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Abstract
Genome graphs are emerging as an important novel approach to the analysis
of high-throughput sequencing data. By explicitly representing genetic variants
and alternative haplotypes in a mappable data structure, they can enable the
improved analysis of structurally variable and hyperpolymorphic regions of the
genome. In most existing approaches, graphs are constructed from variant call
sets derived from short-read sequencing. As long-read sequencing becomes
more cost-effective and enables  assembly for increasing numbers ofde novo 
whole genomes, a method for the direct construction of a genome graph from
sets of assembled human genomes would be desirable. Such assembly-based
genome graphs would encompass the wide spectrum of genetic variation
accessible to long-read-based   assembly, including large structuralde novo
variants and divergent haplotypes.
Here we present NovoGraph, a method for the construction of a genome graph
directly from a set of   assemblies. NovoGraph constructs ade novo
genome-wide multiple sequence alignment of all input contigs and uses a
simple criterion of homologous-identical recombination to convert the multiple
sequence alignment into a graph. NovoGraph outputs resulting graphs in VCF
format that can be loaded into third-party genome graph toolkits. To
demonstrate NovoGraph, we construct a genome graph with 23,478,835
variant sites and 30,582,795 variant alleles from   assemblies of sevende novo
ethnically diverse human genomes (AK1, CHM1, CHM13, HG003, HG004,
HX1, NA19240). Initial evaluations show that mapping against the constructed

graph reduces the average mismatch rate of reads from sample NA12878 by
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 (0)Commentsgraph reduces the average mismatch rate of reads from sample NA12878 by
approximately 0.2%, albeit at a slightly increased rate of reads that remain
unmapped.

Keywords
Genome graph, de novo assembly, alignment, multiple sequence alignment,
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Introduction
Since the completion of the human reference genome in 2003, 
genomic sequencing has been established as a key tool for both 
fundamental research and personalized medicine. Sequenc-
ing costs have fallen dramatically, and the whole genomes 
of tens of thousands of individuals have been sequenced and 
analyzed. Although long-read sequencing is becoming more 
cost-effective and popular, the sequencing technologies that  
currently dominate cohort sequencing produce millions of short 
reads between 100 and 250 base pairs in length. As the first step 
of data analysis, these reads are typically mapped to the human  
reference genome to determine their genomic locations.

This approach works well for the large majority of reads;  
critically, however, it fails for reads that come from regions in 
the sequenced genome that are strongly divergent from the refer-
ence genome. Important examples include immunogenetic regions 
known to harbour important disease-associated variants like the 
major histocompatibility complex (MHC) and the killer-cell 
immunoglobulin-like receptor (KIR) genes (Kuśnierczyk, 2013;  
Trowsdale & Knight, 2013), as well as regions affected by large 
or complex structural variants, which together account for 
more than 50% of total base pair differences between individu-
als (Sudmant et al., 2015). The total proportion of the human 
genome inaccessible to classical reference-based analysis is  
estimated to be greater than 1% (Dilthey et al., 2015).

Instead of mapping reads to a single reference genome, it 
is now possible to map reads to a reference genome graph  
(Computational Pan-Genomics Consortium, 2018; Paten et al., 
2017). A reference genome graph can be thought of as a data  
structure that provides a unified representation of multiple 
genomes and their potential recombinants. As more genomes 
are added to the graph, the probability that any given region in 
a sequenced genome has a sufficiently close homolog in the 
graph (so as to allow for reliable mapping) increases. Techni-
cally, a genome graph is an acyclic or cyclic graph structure with  
nucleotide-labeled edges or nodes; each input genome can typi-
cally be reconstructed as a traversal of the graph, and nodes with 
more than one incoming or outgoing edge represent recombi-
nation points between the input genomes. Like linear reference 
genomes, genome graphs can serve as the basis for read mapping  
and variant calling.

The utility of reference genome graphs in the field of human 
genetics was first demonstrated in the field of immunogenetics 
and subsequently for the entire human genome. Specifically, 
a reference graph approach to model local haplotype struc-
tures enabled improved genotyping accuracy in the MHC 
(Dilthey et al., 2015) and, for the first time, reliable typing of the 
Human Leukocyte Antigen (HLA) genes from standard whole-
genome sequencing data (Dilthey et al., 2016). More recently, 
multiple graph approaches and software toolkits suitable for  
genome-wide application have been published (Eggertsson 
et al., 2017; Garrison et al., 2017; Rakocevic et al., 2017;  
Sibbesen et al., 2018), showing, for example, that graph genome  
approaches can enable a fivefold reduction of missed SNP 
calls (Eggertsson et al., 2017) and enable the genotyping of  

thousands of additional variants longer than 50 base pairs per 
genome (Sibbesen et al., 2018).

These developments notwithstanding, the field is still in its 
infancy. One particularly important open question is how to  
integrate information from long-read sequencing into the graph 
construction process. In existing approaches, graph construction 
typically relies on call sets derived from short-read sequencing 
experiments. As discussed above, however, short-read sequencing 
has limited sensitivity in the hypervariable and structural- 
variation-rich regions where graph genomes can be expected 
to provide the greatest benefit. Therefore, graphs constructed 
via existing methods likely miss substantial proportions of  
relevant variation. By contrast, long-read-sequencing enables the 
assembly of complex sequences (Jain et al., 2018) in a reference- 
bias-free way and the detection of structural variants at high 
sensitivity (Sedlazeck et al., 2018). Even though the number 
of long-read-sequenced samples is still limited, rendering  
their sequences available via a genome graph would be highly 
desirable.

Here we introduce NovoGraph, a pipeline for the direct  
construction of acyclic genome graphs from de novo assembly  
contigs. NovoGraph constructs a whole-genome graph by con-
necting the input assembly sequences at positions of homology; 
that is, it implements a model of homologous recombination 
between the input genomes. This approach has the advantage 
that the resulting graph will generally include the complete set of  
sequences present in the input assemblies, including (at base-
pair resolution) the sequences that correspond to structural  
variants and divergent haplotypes. Graphs constructed by Novo-
Graph will therefore be comparatively enriched in large-scale 
structural and complex variants. In the spirit of modularity,  
constructed graphs are represented in VCF format, which enables 
them to be used with any of the established genome-wide 
graph toolkits. We also utilize the standard CRAM format for 
representing the output of intermediate steps, in particular a  
multiple sequence alignment of all input sequences.

We demonstrate NovoGraph by constructing a genome graph 
from seven ethnically diverse human genomes and the canoni-
cal reference. In a mapping experiment with vg (Garrison et al., 
2017), we show that using this graph instead of the standard 
reference genome increases the average alignment identity of  
genome-wide short reads.

This project was initiated at an NCBI hackathon (Busby et al., 
2016) held before the 2016 Biological Data Science meeting 
at Cold Spring Harbor Laboratory in October, 2016. The seven 
co-authors gathered for 3 days at CSHL to quickly develop 
and prototype the pipeline. As with all NCBI hackathons, the 
only stipulations for the event were (1) that the data be publicly  
available and (2) that any resulting software be open-source.

Methods
Pipeline overview
The NovoGraph pipeline (Biederstedt et al., 2018) for construct-
ing a genome graph from a set of assembly contigs consists of the  
following steps (see Figure 1):
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1.    For each input contig, compute a global pairwise align-
ment to the GRCh38 primary assembly. This alignment 
determines the approximate placement of each input  
contig relative to the reference.

2.    Compute a global multiple sequence alignment (MSA) 
between all input contigs and the reference genome. This 
multiple sequence alignment embodies the joint sequence 
homology relationships between all input sequences and 
the reference genome. The pairwise contig-to-reference 
alignments from Step 1 are used to guide this process.

3.    Compute an acyclic directed graph structure from the 
global MSA, connecting contigs at homologous-identical 
positions.

The outputs from Steps 1 and 2 are represented in SAM/CRAM 
format (Hsi-Yang Fritz et al., 2011; Li et al., 2009). The  
output from Step 3 is a VCF (Danecek et al., 2011), which may be  
provided as input to various existing graph genome frameworks.

Step 1 – Pairwise global alignments between individual 
input contigs and GRCh38
For each input contig, we compute a global pairwise alignment 
between the input contig sequence and the GRCh38 primary  
assembly. This process is illustrated in Figure 2.

Exact global alignment scales quadratically with the length of the 
input sequences and therefore quickly becomes computationally 
intractable as the input sequences increase in size. We therefore 
adopt a heuristic approach:

First, we use bwa-mem (Li, 2013) to identify high-scoring 
local alignments between the input contig and the reference 
genome (GRCh38). These represent diagonal (or near-diagonal) 
moves in a global alignment matrix, i.e. regions of high  
pairwise alignment identity between the input contig and a ref-
erence genome. We refer to the identified local alignments as  
“diagonals”.

Next, to obtain a global pairwise alignment, we identify the  
highest-scoring consistent combination of the identified diagonals 
into a global alignment by dynamic programming. Note that pair-
wise alignments by definition comprise two sequences in defined 
orientations; only diagonals that align to the same reference 
contig in the same orientation (strandedness) can therefore  
contribute to a consistent global alignment.

We now give a formal definition of the algorithm. For simplic-
ity, we assume that all identified diagonals align to the same 
reference contig in the same orientation; if this is not the case, 
the following algorithm can be executed independently for 
all reference contig/orientation pairs and their corresponding 
diagonals, and the best global alignment between the input  
contig and the reference genome is the best identified alignment 
over all considered pairs of reference contigs and orientation.

We define a set P_ENTRY of “path entry” points and a set  
P_EXIT of “path exit” points. Each element (diagonal_id,  
(reference_coordinate, input_contig_coordinate)) of these sets 
consists of a diagonal identifier and a pair of coordinates that  

Figure 1. NovoGraph overview. Overview of the genome graph 
generation pipeline presented here. In Step 1, each genome is 
aligned to a reference genome (GRCh38, shown here in black). 
In Step 2.1, the pairwise alignments are partitioned into smaller 
windows for multiple sequence alignment in Step 2.2. Multiple 
sequence alignments are concatenated into a single alignment 
in Step 2.3. Finally, in Step 3, the multiple sequence alignment is 
converted to a single graph representation of the genome, shown in 
gray. Each individual genome has a single, acyclic path through the 
genome graph (black, green, blue, and orange paths). The magenta 
path represents a “mosaic” genome—that is, a path through the 
graph which was not observed in any genome.
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specify positions along the reference and input sequences, 
similar to the coordinates in the classical Needleman-Wunsch 
dynamic programming matrix. For example, the coordinate 
pair (3, 2) refers to a state in which 3 characters of the reference 
and 2 characters of the input sequence have been consumed.  
We also define the special points ORIGIN as (NA, (0, 0)) 
and TERMINUS as (NA, (n, m)), where n is the length of the  
reference sequence, m is the length of the input contig ID, and  
“NA” stands for an undefined diagonal identifier.

We populate the sets P_ENTRY and P_EXIT based on the  
identified diagonals. Each diagonal represents a local pairwise 
alignment between the reference and the input contig, and is 
therefore associated with two pairs of coordinates that specify 
the start and stop of the alignment in the reference and in 
the contig sequence. Specifically, let (d

1
, d

2
) denote the start  

coordinates of a given diagonal d in the reference and contig 

sequences, and let (d
3
, d

4
) denote the stop coordinates of the  

alignment in the reference and contig sequences. Both  
coordinate pairs are 1-based. To give an example, if diago-
nal d represents an alignment between positions 4 and 10 of the  
reference sequence and positions 3 and 11 of the contig sequence, 
d

1
 = 4, d

2
 = 3, d

3
 = 10, and d

4
 = 11. For each diagonal d, we  

add (d, (d
1
, d

2
)) as a member of the set P_ENTRY and  

(d, (d
3
, d

4
)) as a member of the set P_EXIT. We refer to these  

as “start-of-diagonal” entry and “end-of-diagonal” exit points. 
We also add “within-diagonal” path exit points that horizontally 
or vertically align with start-of-diagonal entry points of other 
diagonals, and “within-diagonal” path entry points that horizon-
tally or vertically align with end-of-diagonal exit points of other  
diagonals. Specifically, we add a within-diagonal path exit 
point (d, (d

x
, d

y
)) for diagonal d if and only if (i) the coordinates  

(d
x
, d

y
) correspond to a column in the local alignment associated 

with d and (ii) there is another diagonal g with g
1 
= d

x
 or g

2 
= d

y
. 

Figure 2. Global pairwise alignment schematic. Schematic of modified Needleman-Wunsch algorithm for global alignment of an input 
contig to a reference genome. The process starts with local alignments between the contig and the reference genome (blue diagonals;  
(A). All possible combinations of these local alignments are enumerated by realizing all paths connecting contigs from the upper left to lower 
right corner of the matrix (B). Each alignment is scored: matches contribute positive scores (dark blue lines in C), while indels (red) and 
mismatches (gold) incur a penalty (D). The alignment with the highest score is selected as the best global alignment (E) for the next step in 
graph genome creation; ties among global alignments are resolved arbitrarily.
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The definition of within-diagonal path entry points follows  
symmetrically. The different types of entry and exit points are  
illustrated in Figure 3.

The set of valid path traversals is defined as the set of sequences 
x

0
,x

1
,x

2
,...,x

n
 that meet the following conditions:

(i)    for all i such that i is even, x
i 
is a member of {ORIGIN ∪ 

P_EXIT}

(ii)    for all i such that i is odd, x
i 
is a member of {TERMINUS 

∪ P_ENTRY}

(iii)    x
0
 = ORIGIN and x

n 
= TERMINUS

(iv)    for all x
i
=(g, (g

a
, g

b
)) and x

i+1
= (h, (h

a
, h

b
)), g

a
 ≤ h

a  

and g
b
 ≤ h

b

(v)    for all x
i
=(g, (g

a
, g

b
)) and x

i+1
=(h, (h

a
, h

b
)) with uneven  

i, g = h

(vi)   each element of the sequence is unique.

Each traversal can be scored iteratively from left to right by  
combining the scores of the traversed diagonals with gap-
incurred penalties from the jumps between exit and entry points. 
We initialize by setting score(ORIGIN) = 0. For uneven i with 
x

i
=(g, (g

a
, g

b
)) and x

i-1
=(h, (h

a
, h

b
)), we set score(x

i
) = score(x

i-1
) 

+ gap_score x [(h
a 

- g
a
)+(h

b 
- g

b
)]. For even i with x

i
=(g, (g

a
, 

g
b
)) and x

i-1
=(h, (h

a
, h

b
)), g is equal to h by definition and we  

set score(x
i
) to be score(x

i-1
) plus the score of the local  

alignment on diagonal g between coordinates (h
a
,h

b
) and (g

a
,g

b
). 

In the current implementation, gap_score is -1, matches within 
local alignments are scored as +1, and mismatches/gaps within 
local alignments as -1. Jumps to ORIGIN and TERMINUS  
are not penalized along the reference dimension (i.e., ends-free 
alignment).

A dynamic programming formulation for finding the highest- 
scoring traversal follows immediately from these definitions. 
In brief, order the union set S := {ORIGIN ∪ P_ENTRY ∪ 
P_EXIT ∪ TERMINUS} by coordinates and for the i-th element 

of the ordered set S, compute the maximum achievable score  
max_score(x

i
) of x

i
 by

(i)    identifying the subset S’ ⊆ {x
0
 , .., x

i-1
} of possible  

predecessor elements

(ii)    for each s ∈ S’, scoring the transition from s to x
i
  

by replacing ‘score’ with ‘max_score’ in the definitions  
of the preceding paragraph

(iii)    selecting the maximum-scoring transition as the value  
for max_score(x

i
).

Step 2 – Global multiple sequence alignment
We now turn the pairwise input-contig-to-reference align-
ments created in Step 1 into a set of global multiple sequence  
alignments.

We split the GRCh38 reference contigs into non-overlapping  
windows of approximately 10,000 bases. A window size of 10,000 
is chosen to be both sufficiently large to include the majority 
of human structural variants and small enough to allow for  
efficient processing of individual windows; see below for a pre-
cise definition of how window boundaries are determined. For  
each window, we extract the reference sequence and, based 
on the pairwise input-contig-to-reference alignments, the 
input contig sequences overlapping the window. We use 
MAFFT (Katoh & Standley, 2013) to generate an MSA for the 
sequences of each window (including the reference). This step 
is trivially parallelizable. After having computed an MSA for  
each window, we concatenate the per-window MSAs in the 
correct order. For each GRCh38 reference contig, this yields 
a combined MSA of the reference sequence and all input  
contigs initially aligned to it.

In this approach, the initial pairwise alignments determine in 
which window a given part of an input sequence ends up for the 
MSA computation. Ideally we would like to choose the window 
boundary positions so as to avoid regions of high uncertainty  
in the initial pairwise alignments. The placement of gaps in 
sequence alignments is often ambiguous and gaps are generally 
associated with increased alignment uncertainty. We therefore 
adopt a simple heuristic to avoid the crossing of gaps when choos-
ing window boundaries: First we partition the reference into 
windows of exactly 10,000 bases in length. For each window 
boundary position independently, we scan the surrounding  
± 100 reference positions. For each reference position, we  
identify the columns corresponding to that reference position 
in the pairwise sequence alignments, and count the number of 
gaps across the identified columns. We then choose the reference  
position with the lowest proportion of gaps as the final window 
boundary.

The output from this step is encoded in CRAM format.  
Reference gaps are represented using the ‘P’ CIGAR character.

Step 3 – Graph construction
As a last step, the multiple sequence alignment generated  
during the previous step is transformed into a graph. An impor-
tant design decision for this operation is where to allow for 

Figure 3. Global pairwise alignment entry points and exit 
points. Focus on entry and exit points for obtaining global 
alignments. Diagonal blue lines represent local alignments between 
a reference sequence and an input sequence. Circles indicate types 
of entry and exit points used in the algorithm to define paths through 
the alignment space. See text for details of algorithms and formal 
definitions of entry and exit points.
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recombination between the input sequences, i.e. where to allow 
for transitions between sequences encoded on different input  
contigs. The applied recombination rules shape the topology of the  
graph and determine the set of genomes that could be sampled  
from the graph.

Graph topology is also constrained by our requirement that the 
constructed graph be, for interoperability reasons, representable 
in VCF format. Some third-party inference methods support 
fully general VCFs with overlapping variant alleles; other frame-
works, for example gramtools (Maciuca et al., 2016), require 
that the encoded variants be non-overlapping. To achieve full 
interoperability with different downstream inference meth-
ods, NovoGraph therefore implements two separate algorithms  
for VCF generation.

The first graph generation algorithm, referred to as  
NovoGraph-Simple, implements a straightforward conversion 
of each individual sequence from the multiple sequence align-
ment into VCF format; that is, the positions at which an input 
sequence deviates from the reference are identified and represented 
as variant alleles in VCF format. Identical variant alleles from  
different MSA sequences are merged and sorted by position to  
obtain a valid VCF. This algorithm implements a recombina-
tion model that allows for recombination between pairs (a, b) 
of MSA sequences immediately prior to positions at which both 
a and b align to the reference in the joint MSA with either a  
match or a mismatch.

The second graph generation algorithm, referred to as NovoGraph- 
Universal, is more complex and ensures that the created VCF 
does not contain overlapping variant alleles; that is, it ensures  
universal compatibility with third-party inference methods.

NovoGraph-Universal allows for recombination (A) between 
pairs of input contigs wherever input contigs start or end along 
the canonical reference, and (B) at positions at which all contig  
sequences agree with the canonical reference. The graph col-
lapses into a uniformly homozygous state at positions whereby 
condition (B) applies. The resulting graph structure (composed 
of reference-identical, collapsed stretches interspersed with sets 
of alternative haplotypes) lends itself directly to representation 
in VCF format. Also note that criterion B (sequence identity 
across all input sequences) is stronger than the recombination 
condition (sequence identity across pairs of input sequences)  
of a related algorithm (Dilthey et al., 2015).

An overview of NovoGraph-Universal is given in Figure 4. At a 
high level, NovoGraph-Universal constructs a graph by processing 
the input MSA for each reference contig in a column-by- 
column fashion from left to right in the order of genomic  
position, accounting for the entry and exit of input contigs 
as well as for potential recombination between them. As the  
algorithm moves along the MSA, it keeps track of the set of 
haplotypes compatible with the input contigs and their poten-
tial recombinants. In the graph, each haplotype is generally 
represented as its own branch; however, these are collapsed at  

positions at which all haplotypes agree with the canoni-
cal reference. The sequences corresponding to this “collapsed 
homozygous” state are reference-identical and therefore not  
explicitly represented in VCF.

In the following, we provide a more detailed description of  
the algorithm:

NovoGraph-Universal is executed for each GRCh38 reference 
contig independently. The set of input sequences for each refer-
ence contig is represented by the multiple sequence alignment 
constructed during Step 2. Each non-reference contig in the 
MSA has a first and a last column in which both the input 
contig and reference bases are non-gap. We refer to these  
columns as the entry and exit positions of the contig, and all 
bases outside the entry and exit columns are ignored during the  
following steps.

We keep a set of current haplotypes, denoted as R. Each ele-
ment h of R (a “current haplotype”) consists of two elements: 
(i) the “current sequence” of h (which is updated as we move 
along the MSA) and (ii) the contig ID of the contig that the  
current haplotype is copying from (the “source haplotype”)—
this can be either the reference or one of the input contigs. We 
initialize R such that R has one element that has a zero-length  
sequence and that is set to copy its sequence from the reference.

When we process a column of the MSA, for each element  
h ∈ R, we append the corresponding MSA character of the 
source haplotype to the current sequence of h. This step is called  
“extension” (see Figure 4).

After having carried out the extension step, the current 
sequences of the elements of R up to the second-last character 
are sent to the VCF generator if and only if (A) all appended 
characters are non-gap reference identical and (B) the length 
of the current sequences of the elements of R is greater than or  
equal to 2 non-gap bases. This step is called “flushing” (see  
Figure 4). The VCF generator writes a variant-encoding line 
to the output VCF file if the received sequences contain at least 
one non-reference sequence; otherwise, the output is empty. 
After processing by the VCF generator, the processed strings 
are removed from their corresponding source elements—that 
is, after flushing, the current sequences of all elements of  
R have a length of 1 (the last added base, which was not sent to 
the VCF generator). Note that R is a set so that, by definition, 
duplicate elements are collapsed. This process is carried out up 
to the rightmost column of the MSA, at which point the graph  
construction and VCF generation process is complete.

Two special cases corresponding to the entry and exit of  
non-reference contigs conclude the definition of the graph con-
struction algorithm. First, if an MSA position being processed 
corresponds to the entry position of a contig, we duplicate 
all elements of R prior to the extension step, set the source  
haplotype of the duplicate elements to the ID of the starting  
contig, and add the modified duplicates to R. Second, if an 
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MSA position being processed corresponds to the exit position  
of a contig, we execute the following algorithm after the  
extension step:

1.    Compile a list E of all elements of R which use the  
existing contig as their source haplotype (i.e. the elements 
R of affected by the contig exit).

2.    Compile a list C of non-reference contig IDs that a) are 
the source haplotype of any current element in R and 
b) don’t exit at the current MSA position (i.e. C is a list  
of non-exhausted current contig IDs).

3.    For each element (e, c) ∈ {E x C}, we add a new  
element to R with a) its current sequence set to the  
current sequence of e and b) its source haplotype set to  
c. After having processed all elements of the set {E x C}  
we set the source haplotypes of all e ∈ E to the reference.

Clearly the size of R increases as non-reference contigs enter 
and exit and, conversely, the size of R can only decrease during 
the flushing step. To limit computational demands, we impose 
an upper limit U1 on the size of R. If |R| ≥ U1, we prohibit the 
entry of new contigs, and when exiting a contig, we only allow  
the transition to the reference as source haplotype.

Furthermore, due to the requirement of reference identity, gaps 
in the input MSA along the contig sequence dimension (i.e. cor-
responding to columns in the MSA in which the input contig 
sequence is a gap and the reference is not) prevent flushing. 
We therefore also place an upper limit U2 on the maximum 
number of contiguous contig gaps in the input alignments. If 
a contiguous gap along the input contig dimension in an input  
contig alignment exceeds U2 in size, we break the alignment, i.e. 
we split the alignment in two. U1 limits the complexity of the 
graph in terms of the number of per-site variant haplotypes, U2 

Figure 4. Graph genome generation with NovoGraph-Universal. Graph representation (left) and unique variants (right) produced by graph 
genome alignment. From the global multiple sequence alignment, all unique paths through the graph genome are enumerated and written to 
output. In this example, the reference genome (gray) serves as a scaffold to which all contigs (blue, green, and orange) are aligned. In the 
first “extension” phase, all unique paths through the graph are identified until deviation from reference genome terminates. At this point, all 
variant paths are output, or “flushed” to the genome graph output; in this implementation, the variants are written to a VCF file. In the second 
extension phase, the orange contig deviates again from the reference genome, producing another variant, which, following coalescence back 
to the reference genome, is “flushed” to the output file.
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limits the maximum size of deletions represented in the graph. 
In the current implementation, we use U1 = U2 = 5000 bp,  
but both parameters can be easily modified by the user.

Implementation and computational requirements
Steps 1 and 2 are implemented in Perl 5. Step 3 is imple-
mented in C++, with a wrapper Perl script. Our pipeline utilizes 
bwa (version 0.7.15 and above), SAMtools (version 1.4 and 
above), and MAFFT (version 7). The minimum computational 
requirement for NovoGraph is a workstation computer with at  
least 32 Gb of RAM; we recommend, however, that the MSA 
generation steps be executed within a multi-node cluster  
environment. NovoGraph natively supports SGE-compatible grid  
environments, although this could be easily adapted to other  
platforms.

Human input assemblies
We used contigs from seven recent de novo assemblies of 
human genomes (Table 1), the data of which are publicly  

available. The total size and contig lengths of each input assem-
bly are shown in Figure 5. In order to quantify the sequencing 
and alignment quality of each input assembly, we relied upon the 
edit distance (Levenshtein distance) encoded via the BAM NM  
tag, i.e. the number of nucleotide changes within each contig  
necessary to equal the reference. The results of dividing this  
value by the length of each aligned contig (NM/Length) are 
shown in Figure 6. We note that we have made no effort to  
classify variants within each assembly as genuine variation or 
errors.

vg mapping experiment
We used the variation graph toolkit vg (Garrison et al., 2017) 
to assess the effect of mapping against the constructed human 
genome graph (based on the NovoGraph-Universal algorithm). 
Short-read sequencing data of sample NA12878 were obtained 
from the Platinum Genomes project (2 x 100bp paired-end  
sequencing reads; European Nucleotide Archive acces-
sion ERR194147) and randomly subsampled to 2% of read 

Table 1. Input assemblies for the whole-genome human graph.

Sample ID Ethnicity Citation Download URL

AK1 Korean (Seo et al., 2016) https://www.ncbi.nlm.nih.gov/Traces/wgs?val=LPVO02#contigs

CHM1 European (Chaisson et al., 2015; 
Steinberg et al., 2014) 

https://www.ncbi.nlm.nih.gov/assembly/GCA_001297185.1/

CHM13 European (Schneider et al., 2017) https://www.ncbi.nlm.nih.gov/assembly/GCA_001015385.3

HG003 Ashkenazi (Zook et al., 2016) ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/MtSinai_PacBio_Assembly_falcon_03282016/hg003_
p_and_a_ctg.fa

HG004 Ashkenazi (Zook et al., 2016) ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
analysis/MtSinai_PacBio_Assembly_falcon_03282016/hg004_
p_and_a_ctg.fa

HX1 Han 
Chinese

(Shi et al., 2016) http://hx1.wglab.org/data/hx1f4.3rdfixedv2.fa.gz

NA19240 Yoruba (Steinberg et al., 2016) https://www.ncbi.nlm.nih.gov/assembly/GCA_001524155.1/

Figure 5. Assembly sizes and contig lengths. Assembly sizes (A) and contig length distributions (B) shown in units of base pairs for each 
input human assembly (see Table 1) used to demonstrate NovoGraph.
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Figure 6. Reference divergence per input assembly. Reference 
divergence (edit distance divided by contig length; see text) for 
each contig within each individual assembly. No effort was made 
to classify variants within each assembly as genuine variation or 
errors.

pairs. We mapped the subsampled reads to the genome graph  
constructed by us and against a genome graph constructed from 
the GRCh38 primary reference and assessed the resulting align-
ment metrics (alignment score, alignment identity, number of  
mapped reads).

Results
We have presented NovoGraph, a pipeline for the construction 
of genome graphs from de novo assemblies and applied the 
pipeline to construct a genome graph from seven high-quality, 
ethnically diverse human assemblies (Biederstedt, 2018). The 
graph constructed by NovoGraph-Universal has a size of 17 Gb 
when stored in uncompressed VCF format and contains 
23,478,835 bubbles (i.e. sites with multiple alternative alleles) 
representing 30,582,795 variant alleles. The graph constructed 
by NovoGraph-Simple has an uncompressed size of 1.2 GB 
in VCF format and contains 33,309,666 bubbles representing 
34,519,145 variant alleles. Both graphs and intermediate files are  
available for download and can be used for genome inference  
with a variety of tools.

We manually assessed a small set of hyperpolymorphic regions 
in the human genome. Figure 7 shows an IGV-based visu-
alization (Robinson et al., 2011; Thorvaldsdóttir et al., 2013) of  
the multiple sequence alignment of the input sequences in 
the HLA-B region of the MHC. HLA-B is the most polymor-
phic gene of the human genome and sequence polymorphisms 
are known to cluster around the peptide-binding-site encoding 
exons 2 and 3 (Marsh et al., n.d.); consistent with this, high 
rates of polymorphism are observed in our multiple sequence  
alignment around these loci.

To measure the extent to which mapping against the con-
structed graph influences alignment metrics, we used the vari-
ation graph toolkit vg to map a randomly selected subset of 
NA12878 reads (see Methods) against a) the genome graph  

constructed by us (based on the NovoGraph-Universal algo-
rithm) and b) a simple non-branching reference graph con-
structed from the primary GRCh38 reference alone. Alleles 
longer than 10 kb in size were removed to ensure successful  
loading of the graphs into vg. Results of the mapping experiment 
are shown in Table 2; while mean alignment identity is increased 
by approximately 0.2%, the number of mapped reads decreases 
by 0.04%. This somewhat counterintuitive result is probably  
explained by greater alignment ambiguity for a subset of reads, 
caused by the presence of non-unique branches in the graph; 
reads with multiple optimal mapping locations will be assigned a  
mapping quality score of 0 and count as unmapped.

Conclusion and next steps
NovoGraph enables the construction of a graph genome from 
multiple de novo assemblies. The pipeline is available under 
an open source license and will scale to at least a few dozen 
input assemblies without major modifications. It would also be  
straightforward to adapt NovoGraph to non-human species, given  
the appropriate reference and input assemblies.

It is instructive to contrast the MSA-based NovoGraph approach 
with possible alternative approaches in which one creates a 
separate VCF for each assembly and then builds a graph by 
combining the individual VCFs. First, carrying out the mul-
tiple sequence alignment prior to the VCF generation step  
enables the sharing of information across multiple samples 
during the alignment process, potentially improving overall  
alignment quality and providing more consistent variant defini-
tions across samples. Secondly, the constructed multiple sequence 
alignment of all input assemblies can be repurposed for other 
applications, for example as an input to other graph construc-
tion algorithms like the Population Reference Graph (Dilthey 
et al., 2015). Finally, as the number of input genomes increases 
in size, it will become increasingly necessary to establish the 
mutual homology relationships between variant alleles from  
different samples and to represent these in the form of nested 
graphs; the MSA contains the information necessary for this. 
As an example, consider the case of two large insertion variants 
that differ from each other by a single base: in the field of 
graph genomes, these are most naturally represented as one  
large insertion with an additional SNP nested into it (instead 
of two near-identical branches). These points notwithstand-
ing, multiple sequence alignments come at a computational 
cost, and might prove to be computationally prohibitive if the  
number of input genomes increases by more than one order of  
magnitude.

There are two important directions for future work. First, in 
the spirit of a hackathon, we have focused our efforts on the  
software development process. A comprehensive empirical  
evaluation of the constructed human genome graph is still  
outstanding. This could be achieved by loading the graph into  
multiple graph-based inference frameworks and by measuring 
genome inference accuracy. Secondly, it would be important to  
better understand the impact on the graph construction proc-
ess of various parameter settings and trade-offs. For exam-
ple, in the interest of simplicity, we implemented a simple gap  
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scoring scheme that is neither affine nor convex; we relied on 
the default settings of MAFFT for the generation of the multiple 
sequence alignments; and we implemented a naive algorithm  
to split the reference genome into windows for MSA gen-
eration. Exploring alternative choices in each of these cases 
would be straightforward and could lead to valuable insights. 
A convex gap scoring scheme would probably improve the  

alignment of large and complex structural variants (Sedlazeck  
et al., 2018) and therefore be the most important point to address.

These limitations notwithstanding, we believe that NovoGraph 
represents a useful addition to the field of graph genomes. A 
strength of NovoGraph is its ability to generate genome graphs 
for all major genome graph approaches directly from de novo 
assembly data. The graphs constructed with NovoGraph are 
available for download and could, for example, inform com-
parisons of different genome graph construction methods and the  
improved calling of structural variation.

Data availability
Input assemblies are publicly available and carry the NCBI  
assembly accession numbers GCA_001750385.2 (AK1), http:// 
identifiers.org/ncbigi/GI:1078263188; GCA_001297185.1 
(CHM1), http://identifiers.org/ncbigi/GI:929855629; GCA_
001015385.3 (CHM13), http://identifiers.org/ncbigi/GI:953917559; 
GCA_001549605.1 (HG003), http://identifiers.org/ncbigi/
GI:985741195; GCA_001549595.1 (HG004), http://identifiers.org/
GI:985734877; GCA_001524155.1 (NA19240), http://identifiers. 
org/ncbigi/GI:1057722128; GCA_001708065.2 (HX1), http:// 
identifiers.org/ncbigi/GI:1087879108. Full assembly data access 
details are given in Table 1.

Table 2. Read alignment quality metrics for the 
NA12878 mapping experiment. A total of 2% of 
NA12878 Illumina Platinum reads were mapped against 
the NovoGraph-constructed genome graph (“Genome 
graph”) and against a GRCh38-equivalent genome graph 
(“Reference graph”; no ALT contigs used). As expected, 
mapping against the genome graph increases mean 
alignment scores and alignment identities, albeit at a small 
reduction in the number of mapped reads.

Genome graph Reference graph

Mean scores 108.859 108.100

Mean identity value 0.9913 0.9891

Total mapped reads 31125004 31138410

Figure 7. IGV visualization of HLA-B. The HLA-B region for the genome graph produced by our approach as visualized in the Integrated 
Genomics Viewer. (a) The coverage (gray bar) of the eight included assemblies (NA19240, HX1, etc.) and the alignment of each to the 
graph genome. Colored vertical lines indicate sequence variants (green = A, blue = C, orange = G, red = T), horizontal black lines indicate 
deletions, and vertical purple “I” characters show insertions. (b) Genomic annotations. High rates of polymorphism are observed around 
peptide-binding-site encoding exons 2 and 3.
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All NovoGraph output data are available on OSF: https://doi.
org/10.17605/OSF.IO/3VS42 (Biederstedt, 2018). The genome 
graphs of seven ethnically diverse human genomes in VCF format 
can be downloaded from https://osf.io/t5czk/?view_only=fedd8
437d96c4d688f6c40150903d857 (constructed with NovoGraph-
Universal) and https://osf.io/pgq52/?view_only=fedd8437d96c4
d688f6c40150903d857 (constructed with NovoGraph-Simple).  
The global multiple sequence of all input sequences in CRAM 
format can be downloaded from https://osf.io/jhbwx/?view_only
=fedd8437d96c4d688f6c40150903d857. OSF data are available  
under the terms of the Creative Commons Zero “No rights 
reserved” data waiver (CC0 1.0 Public domain dedication).

Software availability
Source code for the pipeline is available from: https://github.
com/NCBI-Hackathons/NovoGraph.

Archived source code at time of publication: https://doi.
org/10.5281/zenodo.1342485 (Biederstedt et al., 2018).

License: MIT license.
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Open Peer Review

  Current Referee Status:

Version 1

 11 October 2018Referee Report

https://doi.org/10.5256/f1000research.17353.r38468

  ,   Korbinian Schneeberger Manish Goel
Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne,
Germany

The authors present NovoGraph a method to build up a genome graph from whole-genome alignments
between reference genome and de novo assemblies. Instead of building up a genome graph similar to an
assembly graph, the genomes are assembled separately and then integrated into a graph based on
reference-based whole-genome alignments. Practical application of NovoGraph is shown with a genome
graph build up from seven human genome assemblies. The tool targets a practical problem filling a gap in
a workflow with otherwise existing software. I would consider this idea as broadly useful and applicable in
special cases. A main critic for this work would be its lack of scalability and flexibility (addition/removal of
genomes) which might limit its applicability. The manuscript is well and clearly written.

Major (which the authors should consider)
 In the title, the authors state that the method is applicable for “long-read de novo assemblies”. Are
there any specific reasons that the authors decided to restrict the scope of their method?
The method is geared to human genome comparison. This should be made clear in the title and
abstract to avoid confusion as it might not be so straightforward to adapt it to other species if type
and degree of sequence variation is different (see point 3 and 4). Otherwise, the authors could
demonstrate how to adjust the tool for other genomes with higher degree of structural variation as
well.
If a “consistent global alignment” of a contig (step 1) can only be on one reference contig and can
only consider one alignment direction, how are inversion breakpoints and cross-chromosome
translocation breakpoints identified?
How are large insertions (i.e. sequences not present in the ref seq) represented in step 2? How are
the per-window MSA combined if different genomes have different orders of these 10kb windows
(e.g. in translocations, inversions…)?
Were there contigs that were too divergent to be aligned in the test cases? What if those exist?
The authors mentioned that the graph construction is constrained by their requirement to generate
VCF files, however, they don’t mention what could be the potential effects of this restriction.
The authors have cited work which has not yet been published after peer review. Is this common
for F1000research, if not, please mention that these citations are non-peer-reviewed preprints.
In order to limit computation load, the method uses hard cut-offs for the number of haplotypes that
can be analysed simultaneously. Consequently, new contigs are not added. However, the authors
do not describe what happens to those contigs. Are they removed permanently? If yes, then would
that lead to potential loss of alternate haplotypes that could be identified from available data?

Minor
We agree with the other reviewer that the authors might want to consider the well-established
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4.  

Minor
We agree with the other reviewer that the authors might want to consider the well-established
definitions of “recombination” and “homologous recombination” and perhaps try to find different
wording for the branching points in the graph. It is not clear what “homologous-identical
recombination” (abstract) or “homologous identical positions” (methods).
Similarly, it is conventional to write Directed Acyclic Graph instead of acyclic directed graph, and
the authors might want to change that.
 “uneven” => “odd”?
Figure 2 could be extended with cases where  “entry” and “exit” points are within alignments as
well.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

 03 October 2018Referee Report

https://doi.org/10.5256/f1000research.17353.r38774

 Bjarni V. Halldorsson
deCODE Genetics/Amgen, Inc., Reykjavik, Iceland

The manuscript describes a method to create a graph genome from a set of input sequences, such as
whole genome assembly. This is a topic of current interest to the community and I am not aware of
another implementation for this problem. The paper implementation is practical and likely to be useful, but
it is also clear that that there is considerable room for improvement and work in this field.
The provide an algorithm and software. The algorithm has three steps: 1) Whole genome alignment 2)
Local multiple sequence alignment 3) Graph construction/VCF construction from graph.
There is a large body of literature on whole genome alignment which might be cited and explained to the

reader what the difference is between the current method and previously described ones.
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reader what the difference is between the current method and previously described ones.
Multiple sequence alignment is also a well studied problem, this literature might be cited and it is not clear
why MAFFT was chosen over other implementations.

I would suggest the authors find another word to replace “recombination” in their text, recombination has a
well defined meaning in genetics/meiosis which to me seems to be different from the meaning the authors
assign to the word. The authors say the branching points in the graph are recombination points between
the input genomes, but they might as well be due to SVs.
Why do the authors choose to claim that the human reference genome was completed in 2003? There
have been a number of updates since then and the reference genome is still filled with gaps. The authors
are using GRCh38 which was released in December 2013.
Genomic sequencing can be considered to be a key tool in research since shortly after invented, certainly
since long before 2003.
On page 4, step 2 states that a global MSA is computed, but from figure 2 it is clear that this is in fact a
series of local MSAs.  I would suggest using another term than global alignment or at least refer to it as
inexact/approximate global MSA.

From figure 1, step 2.1 it might be inferred that identifying windows was a more involved process than
partitioning the genome into 10kb windows.
I am not sure how NovoGraph-Simple is implemented, the details are not described in the manuscript. For
NovoGraph-Simple to be useful, it would be very useful if the “The positions where an input sequence
deviates from the reference is represented as variant alleles in a valid VCF” was better defined.  For
inserted sequence, particularly microsatellites/STRs, there are multiple valid VCF records that can be
created. Conventions such as left aligning would be useful for the user.
If I understand correctly, NovoGraph-Universal is a BFS (breadth first search) of the graph. The authors
might make a note of this.

It is clear that NovoGraph-Universal is not a practical implementation for people studying a large number
of genomes. Whenever a single sequence diverges from the reference all sequences are expanded.
Once enough individuals have been sequenced this will lead to VCF files where each individual's’
chromosomes are the alternate allele.
I have only evaluated the manuscript and not the software or the VCF files.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes
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presented in the article?
Yes

 Employee of deCODE genetics/Amgen.  Author of one of the cited studies.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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