Skip to main content
. 2018 Dec 19;6:192. doi: 10.3389/fbioe.2018.00192

Table 1.

Microfluidic rare cell separation applications based on positive and negative magnetophoresis.

Cell type Method Surface marker Magnetic element Purity Cell concentration Capture rate Throughput Viability References
STEM AND PROGENITOR CELLS
Endothelial progenitor cells (EPCs) PM -MNP internalization (positive enrichment) NU NdFeB permanent magnet NR NR 40% 0.3 mL h−1 No difference between treated and untreated cells after 24 h in viability and tube formation function was reported Kim et al., 2009
Hematopoietic stem cells (HSCs) PM -MNP labeling
(positive enrichment)
CD34 Permanent magnet NR 5 × 107 cells mL−1 88% 0.15 mL h−1 NR Wu et al., 2010
Hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs) PM
-MNP labeling(positive enrichment)
CD133 Electromagnetic wire NR HSC: ~6750 cells mL−1 EPC: ~1190 cells mL−1 HSC: > 96%
EPC: > 95%
>14 mL h−1 No adverse effect on cell viability Plouffe et al., 2012
Mouse lung multipotent stem cells (MLSCs) PM
-MNP labeling (negative and positive enrichment)
CD45 (-)
CD31 (-)
FITC (+)
Magnet 96–99% NR NR 1.2 mL h−1 Good self-renewal and proliferation capacity was obtained Zeng et al., 2015
TUMOR CELLS
Human colon adenocarcinoma cells (COLO205) and human breast cancer cells
(SKBR3)
PM
- MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnet NR 5–1,000 cells mL−1
(TC: RBC = ~1: 107- 109)
COLO205: 90%
SKBR3: 86%
10 mL h−1 NR Hoshino et al., 2011
Mouse metastatic breast cancer cells (M6C) PM
- MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnet <0.4% WBC capture 2–80 cells mL−1 ~90% 1.2 mL h−1 > 90% Kang et al., 2012
Breast cancer cells (MCF-7) and lung cancer cells
(HCC827)
PM
-MNP labeling (positive enrichment)
EpCAM Permanent magnet NR ~10 cells mL−1 ~80% NR NR Yoo et al., 2016
Human breast cancer cells (MCF-7 and MDA-MB-23) PM
-MNP labeling (positive enrichment)
EpCAM Permanent magnet NR 103- 105 cells mL−1
(MCF-7: MDA-MB-231 = 1:1)
MCF-7: 95.7%
MDA-MB-23: 79.3%
3 mL h−1 NR Kwak et al., 2017
Human acute monocytic leukemia cells (THP-1) PM
-MNP labeling (positive enrichment)
CD45 NdFeB permanent magnet NR 106 cells mL−1 NR 4.2 mL h−1 NR Huang et al., 2018
Human colon cancer cells (COLO205) PM
-MNP labeling (positive enrichment)
EpCAM Permanent magnet + nickel micromagnets NR ~60 cells mL−1 Increased by 19% compared to no-micromagnet condition 2.5 mL h−1 NR Chen et al., 2015
Breast cancer cells (SKBR-3) PM
-MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnet + ferromagnetic nickel-iron wires 97% 7 × 101-6 × 104 cells mL−1 90% 2–5 mL h−1 100% of the isolated cells were intact Kim et al., 2013b
Breast cancer cells (MCF-7) PM
-MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnet + ferromagnetic nickel-cobalt wires NR 1.25−2.5 × 105 cells mL−1 93% 2.4–6 mL h−1 NR Park et al., 2015
Breast cancer cells (MCF-7) PM
-MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnet + ferromagnetic nickel-iron wires 6.9–67.9% 1–10 cells mL−1 99.08% 4 mL h−1 NR Cho et al., 2016
Human lung cancer cells (A549) PM
-MUNP labeling (positive enrichment)
EpCAM Permanent magnet + silicon wires NR 5 × 103 cells mL−1 ~90% ~1 mL h−1 Re-collected cells showed almost the same morphology compared to control cells Wang et al., 2015
(i) Lung cancer cells
(H-1650)
(ii) Lung cancer cells (HCC827 and H-1650), breast cancer cells (MCF-7), human prostate cancer cells (LNCaP and PC-3) and human bladder cancer cells (T24)
(EpCAM epxression levels: ~2000/cell to ~500,000/cell)
PM
-MNP labeling (positive enrichment)



EpCAM



NdFeB permanent magnet + nickel-iron coated magnetic sifter



NR



(i) 4–470 cells mL−1
(ii) 50-100 cells mL−1
(>90% for >100 k EpCAM/cell)



H-1650: 95.7%
HCC827, H-1650, MCF-7, LNCaP: 90%
PC-3: 48%,
T24: 17.7%



10 mL h−1



Unchanged cell viability was obtained



Earhart et al., 2014
Human ovarian cancer cells (HeLa) PM
-MNP labeling (positive enrichment)
EpCAM Nickel-iron -based microstripline NR 106 cells mL−1 79% 0.06 mL h−1 100% cell viability was obtained with cooling Wong et al., 2016
B lymphoid cells (Raji cell line) (target)
T lymphoid cells (Jurkat cell line)
(non-target)
PM
-in situ magnetic labeling (positive enrichment)
CD19 Cooled electromagnet coil + microcontact printed ferrofluidic dots 96% 2 × 106 cells mL−1
(Raji cells to total = 33%)
94% 3.6 × 104
3.6 × 105
total cells h−1
Viable cells with ability to move and divide were reported Saliba et al., 2010
Human lung cancer cells (A549) PM
- in situ magnetic labeling (positive enrichment)
WGA modification Magnetic solenoid coil + nickel micropillars ~93% 1.5 × 105 cells mL−1 62–74% NR NR Liu et al., 2007
Human T-lymphocytic
leukemic cells (JM) and human ovarian cancer cell
(HeLa)
PM
-MNP labeling (positive enrichment)
CD4 NdFeB permanent magnet >90% ~2 × 106 mL−1 NR ~3.6 × 105 cells h−1 NR Mizuno et al., 2013
Breast cancer cells (MCF-7) PM
-MNP labeling (positive enrichment)
EpCAM NdFeB permanent magnets + NR 103−3.3 × 104 cells mL−1 up to 88% ~0.1 mL h−1 NR Kirby et al., 2015
Lung carcinoma cells (H1299-GFP) PM
-MNP labeling (negative enrichment)
CD45 Permanent magnet ~50% 101-105 cells mL−1 ~90% 60 mL h−1 >90% Jiang et al., 2017
Human ovarian cancer cells (HeLa) PM
-MNP internalization (positive enrichment)
NU NdFeB permanent magnet NR 5 × 105 cells mL−1 NR NR NR Pamme and Wilhelm, 2006
Breast cancer cells
(MDA-MB-231)
PM
-magnetic susceptibility difference (negative enrichment)
NU Permanent magnet +ferromagnetic nickel wire NR NR 94.8% 0.0025–0.0200 mL h−1 NR Han et al., 2006
Breast cancer cells
(SKBR3, MDA-MB-231)
Prostate cancer cells
(PC3-9)
PM
-MNP labeling (positive enrichment)
EpCAM Quadrupole magnetic circuit >3.5-log purification resulted in 1,500 WBCs mL−1 200–1,000 cells mL−1 SKBR3:
98.6 ± 4.3%
MDA-MB-231:
77.8 ± 7.8%
PC3-9:
89.7 ± 4.5%
8 mL h−1
(3.6 × 1010 cells h−1)
Viable cells were obtained Ozkumur et al., 2013
Human breast cancer cells (MCF10A and MCF10A-LBX1) PM
-MNP labeling (negative enrichment)
CD45
CD15
2.5-log purification resulted in 32,000 WBCs mL−1 MCF10A: 96.7 ± 1.9%
MCF10A: 97.0 ± 1.7%
Human melanoma cells (WM164), breast cancer cells (MB231, SKBR3), human lung cancer cells (PC9) and prostate cancer cells (PC3-9) PM
-MNP labeling (negative enrichment)
CD66b
CD45
Permanent magnet 3.8-log purification ~103 cells mL−1 97% 8 mL h−1
(3.6 × 1010 cells h−1)
NR Karabacak et al., 2014
Human melanoma cells (SkMel28), lung cancer cells (H1650, H1975, H3122), prostate cancer cells (NCAP, PC3, PC3-9, VCAP) and breast cancer cells (MB231, MCF-7, SkBR) PM
-MNP labeling (negative enrichment)
CD66b
CD45
CD16
Magnetic circuit Purification resulted in 445 WBC mL−1 19–5,000 cells mL−1 99.5% 5.4−7.2 × 1010 cells h−1 NR Fachin et al., 2017
Human colon cancer cells (HCT8) PM
-MNP labeling (negative enrichment)
CD45 Permanent magnet Purification resulted in
83.99±
1.00% WBC depletion
104 cells mL−1 70 ± 5%
(for single round of depletion)
NR Unchanged cell viability when a pulsation frequency of 0.05 Hz was used Luo et al., 2015
Colorectal adenocarcinoma cells (HT29) PM
-MNP labeling (negative enrichment)
CD45 Magnet + layer of NdFeB magnetic grains NR 50- 250 cells mL−1 87–96% 5 mL h−1 NR Chung et al., 2013
Oncogenic human monocyte cells (U937) NM NU NdFeB permanent magnet + nickel microstructure >90% 8 × 107 cells mL−1 (U937: RBC = 1:400) NR 105 cells h−1 NR Shen et al., 2012
Breast cancer cells (MDA-MB-231), colorectal cancer cells (HCT116 and HT29), lung cancer cells (HCC827) and esophageal cancer cells (JHEsoAD1) NM NU NdFeB permanent magnet NR NR NR No flow Unchanged cell viability for long term cultivation in paramagnetic medium was reported Durmus et al., 2015
Breast cancer cells (MDAMB-231), lung cancer cells (A549), ovarian
cancer cells (HEYA8) and prostate cancer cells (PC-3)
NM NU NdFeB permanent magnet NR NR NR 0.36 mL h−1 NR Amin et al., 2017

PM, positive magnetophoresis; NM, negative magnetophoresis.

NR, not reported; NU, not used.

Capture rate, the ratio of the number of cells collected after separation to the total number of cells loaded to the chip.

Purity, the ratio of the number of target cells collected after separation to the total number of collected cells.