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Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome

biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a

long outstanding question, and the possibility of “direct size scaling to the nucleus” was

raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis

elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or

C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant

worms. DIC imaging provided evidence that in size-altering embryo nucleolar size de-

creases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in

four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants

consistently demonstrated the correspondence between cell and nucleolar sizes e the

small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).
Size scaling, from organisms to organelles, is an interesting

and important issue in biology. Genetics is known to play a

role in maintaining the sizes of organisms and organelles.

However, under different physiological conditions, the

same organelles adapt various sizes in correspondence to

their functional activities [1]. Inside the nucleus, nucleolus

is a condensed structure intimately correlated with ribo-

some biosynthesis, aging, and cell stress sensing [2].

Enlarged nucleolus size and/or increased numbers of
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nucleolus are often used as a biomarker of cancer cells [2,3].

Using fission yeast, Neumann and Nurse [4] demonstrated a

proportional relationship between nuclear (N) and cellular

(C) size, indicating that the large cells have a large nucleus.

A positive correlation in size between nucleus and nucle-

olus was likewise observed [4]. Therefore, the ratios be-

tween nucleus to cell (N/C) and between nucleolus to

cytoplasm (No/C) are near a constant. Skewing of this ratio

may be pathogenic, as enlarged nucleoli likely reflect an
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Fig. 1 DIC images and nucleolus size comparison of four-cell embryos from ncl-1worms treated with various RNAi knockdown.

Mutant worms (ncl-1) at the L4 stage were treated with L4440 (control) (A), ani-2 (B), ima-3 (C) and C27D9.1 (D) RNAi. Embryos

were separated by needle dissection and four-cell stage embryos were transferred onto 5% agar pads for observation. The

nucleolus of four-cell stage embryos was then recorded by DIC image of the Zeiss Axio Imager 2 microscopy. Magnified images

of ABa cell are shown in the upper right. Arrowheads denote the location of nucleolus. The scale bar is 10 mm in the original DIC

image and 5 mm in the magnified image. (E) & (F) Total nucleolar areas within a nucleus were measured and summed by the

outline tool of the AxioVision software, subsequently represented by a scatter plot using GraphPad Prism. (E) Distribution of

total nucleolar areas of the ABa cells from various embryos as indicated. (F) Comparison of the nucleolar sizes in distinct cells

within a four-cell embryo of the ncl-1 mutant. *p < 0.05; n.s., non-significant.
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increased tempo of ribosome biogenesis and protein syn-

thesis, contributing to situations such as the premature

aging syndrome Hutchinson-Gilford progeria [5] and many

tumors [3].

Caenorhabditis elegans is a good model for studying cell

biology, neurobiology and behavior because it is easily

cultivated and has a short lifespan and a large repertoire of

genetic variants. It is particularly suitable for studying

nucleolar size regulation because this model organism has a

limited number of cells, which are transparent and easily

visualized and photographed [6]. Furthermore, embryos at

the 2-cell stage have two asymmetric blastomeres, in which

the anterior AB cell is larger than the posterior P cells. The

AB cell descents (ABa and ABp cell) are always larger than

the P cell descents (EMS and P2 cells) in the 4-cell embryos

[Fig. 1A]. However, the nucleolus of four cells is invisible in

wild-type worm (N2) embryos, in contrast to an instantly

recognizable structure in ncl-1 mutant embryos, an alter-

ation that is advantageous to deciphering the size ratio be-

tween nucleolus to cell (No/C). Lastly, the RNAi feeding

method to knock down particular genes, such as ani-2, ima-3

and C27D9.1 genes, provides a very convenient means to

obtain various sizes of embryos in C. elegans [7]. In this ca-

pacity, loss-of-function mutant of either ani-2 or ima-3 is

known to exhibit a smaller embryonic size: ANI-2 is one of

the three C. elegans anillins that has been implicated in

nuclear sequestration during interphase and microtubule-

driven cell membrane separation during mitosis [8,9],

while IMA-3 is one of the three importin a nuclear transport

factors required for normal embryonic, larval, and germline

development [10]. By contrast, C27D9.1, which is a negative

regulator of embryonic size, is an ortholog of the human

fucosyltransferase and plays a role in body morphogenesis,

embryo development and reproduction via yet unknown

mechanism [11e13].

In addition to using DIC microscopy to obtain images of

the nucleolus, worm researchers frequently exploit a fusion

protein (FIB-1::GFP) e nucleolar protein fibrillarin (FIB-1)

fused with green fluorescence protein (GFP) e as a reporter to

study nucleolus size control [7,14]. In most cases, the in-

tensity of FIB-1::GFP closely correlates the sizes of nucleoli

[14,15]; however, presence of FIB-1::GFP in early embryos of

wild-type worms does not correspond to the size of nucleolus

because no nucleolus is detectable at this stage under a DIC

microscope. In this study, we used ncl-1 mutants that exhibit

prominent nucleolus structure at the four-cell stage, per-

formed RNAi of various size related genes, and used DIC

microscopy to record four-cell stage embryos. As expected,

the embryos derived from ncl-1 worms fed with E. coli

expressing double-stranded RNA of ani-2 and ima-3 genes

became smaller, in contrast to the enlarged embryos from

C27D9.1-knockdown worms. Consistently, we found that the

nucleolus size of the ABa cell undergoes 32.7% and 30.5%

reduction in the smaller embryos of ani-2- and ima-3-

knockdownworms, respectively, but becomes 63.6% larger in

the C27D9.1-depleted, enlarged embryos [Fig. 1AeE]. Addi-

tional analyses of nucleolar size in each blastomere cell (ABa,

ABp, EMS, and P2) within the ncl-1 mutant embryo revealed

smaller nucleoli in the two smaller cells (EMS and P2) while

that the two larger cells (ABa and ABp) exhibited significantly
bigger nucleoli, with about 22.7%e44.1% increase in size

[Fig. 1F].

Our current finding is contradictory to a previous report

[7], in which the authors reported an inverse correlation be-

tween nucleolar size change and cell size in C. elegans em-

bryos. The unexpected discrepancies in findings by two

similar studies are explicable by the following scenarios:

Firstly, given that the nucleoli are indiscernible in blasto-

meres of N2 worm background by DIC microscopy (also see

Fig. S1 of the Current Biology report) [7], the green dots in the

fluorescence images shown in Figures 1 and 2 of the report [7]

presumably are not bona fide nucleoli but rather aggregates of

FIB-1::GFP at two loci of rDNA chromosomes. Because two

bright spots, instead of one, are frequently seen in their im-

ages [7], the FIB-1::GFP-positive dots are likely the pre-

nucleolar structures that reportedly encompass rDNA se-

quences, RNA polymerase I, and endogenous fibrillarin. In

contrast, mature nucleoli in ncl-1 mutant embryonic cells

that materialize at the 2-cell stage are constantly in singular

as observed by DICmicroscopy [Fig. 1A]. Secondly, theWeber

and Brangwynne study [7] did not exclude the possibility that

the variable intensities of FIB-1::GFP observed in the different

RNAi embryos could actually be attributed to the loss of ANI-

2, IMA-3 or C27D9.1. In other words, it remains formally

possible that the abundance of the ectopic fusion protein is

directly under the control of these genes, rendering it an

ineffective structural reporter for the nucleolus. Finally, the

inverse relationship between intensity of FIB-1::GFP and

embryonic cell size observed by Weber and Brangwynne

could also be explained by a protein density effect: When the

fixed amount of FIB-1::GFP synthesized in oocytes is distrib-

uted equally to the subsequent daughter cells, the signals

may appear dimmer in cells with larger volume, whereas a

denser distribution in the smaller cells yields a brighter

signal. While the issue of nucleolus size control remains

unsettled, our observations and another report by the

Brangwynne's group [1] provide strong support to the model

of direct size scaling of nucleolus in early embryos as well as

in growing intestine cells of C. elegans.
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