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Background: Gaucher Disease is caused by mutations of the GBA gene which encodes the lysosomal enzyme acid
beta-glucosidase (GCase). GBAmutations commonly affect GCase function by perturbing its protein homeostasis
rather than its catalytic activity. Heat shock proteins are well known cytoprotective molecules with functions in
protein homeostasis and lysosomal function and their manipulation has been suggested as a potential therapeu-
tic strategy for GD. The investigational drug arimoclomol, which is in phase II/III clinical trials, is a well-
characterized HSP amplifier and has been extensively clinically tested. Importantly, arimoclomol efficiently
crosses the blood-brain-barrier presenting an opportunity to target the neurological manifestations of GD,
which remains without a disease-modifying therapy.
Methods: We used a range of biological and biochemical in vitro assays to assess the effect of arimoclomol on
GCase activity in ex vivo systems of primary fibroblasts and neuronal-like cells from GD patients.
Findings:We found that arimoclomol induced relevant HSPs such as ER-resident HSP70 (BiP) and enhanced the
folding, maturation, activity, and correct cellular localization of mutated GCase across several genotypes includ-
ing the common L444P and N370S mutations in primary cells from GD patients. These effects where recapitu-
lated in a human neuronal model of GD obtained by differentiation of multipotent adult stem cells.
Interpretation: These data demonstrate the potential of HSP-targeting therapies in GCase-deficiencies and
strongly support the clinical development of arimoclomol as a potential therapeutic option for the neuronopathic
forms of GD.
Funding: The research was funded by Orphazyme A/S, Copenhagen, Denmark.
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(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gaucher disease (GD) is one of themost prevalent humanmetabolic
storage disorders belonging to the group of lysosomal storage diseases
(LSDs) [1]. It is primarily caused by autosomal recessive mutations in
the GBA gene leading to deficiency of the lysosomal enzyme acid beta-
glucosidase (GCase, EC 3.2.1.45). N460 GBA mutations, the majority
being missense mutations, have been identified (http://www.hgmd.cf.
ac.uk) [2]. The mutations commonly lead to increased protein
misfolding, premature degradation and abnormal chaperone recogni-
tion, which in turn lead to reduced GCase function. GCase dysfunction
leads to the accumulation of its substrate glucosylceramide (GlcCer)
n open access article under
and other sphingolipids, including glucosylsphingosine (GlcSph) caus-
ing cellular dysfunction and subsequent clinical manifestations primar-
ily in the central nervous system (CNS), visceral and bone systems [3].

GD is clinically divided in visceral type I (GD1), acute neuronopathic
type 2 (GD2) and sub-acute neuronopathic type 3 (GD3) forms, al-
though the age of onset and the phenotypic expression of the disease
is variable [4]. Visceral involvement in GD includes liver and spleen en-
largement and dysfunction, as well as the displacement of normal bone
marrow by storage cells causing anemia, thrombocytopenia, and bone
disease. Although GD1 is considered a non-neuronopathic form, there
is increasing evidence that neurological symptoms (i.e. Parkinson's syn-
drome, tremors, peripheral neuropathy) become a prominent part of
the pathology as the disease progresses [5–9]. GD2 is very rare (1% of
cases) and is associated with a severe and rapid neurodegeneration,
leading to an early death, usually before the second year of life [10]. In
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Neuronopathic Gaucher disease is an ultra-rare, devastating
monogenetic disorder without any available therapy. Gaucher Dis-
ease is caused by mutations in the GBA gene which encodes the
lysosomal enzyme acid beta-glucosidase (GCase). The mutations
are primarily missense mutations giving rise to misfolded variants
of GCase. Most of the mutations, including all the most common,
appear amenable to chaperoning strategies as previous studies
have indicated that induction of molecular chaperones of the
Heat shock protein 70 (HSP70) family can improve residual activ-
ity of misfolded GCase.

Added value of this study

Arimoclomol is an orally available, brain-penetrant small molecule
HSP70 amplifier in late-stage clinical development in several dis-
eases. The data reported herein provide proof-of-concept for the
development of arimoclomol as a potential therapy for
neuronopathic Gaucher disease and have been instrumental for
the advancement of arimoclomol into the currently running
phase II clinical trial in Gaucher patients.
The data herein not only offer novel mechanistic insight to how
the HSP70 system can be mobilized as a potential therapeutic op-
tion for neuronopathic Gaucher disease, but by extension also
holds promise for Parkinson's disease, as mutations in GBA con-
stitute the highest genetic risk factor for the development of
Parkinson's disease.

Implications of all the available evidence

In summary, the available evidence suggest that amplification of
HSP70 family members might provide a therapeutic benefit to dis-
eases associated with GCase deficiency and that arimoclomol
could provide a first-in-class therapy for neuronopathic Gaucher
disease.
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GD3, visceral and biochemical signs are similar to GD1 and the first
symptoms are usually due to peripheral involvement. The involvement
of the CNS generally appears later and includes oculomotor apraxia,
ataxia, epilepsy, and mental deterioration [11]. Currently, two types of
treatments are available for GD1: enzyme replacement therapy (ERT)
and substrate reduction therapy (SRT) but there are no approved
disease-modifying treatments for the neurological forms of the disease.

The molecular mechanisms involved in the neurodegenerative pro-
cess in GD are not fully elucidated but the disease pathology ultimately
stem from the loss of function of GCase. Mutations in the GBA gene are
numerous with the majority being missense mutations that affect the
correct folding andmaturation of the protein, but do not completely ab-
rogate the catalytic activity [2]. In GD,misfolded GCase is retained in the
endoplasmic reticulum (ER), fromwhere it is retro-translocated back to
the cytosol to be eliminated by the ubiquitin proteasome pathway [12].
This process, known as ER-associated degradation (ERAD), impede mu-
tant GCase from reaching the lysosome, leading to compromised lyso-
somal GCase activity and function. In addition, the presence of
misfolded GCase triggers the unfolded protein response (UPR) and in-
terferes with the degradation of other proteins [13]. The loss of GCase
function leads to accumulation of metabolites such as GlcCer and
GlcSph, expansion of a compromised, destabilized lysosomal compart-
ment, inflammation and loss of neurons potentially involving the
Rip3k pathway [3,14,15].
Members of the HSP70 family of molecular chaperones include
HSP70 encoded by HSPA1A and BiP/GRP78/HSP70-5 encoded by HSPA5
[16], which have been shown to be important for lysosomal and GCase
function [17–21]. Studies of GCase, and itsmost prevalentmissensemu-
tations for non-neuronopathic (N370S) and neuronopathic (L444P) GD,
have demonstrated that it binds to HSP70 and HSP90 which in concert
with cochaperones such as TCP1 guide the enzyme through to either
correct folding and lysosomal activity, or to the ubiquitin proteasome
pathway for degradation [21–24].

Several lines of evidence indicate that it is possible to at least par-
tially rescue GCase folding and function by strategies aimed at increas-
ing the levels of cellular molecular chaperones such as HSP70 or
through the use of small molecules acting as chemical chaperones
[22–29].

Arimoclomol, a small molecule amplifier of HSP70 and other HSP
chaperones, has emerged as a potential therapeutic agent for several
LSDs includingNiemann-PickDisease Type C (NPC) [18] and is currently
being evaluated in a phase II/III trial for NPC (ClinicalTrials.gov identifier
NCT02612129). Importantly, previous clinical studies of other neurode-
generative diseases, such as amyotrophic lateral sclerosis (ALS) and
sporadic inclusion body myositis (sIBM), have demonstrated a safety
profile for arimoclomol compliant with chronic use, as well as pene-
trance to the CNS and signs of efficacy [30–32]. Based on the clinical
safety-profile, the CNS-penetrable ability, and theHSP-inducingmecha-
nism of action, arimoclomol may present a first-in-class treatment par-
adigm for GD patients – particularly patients with currently untreated
neurological symptoms. We therefore investigated the effect of
arimoclomol on the stability, localization and enzymatic activity of
GCase across a broad range of genotypes in primary cultured GD fibro-
blasts and in a human neuronal model of GD obtained through differen-
tiation of multipotent adult stem cells (MASCs).

2. Materials and methods

2.1. Cell culture and drug treatment

All human fibroblast cell lines used for this study were obtained
from Coriell Biorepositories and cultured under standard cell culture
conditions (37 °C and 5% CO2) in DMEM supplemented with non-
essential amino acids (NEAA), 1% Pen-Strep and 12% FCS.

Cells were treated with vehicle (PBS) or arimoclomol-citrate (BRX-
345) dissolved in PBS for the indicated time and medium containing
fresh compound was added every 2–3 days. For experiments with imi-
glucerase cells were treated for 5 days with medium replenishment
every 2–3 days. Fresh medium containing compounds was also added
on the day before visualization by ABPs.

Arimoclomol-citrate is a proprietary compound owned by
Orphazyme A/S.

2.2. Western blotting and EndoH assay

Cells were collected and lysed in 25 mM KPi buffer, pH 6.5 + 0.1%
Triton X-100 including a cocktail of protease inhibitors (Roche). Protein
concentration was determined using with the bicinchoninic acid pro-
tein assay (BCA) kit (Pierce). 10–20 μg total protein/sample was used
forWB of protein levels or used for EndoH-treatment according toman-
ufacturer's instructions (New England Biolabs). Western blots were
quantified using the freeware program Fiji (an image processing pack-
age to ImageJ, https://fiji.sc/).

Antibodies used were: anti-GBA (#WH0002629M1, Sigma-Aldrich,
RRID: AB_1841770), anti-Vinculin (# V9131, Sigma-Aldrich, RRID:
AB_477629), anti-GRP78 (BiP) (# sc-13968, Santa Cruz Biotechnology,
RRID: AB_2119991), anti-RPA (# sc-28709, Santa Cruz Biotechnology,
RRID: AB_2238546), and anti-Beta actin (# A2066, Sigma-Aldrich,
RRID: AB_476693).

http://ClinicalTrials.gov
https://fiji.sc
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2.3. GCase activity

The fluorometric GCase enzyme activity assay was performed as de-
scribed previously [29]. Briefly, cells were seeded in 96 well plates and
treated in biological triplicate with various concentrations of
arimoclomol for the indicated time. Medium was replenished every
2–3 days.

2.4. ABP labelling and quantification

Fibroblasts were collected and lysed, and protein concentration de-
termined. For labelling, equal amounts of protein were incubated with
cy5-labeled ABP ME569 in 150 mM McIlvaine buffer, pH 5.2 for 1 h at
37 °C. Samples were denatured with 4× Laemmli buffer, boiled for
5 min at 98 °C and resolved by SDS-PAGE using the TGX gel system
(Bio-Rad). The gels were placed in an imager (G:BOX ChemiXR5,
Syngene) and fluorescence was detected with red LED lightning mod-
ules/705 M filter. The amount of labeled GCase was quantified using
GeneTools v.4.03.01.0 (Syngene).

For visualization, fixed cells were incubated with ABP MDW933
(green) and images were acquired using the AXIO (Zeiss) equipped
with AxioCamMRm(LED ex 470nm, em500-550nm). Imageswere an-
alyzed using freeware program Fiji (an image processing package to
ImageJ, https://fiji.sc/).

2.5. MASC generation and differentiation

Human skin-derivedmultipotent adult stem cells (MASCs) were ob-
tained from skin biopsies from healthy donors and patients affected by
GD, who were under observation at the Regional Centre for Rare Dis-
eases. Written consent was obtained from the subjects or from care-
givers or guardians on behalf of the minors involved in the study.

MASCs enriched cultures were obtained, from already established
skin fibroblast cultures at early passages (P1, P2, P3), as previously de-
scribed [33]. Briefly, 1 × 106 cells obtained from confluent primary
skin fibroblast cultures were seeded onto 100mmplates coatedwith fi-
bronectin and expanded at least for three passages in a selective media
composed of 60% DMEM/40% MCDB-201 (Sigma-Aldrich) supple-
mentedwith 1mg/ml Linoleic Acid-BSA (Sigma-Aldrich);10–9M dexa-
methasone (Sigma-Aldrich); 10–4 M Ascorbic acid-2 phosphate
(Sigma-Aldrich); 1× Insulin-transferrin‑sodium selenite (Sigma-Al-
drich); 2% fetal bovine serum (FBS), (STEMCELL Technologies),
10 ng/ml human PDGF-BB (Peprotech EC); 10 ng /ml human EGF
(Peprotech EC). Mediumwas replaced every 4 days and cells were spit-
ted when they reached 70/80% confluence.

MASCs obtained after 3 passages in selectivemediumwere detached
and and stained with the following primary conjugated antibodies:
CD13, CD49a, CD49b, CD49d, CD90, CD73, CD44, CD45, human leuko-
cyte antigen-D related (HLA-DR), CD34, and CD271 (BD Biosciences,
Franklin Lakes, NJ, USA); CD105 and kinase insert domain receptor
(KDR; Serotec, Oxford, United Kingdom); and CD133 (Miltenyi Biotec,
Bergisch Gladbach, Germany). The percentage of cells expressing all
the antigens was determined by fluorescence-activated cell sorting
(FACS) analysis (CyAn; Beckman Coulter, Brea, CA, USA). Properly con-
jugated isotype-matched antibodies were used as negative controls.

To induce neural differentiation, MASCs were seeded at a density of
8000 cells/cm2 into 96 multiwell plates (BD Biosciences) or on cover-
slips in medium containing DMEM-HG with 10% FBS (called N1 me-
dium). After 24 h the DMEM-HG was replaced with fresh medium
supplemented with 1% of B27 (Invitrogen), 10 ng/ml EGF (Peprotech)
and 20 ng/ml bFGF (Peprotech) (called N2 medium) for 5 days. There-
after, cells were incubated for 24/48 h in DMEM supplemented with 5
μg/ml insulin, 200 M of indomethacin and 0.5 mM IBMX (all from
Sigma-Aldrich) without FBS (called N3 medium). The actual differenti-
ation was determined by analyzing the expression of the neuron spe-
cific markers, NeuN and Tubulin b3.
For treatment, vehicle or 400 μΜ arimoclomol was included in the
N2 medium, replenished after 3 days and added to the N3 medium for
a total treatment time of 9 days.

2.6. Statistical analysis

GraphPad Prismv.7.03wasused for statistical analysis. Unless other-
wise stated, repeated measures (RM) ANOVAs were calculated using a
mixed model for repeated measures with treatments/timepoints as
fixed effects and experiment as repeated random effect. Multiplicity
was adjusted using Sidak-Holm or Dunnett's method. Welch-
Satterthwaite t-tests were used to correct for unequal variance.

3. Results

3.1. Arimoclomol increases the quantity and ER to golgi maturation of mu-
tated GCase in primary GD patient fibroblasts

We obtained a panel of primary skin-derived fibroblast cell lines
from individuals diagnosed with GD covering the major genotypes
and from three healthy donors. Sequencing of the GBA gene confirmed
the presence of the reported pathogenic mutations of GBA in all GD
cell lines (Supplementary Table 1). We also identified the presence of
a T369M variant in the widely used control fibroblast cell line
GM05659 [WT/T369M], which is therefore termed as a carrier cell
line. T369M does not cause GD in homozygous carriers, but may be as-
sociated with an increased risk of developing Parkinson's disease
[34,35].

Comparison of mRNA, protein and GCase activity levels across the
WT andGD primary patient fibroblasts demonstrated no correlation be-
tween the level of GBA mRNA and disease (Fig. 1a), whereas
neuronopathic GD (nGD) cell lines showed a profound decrease in the
GCase protein level compared to WT fibroblasts (Fig. 1b). The GD1 cell
line GM00372 [N370S/1-bp ins 84G] also displayed a clear decrease in
the amount of GCase protein, which is likely caused by the premature
stop codon being produced by the 1-bp ins 84G allele [36], whereas
two other non-neuronopathic GD cell lines GM01607 [N370S/V394L]
and ND34263 [N370S/N370S] had only slightly reduced GCase protein
levels (Fig. 1b).

Analysis of basal GCase activity showed reduced activity of the mu-
tated GCase in all the GD cell lines investigated, aswell as a slight reduc-
tion in the T369M carrier cell line (Fig. 1c).

Arimoclomol is a well-described co-inducer of the heat shock re-
sponse, which includes the amplification of HSP70 chaperones [37,38].
We first tested if arimoclomol amplifies and prolongs the expression
of HSP70 encoded by HSPA1A in primary L444P/L444P GD cells. We
found that doses of arimoclomol of 100–400 μM increased the expres-
sion ofHSPA1A suggesting a relatively high stress-threshold in thefibro-
blasts under standard cell culture conditions (Supplementary Fig. 1a). In
addition, a time-dependent increase of HSPA1A and HSPA5was seen by
treatment with 400 μM arimoclomol (Supplementary Fig. 1a–b).

The increase ofHSPA5was confirmed bywestern blot analysis of BiP.
The levels of BiP were significantly increased by 100 μM and 200 μM
arimoclomol in GM10915 [L444P/L444P] cells, by 200 μM and 400 μM
arimoclomol in GM01607 [N370S/V394L] cells, whereas the minor in-
creases in GM02627 [G325R/C342G] cells did not reach statistical signif-
icance. (Supplementary Fig. 1c). We also confirmed that arimoclomol
amplified and prolonged the heat shock response in heat-shocked GD
cells (Supplementary Fig. 1d).

We then investigated the folding and ER-to-golgi transition of mu-
tant GCase variants with or without arimoclomol treatment. Cell lysates
were digested with Endoglycosidase H (EndoH), an endoglycosidase
that specifically cleaves high mannose (N4 mannose residues) but not
mature N-glycan complexes, allowing differentiation between imma-
ture glycoproteins that have not reached the mid-Golgi (EndoH-sensi-
tive) and mature glycoproteins (EndoH-resistant) [39].

https://fiji.sc
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Fig. 1.Arimoclomol increases the quantity and ER to golgi maturation of mutated GCase in primary GDpatient fibroblasts. a) Level ofGBAmRNA expression in primary GD,WT and carrier
fibroblasts relative to the expression level inGM00498 (WT/WT#1) cells (stippled line). b)WB analysis of GCaseprotein levels in primaryGDfibroblasts, carrier andWT cell lines. Vinculin
was used as loading control. c) Basal level of GCase activity (Fluorescence units (FLU) normalized to cell density) in the primary GD fibroblasts, carrier andWT cell lines. Data is reported as
mean + SEM of 3–4 experiments/cell line. d-f) WB analysis of GCase in (d) nGD fibroblasts, (e) non-neuronopathic GD or (f) carrier and WT cell lines treated with the indicated
concentrations of arimoclomol for 5 days. Lysates were subjected to EndoH-digestion analysis and the EndoH-resistant fraction is marked by **. RPA or Vinculin served as loading
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resistant part in black. WBs are representative of 3 independent experiments/cell line.
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Arimoclomol dose-dependently increased the amount of
GCase in primary GD fibroblasts across all tested genotypes, including
neuronopathic and non-neuronopathic associated mutations
(Fig. 1d–e). The [G325R/C342G] GCase mutations in GM02627 cells
are not well characterized, and we show here that they result in low
levels of GCase protein despite a normal level of GBAmRNA expression
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(Fig. 1a, b, d). The EndoH assay showed a clear ER-retention of GCase in
this cell line, but the compound heterozygosity does not allow for anal-
ysis of each specific mutation. However, it is likely that both G325R and
C342G are trapped in the ER, as almost all GCasewas digested by EndoH,
and incomplete GCase processing has been reported [40]. Nevertheless,
arimoclomol increased the amount of both immature andmatureGCase
in the GM02627 cell line (Fig. 1d). Likewise, the GM01260 [L444P/
P415R] cell line has been shown to produce unstable and immature
GCase [40], which was confirmed by our EndoH analysis (Fig. 1d). At
this point, we cannot discriminate between the P415R and L444Pmuta-
tions in GM01260 cells. In contrast to the L444P mutation [12], the
P415R is an uncharacterized mutation that may affect the binding of
GCase to LIMP2 and thereby reduce the trafficking of the P415R GCase
from the ER to the lysosomes [41]. We found a clear augmentation of
immature GCase by arimoclomol, as well as small increase in the
EndoH-resistant pool of GCase in the GM01260 cell line (Fig. 1d). In ad-
dition, GM10915 [L444P/L444P] cells treated with arimoclomol had a
profound increase in mature GCase, as well as a small increase in the
level of immature GCase (Fig. 1d). Thus, treatmentwith arimoclomol in-
creased EndoH resistant levels of GCase for all three nGD cell lines
(Fig. 1d).

Compared to the L444P and other nGD-associated mutations, we
found the non-neuronopathic associated mutation N370S, to be less
retained in the ER (Fig. 1e), as also observed by others [42]. A precise
quantification of the effect of arimoclomol on the EndoH resistant levels
in non-neuronopathic GD cells is therefore difficult, but in general there
were slightly more EndoH-resistant GCase in arimoclomol-treated non-
neuronopathic GD cells (Fig. 1e). EndoH digestion analysis of WT GCase
demonstrated thatWT GCase is subject to some degree of EndoH diges-
tion as reported previously [12,42] and that arimoclomol could also aug-
ment WT GCase levels (Fig. 1f).

3.2. Arimoclomol increases residual GCase activity in GD cells

Having demonstrated a beneficial effect of arimoclomol on the mat-
uration ofmutant GCase protein in primaryGD fibroblastswe next eval-
uated the effect of arimoclomol on GCase activity. The GM10915
[L444P/L444P] cell line was treated with 50–800 μM arimoclomol for
1–5 days and GCase activity was measured using 4-MUG as substrate.
For each time point, the relative GCase activity in arimoclomol- treated
cells was calculated as fold change to control (PBS treated cells). A time-
and dose-dependent increase in GCase activity was seen in cells treated
with arimoclomol corresponding to the observed amplification of
HSP70 family members (Fig. 2a and Supplementary Fig. 1a–d). Longer
exposure (28 days) at lower concentrations of arimoclomol resulted in
increases of GCase activity in L444P/RecNcil cells up to the level of
GCase activity in a carrier cell line (WT/RecNcil) (Fig. 2b). A beginning
cytostatic effect at 400–800 μM arimoclomol was noticed, but no signs
of cytotoxicity was observed (Supplementary Fig. 2a–b).

To qualify the increases in GCase activity observed in primary GD fi-
broblasts treated with arimoclomol, we examined the levels of GCase
activity obtainable with the current standard of care therapy for non-
neuronopathic GD, enzyme replacement therapy, in the form of recom-
binant GCase (imiglucerase). We treated L444P/L444P cells with
imiglucerase or arimoclomol for 5 days. Imiglurase is primarily taken
up by cells via themannose receptormediated pathway, which is highly
expressed by macrophages [43]. As fibroblasts express much less man-
nose receptor, cellular uptake and activity of imiglucerase from the cell
culturemediumwas confirmed using activity-based probes (ABPs) [44]
(Fig. 2c). A dose-dependent increase in GCase activity was obtained for
imiglucerase (Fig. 2d), with maximum obtainable activity levelling out
at 0.5–1.0 U/mL. The increase in GCase activity obtained by 400 μM
arimoclomol was comparable to themaximum attainable activity levels
with imiglucerase in L444P/L444P GD fibroblasts (Fig. 2c–d).

We then proceeded to investigate the effect of 5-days treatment
with arimoclomol on residual GCase activity across our panel of primary
GD fibroblasts. In linewith the observed effects on HSP70 induction and
GCase transcription and maturation, arimoclomol significantly in-
creased residual GCase activity across all genotypes including both
neuronopathic and non-neuronopathic alleles (Fig. 2e). We also ob-
served significant increases in the two WT cell lines, but not in the
T369M carrier cell line (Fig. 2f).

3.3. Arimoclomol improves the correct lysosomal localization of GCase
in GD cells

To asses if the rescued GCase reaches the correct intracellular local-
ization and to validate the observed improvement inmaturation and ac-
tivity increases, we took advantage of the highly specific fluorescent
ABPs which allow labeling of active GCase molecules in cells [44]. WT,
GM01607 [N370S/V394L], and GM02627 [G325R/C342G] cells were
treated with 400 μM arimoclomol for 5 days. Imaging of fixed cells
showed clear punctuate high intensity GCase localization in WT cells,
whereas GD cell lines displayed decreased labeling (Fig. 3a). The label-
ing of active GCase in GM10915 [L444P/L444P] was below detection
level and this cell line was therefore not included in the analysis. The
GCase labelling intensity was increased in arimoclomol-treated primary
GD patient fibroblasts, with a clear lysosomal distribution pattern. The
primary image analysis was corroborated by automated image quantifi-
cation demonstrating a significant fluorescence intensity shift towards
the WT profile in the arimoclomol treated GD fibroblasts compared to
untreated controls (Fig. 3b–d).

We further quantified the effect of arimoclomol treatment on active
GCase labeling in GD cells by using SDS-page resolved cell lysates incu-
batedwith ABP (Fig. 3e–g). The amount of active, labeledGCasewas sig-
nificantly increased by arimoclomol for both non-neuronopathic and
neuronopathic genotypes.

3.4. Arimoclomol increases GCase activity in neuronal-like cells from
GD patients

We next evaluated the effect of arimoclomol in a human neuronal
model of GD, obtained by induced neuronal differentiation of
multipotent adult stem cells (MASCs) isolated from neuronopathic GD
patients [33]. MASC-derived neuronal cultures were established from
a healthy donor (WT) and from neuronopathic GD patients carrying
three different genotypes: F213I/L444P, L444P/L444P and IVS2 + 1G
N A/N188S. In addition, MASCs were obtained from one non-
neuronopathic GD patient (Supplementary Table 2). GBA sequencing
identified this GD individual as a compound heterozygous for the com-
mon N370S mutation and a variant not previously reported: c.516C N A
that results in a codon change from tyrosine 133 (TAC) to a stop codon
(TAA). However, the analysis of the GBA mRNA isolated from the
patient's cells showed that only the allele carrying the normal cytosine
in position 516 was expressed (Supplementary Fig. 4a). These results
suggest that the Y133* mutation leads to the expression of an unstable
transcript resulting in either no or very little truncated GCase protein.
We characterized the surface immunophenotype of theMASCs (Supple-
mentary Table 3) as previously described and observed nomajor differ-
ences between MASCs from GD patients and healthy donors [33]. The
differentiation of early passage MASCs (Passage 1–3) to neuronal-like
cells was ascertained by immunostaining of the neuronal markers
NeuN and tubulin beta 3 (TUBB3) (Fig. 4a, b). The presence of
arimoclomol during differentiation did not impact the neuronal differ-
entiation (Fig. 4a, b).

The level of GCase activitywas analyzed in thefinal stage of neuronal
differentiation. The GD-derived neurons displayed severely diminished
activity of GCase compared to healthy donor derived cells (Fig. 4c, Sup-
plementary Table 2). In line with the results obtained in GD patient fi-
broblasts, low levels of GCase activity were associated with reduced
levels of GCase protein in neuronally differentiated GD cells compared
to healthy controls (Supplementary Fig. 5a).
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We proceeded to investigate the effect of arimoclomol on the level,
maturation and activity of GCase in GD-patient derived neuronal cell
cultures (Fig. 4d–f). Interestingly, EndoH treatment only had a modest
effect on GCase in the WT neuronal cells which may suggest that the
WT GCase in these cells is less subject to premature degradation than
GCase in WT fibroblasts. Treatment with arimoclomol augmented
both the level and EndoH resistant fraction of GCase in both
neuronopathic and non-neuronopathic GD patient derived neuronal
cells (Fig. 4d, e). In linewith theWB and EndoH-assay results, treatment
with arimoclomol also resulted in a corresponding significant increase
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in GCase activity in neuronal cells from both neuronopathic and non-
neuronopathic GD patients (Fig. 4f).

4. Discussion

Our results demonstrate that arimoclomol is a heat shock protein
amplifying small molecule that may be useful for the treatment of
Gaucher disease including its neuronopathic forms which have no ap-
proved treatments available.

In these studies we have focused on ex vivo systems in order to ad-
dress the fundamental concept of HSP-mediated refolding across the
major genotypes of Gaucher disease and investigating the biological ra-
tionale for clinical development of arimoclomol for neuronopathic
Gaucher disease.

We demonstrate that arimoclomol amplifies the production of dis-
ease mechanism-relevant molecular chaperones of the HSP70 family
and improves mutant GCase maturation and function across major
neuronopathic and non-neuronopathic genotypes in both human pri-
mary GD fibroblasts as well as in a neuronal cellular model of the
disease.

As arimoclomol is a clinically enabled compound already in phase II/
III clinical trials for Niemann-Pick disease type C, sporadic Inclusion
Body Myositis and Amyotrophic Lateral Sclerosis (Clinicaltrials.gov
identifiers NCT02612129, NCT02753530, and NCT03491462 respec-
tively), the data reported herein provide preclinical proof-of-concept
for the investigation of arimoclomol's therapeutic value in Gaucher
disease.

While it is a known challenge to translate doses from in vitro studies
to a human clinical setting, let alone across diseases, the arimoclomol
doses used herein are congruent with the doses used for the preclinical
studies in the sphingolipid storage disease Niemann-Pick type C
(Kirkegaard et al., Science Transl. Med. 2016 and manuscript in prep.)
which recently reported encouraging top-line results from a phase III
clinical trial. Furthermore, the same type of in vitro studies has
formed basis for the development of the recently approved drug
migalastat, a small chemical chaperone developed for misfolded ver-
sions of the enzyme alpha-galactosidase A, in the sphingolipid storage
disease Fabry disease (https://www.fda.gov/newsevents/newsroom/
pressannouncements/ucm616598.htm).

Arimoclomol amplifies the production of HSP70 family members
which have been implicated in the proper folding and chaperoning of
GCase as well as in maintenance of lysosomal integrity during cellular
stress [18–20,22–24,28,29]. Studies of the induction of HSPs by small
molecules in Gaucher Disease have until now made use of agents that
provide proof-of-principle but due to their cytotoxic nature are not
suited for development for chronic diseases [20,28,45]. These studies
have however, revealed several HSP-dependentmechanisms regulating
the processing of GCase. Studies in cellular models of GD have shown
that HSP-induction by agents such as celastrol and MG-132 result in el-
evated GCase activity through increases in both cytosolic and ER-
resident chaperones of the HSP70 family, through a process dependent
on the UPR responsive transcription factors Ire1, ATF6 and PERK [28].
Our data strongly supports a role for HSP70 and HSPA5/BiP in the
mode of action of arimoclomol and the processing and maturation of
GCase, but we did not observe any transcriptional upregulaton of UPR
Fig. 2. Arimoclomol augments residual GCase activity in primary GD patient fibroblasts. a) G
1–5 days. Relative GCase activity is shown as fold change compared to vehicle-treated cells
each arimoclomol concentration was evaluated against vehicle within the same day using a
effect. Multiplicity was adjusted using Dunnett's method. (* b 0.05, ** b 0.01, *** b 0.001, ***
cells treated with arimoclomol for 4 weeks. Data are shown as mean + SD, n = 3–6. c) Rep
treated with vehicle (PBS), 400 μM arimoclomol or 0.25–1.0 U/ml imiglucerase for 5 days. Sca
(Imi) on GCase activity levels in GM10915 cells treated for 5 days. Data are shown as mea
multiplicity adjusting using Dunnett's method. e) Relative GCase activity in primary GD pa
fibroblast cell lines treated with the indicated concentrations of arimoclomol for 5 days. For e
analysis was done using a 1-way RM ANOVA model. Multiplicity was adjusted using Dunnett's
responsive transcription factors (GM10915 cell line assessed at 48, 72
and 120 h exposure to 400 μM arimoclomol) and our attempts at
knock-down of HSPA5/BiP did not result in sufficient downregulation
to unequivocally resolve the potential role of individual HSP70 family
members in these processes (data not shown). However, in line with
the aforementioned studies and our data presented herein, additional
reports have corroborated a role of the HSP70 system in GD cells, by
showing that celastrol upregulates HSP70 and its associated
cochaperone BCL2-associated athanogene 3 (BAG3), interrupting the
HSP90-dependent degradation of GCase [23,24]. The role of HSP70 in
the regulation of GCase activity has been further expanded by recent
studies suggesting that HSP70 is recruited directly to GCase by
progranulin (PGRN) acting as a critical cochaperone [21]. In addition,
several other HSP-inducing agents such as HDAC-, proteasome- and
HSP90 inhibitors as well as L-type Ca-channel blockers have demon-
strated that manipulation of the HSP-systems can improve the folding
and activity of mutant GCase [20,22,28,29,46]. Interestingly, parts of
themechanismof howHDAC inhibitors elicit their GCase rescuing effect
might be ascribed to their role as HSP90 inhibitors, as the HDAC inhibi-
tors vorinostat and LB-205 both bind to the middle domain of HSP90,
resulting in less recognition of misfolded GCase and simultaneous up-
regulation of the HSP70 chaperones involved in refolding [29]. Studies
of vorinostat in NPC has further expanded the knowledge on how
HDAC inhibitors rescue misfolded lysosomal proteins through modula-
tion of HSPs by a mechanism likely involving inhibition of HDAC1 [47].
This is supported by data demonstrating that HSF1, themajor transcrip-
tion factor for HSP70 and other HSPs, specifically interacts with HDAC1
and HDAC2 to regulate gene expression during heat shock [47,48]. It is
worth noting that activation of the heat-shock response is associated
with a transient downregulation of genes involved in cell cycle progres-
sion, translation and metabolism, and as such a part of the mechanism
of action of HSP inducing drugs is expected to be cytostatic effects (Sup-
plementary Fig. 2) [49,50].

Several of the small molecules that increases GCase activity in GD fi-
broblasts by preventing improper degradation of GCase, e.g. ambroxol,
celastrol andMG132, have also been shown to transcriptionally increase
GBA levels. GBA is a member of the CLEAR network (coordinated lyso-
somal expression and regulation) that consists of genes encoding the
proteins required for lysosomal biogenesis and function [51] and
ambroxol was shown to activate the CLEAR network in GD cells [52].
GBA is also a target gene of Heat Shock Factor 1 (HSF1), the master reg-
ulator of the heat shock response [49], which may be the underlying
mechanism for the transcriptional upregulation of GBA seen with
celastrol and MG132 [53]. We found that arimoclomol increased the
expression of GBA in a time and dose dependent manner in L444P/
L444P GD fibroblasts (Supplementary Fig. 3), thus suggesting that
arimoclomol can increase GCase activity by stabilization of misfolded
GCase, as well as by making more de novo synthesized GCase available
for the stabilization, potentially through its fundamental HSF-1 activat-
ing property.

Arimoclomol holds particular promise for neuronopathic GD as it is a
well-tolerated, CNS-penetrant molecule currently in a Phase II/III clini-
cal trial for another neurodegenerative LSD, NPC [30,31] (Clinialtrials.
gov identifier NCT02612129). Through its mechanism of increasing
the expression of multiple HSPs, arimoclomol could potentially target
Case activity in GM10915 (L444P/L444P) cells treated with 50–800 μM arimoclomol for
for each time point. Data are mean + SEM of 3 independent experiments. The effect of
2-way RM ANOVA model with the interaction arimoclomol concentration*day as fixed
* b 0.0001). b) GCase activity in GM00877 (L444P/RecNcil) and GM00878 (WT/RecNcil)
resentative images of GCase labeled with ABP-green in GM10915 (L444P/L444P) cells
le bars are 30 μM. d) Effect of 400 μM arimoclomol (ari) and 0.125–1 U/ml Imiglucerase
n + SEM, n = 4. Effects of treatments were compared using 1-way RM ANOVA with
tient fibroblasts treated with arimoclomol for 5 days. f) Relative GCase activity in WT
-f) data are reportedas mean ± SEM of 3–4 independent experiments/cell line. Statistical
method (* b 0.05, ** b 0.01, *** b 0.001, **** b 0.0001).

http://Clinicaltrials.gov
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm616598.htm
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm616598.htm
http://Clinialtrials.gov
http://Clinialtrials.gov
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GD and its CNS related events at other levels besides the HSP system's
capacity to improve the folding, maturation and activity of GCase as re-
ported herein. By amplifying cellular levels of HSP70, other HSP70
lysosome-specific cytoprotective activities such as improving the func-
tion of other sphingolipid degrading enzymes and protection against ly-
sosomal destabilization may be achieved, as has been recently
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demonstrated for a number of related sphingolipid storage diseases
[18–20,54,55]. The reported capacity of HSP70 to protect against lyso-
somal membrane permeabilization and lysosomal cell death pathways
may be particularly interesting aspects of HSP70 amplification in GD
as the storage metabolite glucosylsphingosine has been shown to initi-
ate lysosomal dysfunction and cell death [56]. We therefore also sought
to analyze the levels of GCase substrate storage but this proved to be fu-
tile as we, in line with other reports, did not find any increased levels of
GlcCer in the Gaucher disease fibroblasts andwere technically unable to
determine any amount of GlcSph(data not shown) [57]. As GlcSph is not
only a storage metabolite in Gaucher Disease but also implicated in
other sphingolipidoses such as Krabbe disease, it would be intriguing
to explore the role of this metabolite and its response to arimoclomol
further in other model systems. Not least so as this might be relevant
for the reported pan-sphingolipidoses potential of HSP-based therapies
[18].

Interestingly, it has recently been demonstrated that neuronal cell
death in a model of GD [15] is necroptotic and involves the receptor-
interacting protein Kinase-3 (RIPK3) pathway which is regulated by
the HSP70 cochaperone CHIP (Carboxyl terminus of HSP70-interacting
protein) [58]. Further, one of the hallmarks of necroptosis is lysosomal
membrane permeabilization, a cellular event which HSP70 has been
demonstrated to protect against in several disease models including
sphingolipid storage diseases [3,18,19,54,59–64].

Although much remains to be understood about the molecular
mechanisms leading to GD and in particular its neurological manifesta-
tions, it is clear that the cytoprotective properties of the Heat shock pro-
teins, in particular HSP70 and its cochaperones, converge with the
pathogenesis of GD at several critical levels.

Neuronopathic Gaucher disease remains without any available
treatment, but studies of residual activity in Gaucher disease patients in-
dicate that the GCase activity that differentiates the manifestation of
early onset neurological symptoms and hence non-neuronopathic and
neuronopathic forms of the disease seems to be relatively small
(Approx. 20% difference in residual activity) [65]. AlthoughGaucher dis-
ease is known to be heterogenic and the genotype/phenotype relation-
ship is still not fully resolved, it seems reasonable to assume that the
threshold for increases in residual GCase activity in the CNS that could
translate to a clinically meaningful outcome for CNS symptoms would
be of the samemagnitude. This hypotheses is supported by the ongoing
clinical trial of the substrate reduction therapy Venglustat/GZ-SAR
402671 for Gaucher disease type 3, in which the low residual enzyme
activity levels of GCase is conceived to be adequate to resolve the stor-
age accumulation, provided the substrate reduction is efficient enough
(Clinicaltrials.gov ID: NCT02843035).

We observe significant increases in GCase activity with exposure to
arimoclomol of only 5 days, but our studies in Gaucher disease fibro-
blasts also indicate that the longer the cells are exposed to arimoclomol,
the more residual activity can be salvaged. This is an important consid-
eration when attempting to translate these findings to a potential clini-
cal setting. While equivalent increases where seen in the neuronal-like
MASC cell system during shorter timelines (i.e. up to 9 days) it was not
possible to maintain the neuronal like MASCs in their differentiated
state for a longer time, precluding experiments of longer duration.

In summary, based on these observations and the data herein, we
suggest that arimoclomol constitute a potential disease-modifying
first-in-class compound for the treatment of Gaucher disease, in
Fig. 4. Arimoclomol increases GCase expression, lysosomal localization and activity of GCase
neuronal like cells stained for expression of a) Tubulin-beta 3 and b) NeuN. The nucleus is
quantifications of % positive cells derived from four GD patients with the indicated genotyp
healthy donors (WT/WT) or GD individuals with the indicated GBAmutations. Data are shown
neuronal-like cells were analyzed by oneway-ANOVA and multiplicity was adjusted by Dunn
derived from healthy donors (WT/WT) or GD individuals treated with vehicle or arimoclomol
like cells treated vehicle or 400 μM arimoclomol. A representative WB from one out of 2 exp
vehicle or 400 μM arimoclomol for 9 (L444P/L444P, F213I/L444P, N370S/Y133*) or 11 (IV
compared to vehicle-treated cells and represent the mean + SEM, n = 4–6. Statistical significa
particular neuronopathic GD which is currently without efficacious
treatment options.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.11.037.
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