Skip to main content
. 2018 Dec 6;2018:6759526. doi: 10.1155/2018/6759526

Table 1.

Proposed fuzzy logic-empowered opposite learning mutant particle swarm optimization (FL-OLMPSO) algorithm.

S. no. Steps
Level 1
1 Start
2 2.1. Initialization of data populaces Dp = { Dp1, Dp2, .................. Dpa} and velocity Wd
2.2. Initialization of channel populaces Dk = { Dk1, Dk2, .................. Dka} and velocity Wk
3 Compute the wellness of population utilizing the cost work given in (14)
4 Compute lower bound value (MBp, MBi) and upper bound value (HBp, HBi) from Dp and Dk separately
Calculate the opposite populace
5 For FL-TOLMPSO For FL-POLMPSO
5.1. Opposite data population 5.1. Opposite data population
OD p = {ODp1, ODp2, .................. ODpa} OD p = {ODp1, ODp2, .................. ODpa/2}
OD pi = {ODpi,1, ODpi,2, .................. ODpi,M} OD pi = {ODpi,1, ODpi,2, .................. ODpi,M}
ODpi,j = MBp + HBa − Dpi,j ODpi,j = MBp + HBa − Dpi,j
5.2. Opposite channel population 5.2. Opposite channel population
OD k = {ODk1,ODk2, .................. ODka} OD k = {ODk1,ODk2, .................. ODka/2}
OD ki = {ODki,1, ODki,2, .................. ODki,M} OD ki = {ODki,1, ODki,2, .................. ODki,M}
ODki,j = MBi + HBi − Dki,j ODki,j = MB + HBi − Dki,j
6 Compute the fitness of both opposite populations (ODp and ODk) using the cost function given in equation (16)
7 Select the local best particle of the following:
7.1. Data population Mbdp from Dp and ODp
7.2. Channel population Lbdk from Dk and ODk
8 Select the global best particle of the following:
8.1. Data population Nbdp = min(Mbdp)
8.2. Channel population Nbdp = min(Lbdp)

Level 2: global best data vector is fixed and continuous FL-OLMPSO algorithm works on the channel population
9 Update velocities of each particle of channel population using FIS:
Whim(n) = Whim(n−1) + FLC (LI, GI, Whim(n−1))
10 Update the position of each particle channel population
Calculate the mutant operator (MO)
Moh(i) = ∑j=1k(whij/k)
Dkim(n) = Dkim(n−1) + Moh(i) ∗ rand()
11 Compute the fitness of mutated particles of channel population using equation (16)
12 Update the channel population Dk
13 If (number of cycles > required NoC) go to step 14
Else go to step 9

Level 3: in this level, the discrete FL-OLMPSO algorithm is used for estimating the data symbols
14 The global best particle of the data population is chosen and update the velocity:
Whim(n) = FLC (LI, GI, Whim(n−1))
15 Update position of each particle of data population
Compute the mutant operator (MO)
Mod(i) = ∑j=1kWdij/k
Dpim(n) = Dpim(n−1) + Mod(i) ∗ rand()
16 Compute the fitness of particles of data population using (16)
17 Update the data population Dp
18 If (number of cycles > required NoC) go to step 20
Else go to step 14

Level 4: next sample of the received signal is taken and execution goes to level 2
19 Stop