | |
ODki,j = MBi + HBi − Dki,j | ODki,j = MB + HBi − Dki,j | |
6 | Compute the fitness of both opposite populations (ODp and ODk) using the cost function given in equation (16) | |
7 | Select the local best particle of the following: 7.1. Data population Mbdp from Dp and ODp 7.2. Channel population Lbdk from Dk and ODk |
|
8 | Select the global best particle of the following: 8.1. Data population Nbdp = min(Mbdp) 8.2. Channel population Nbdp = min(Lbdp) |
|
| ||
Level 2: global best data vector is fixed and continuous FL-OLMPSO algorithm works on the channel population | ||
9 | Update velocities of each particle of channel population using FIS: Whim(n) = Whim(n−1) + FLC (LI, GI, Whim(n−1)) |
|
10 | Update the position of each particle channel population Calculate the mutant operator (MO) Moh(i) = ∑j=1k(whij/k) Dkim(n) = Dkim(n−1) + Moh(i) ∗ rand() |
|
11 | Compute the fitness of mutated particles of channel population using equation (16) | |
12 | Update the channel population Dk | |
13 | If (number of cycles > required NoC) go to step 14 Else go to step 9 |
|
| ||
Level 3: in this level, the discrete FL-OLMPSO algorithm is used for estimating the data symbols | ||
14 | The global best particle of the data population is chosen and update the velocity: Whim(n) = FLC (LI, GI, Whim(n−1)) |
|
15 | Update position of each particle of data population Compute the mutant operator (MO) Mod(i) = ∑j=1kWdij/k Dpim(n) = Dpim(n−1) + Mod(i) ∗ rand() |
|
16 | Compute the fitness of particles of data population using (16) | |
17 | Update the data population Dp | |
18 | If (number of cycles > required NoC) go to step 20 Else go to step 14 |
|
| ||
Level 4: next sample of the received signal is taken and execution goes to level 2 | ||
19 | Stop |