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Abstract

The complex and heterogeneous nature of traumatic brain injury (TBI) has rendered the identification of diagnostic

and prognostic biomarkers elusive. A single acute biomarker may not be sufficient to categorize injury severity and/or

predict outcome. Using multivariate dimension reduction analyses, we tested the sensitivity and specificity of a multi-

analyte panel of proteins as an ensemble biomarker for TBI. Serum was collected within 24 h of injury in a cohort of

130 patients enrolled in the multi-center prospective Transforming Research and Clinical Knowledge in Traumatic

Brain Injury Pilot (TRACK-TBI Pilot) study and run on an array that measured 72 proteins. Using unsupervised

principal components analysis, we first identified the subset of protein changes accounting for the most variance across

patients. This yielded a group of 21 proteins that reflected an inverse relationship between inflammatory cytokines and

regulators of anti-inflammation, and generated an individual inflammatory profile score for each patient. We then

tested the association between these scores and computed tomography (CT) findings at hospital admission, as well as

their prognostic association with functional recovery at 3 and 6 months (Glasgow Outcome Scale-Extended), and

cognitive recovery at 6 months (California Verbal Learning Test, Second Edition) after injury. Inflammatory signa-

tures were significantly increased in patients with positive CT findings, as well as in those who showed poor or

incomplete recovery. Inflammation biomarker scores also showed significant sensitivity and specificity as a dis-

criminator of these outcome measures (all areas under the curve [AUCs] >0.62). This proof of concept for the

feasibility of multivariate biomarker identification demonstrates the prognostic validity of using a proteomic panel as a

potential biomarker for TBI.
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Introduction

Traumatic brain injury (TBI) is a major public health issue,

affecting 2,800,000 people per year in the United States alone,

and costing an estimated $60 billion.1 Despite continuing advances

in emergency medicine, surgical intervention, and rehabilitative

care, there remains a dearth of accurate and robust tools to aid in

diagnosis and management. Computed tomography (CT) imaging is

crucial for identifying gross pathology, but is largely insensitive to

mild TBI, which makes up roughly 90% of TBI cases.2,3 Likewise,

although the Glasgow Coma Scale (GCS) provides a broad catego-

rization of injury severity, its inter-rater reliability and consistency in

predicting outcome has been questioned.4,5

The struggle to find reliable indicators of injury severity and

outcome arises from the multifaceted nature of TBI. The acute bio-

logical response to TBI is a systemic process that involves, among

other pathologies, complex inflammatory and immunomodulatory

cascades. Therefore, detection of multiple protein concentration

changes from plasma and/or serum in response to TBI can provide

useful insight for diagnosis, and may help inform clinical manage-

ment decisions. Work in the past decade has identified several

promising candidate proteins as TBI blood biomarkers, most notably
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glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase

L1 (UCHL1), neurofilament light chain (NF-L), and microtubule

associated protein tau.6–14 Although each of these proteins has been

shown to adequately distinguish between TBI and healthy control

patients, we have recently shown that assessing them in combination

improved the sensitivity and specificity for identifying TBI.15 Others

have found similar improvements in predictive validity when

combing two or more biomarkers.16,17 These findings are a reminder

that a single biomarker may not account for the heterogeneity in

TBI processes, and suggest that integration of multiple biomarker

measurements may be a more accurate approach for addressing TBI

complexity.

We assessed the predictive value of a multi-analyte biomarker

panel for use as a diagnostic and prognostic tool in patients with TBI.

Acute (< 24 h after injury) plasma protein levels from patients en-

rolled in the prospective multi-center Transforming Research and

Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI

Pilot) clinical study were assessed using a multiplexed array that

allows for the simultaneous quantification of 72 proteins from one

sample. This commercially available array (Rules Based Medicine,

HumanMAP v2.0) covers a broad range of proteins involved in nu-

merous biological processes including inflammation, angiogenesis,

cellular metabolism, repair, and degeneration, and was specifically

chosen in order to optimally survey the complex and heterogeneous

nature of TBI. Therefore, the goal of the current analysis was to take

an exploratory approach to biomarker discovery; similar approaches

have been taken in the context of aging and neurodegenerative dis-

eases, using this same multi-analyte assay.18–20

We used an analytic dimensional reduction approach to identify

which cluster of proteins accounted for the most variance in the

patient population, then cross-validated these findings to test the

stability of the multi-analyte clusters. This approach allows the data

to inform us which constellation of biomarkers is most likely to be

relevant. We then tested the predictive validity of our identified

protein ensemble against CT findings and 3 and 6 month functional,

behavioral, and cognitive outcome measures.

Methods

Study population

A sample of 130 participants enrolled at three level I trauma
centers for the TRACK-TBI Pilot study was included in this
analysis. Patients were enrolled between April 2010 and January
2011. Inclusion criteria for enrollment in TRACK-TBI Pilot in-
cluded patients who presented to the emergency department (ED)
within 24 h of brain injury and were triaged to a clinically indicated
non-contrast head CT scan. Following the evidence-based guide-
lines, informed consent was obtained, and all data collection pro-
cedures followed protocols by the institutional review boards of the
participating centers (University of California, San Francisco/
Zuckerberg San Francisco General Hospital, San Francisco, CA;
University of Pittsburgh Medical Center, Pittsburgh, PA; and
University Medical Center Brackenridge, Austin, TX). Patients
were excluded if they were pregnant, could not speak English, or
presented with a psychological disorder that precluded them from
giving consent. Others were excluded because of major polytrauma
that would interfere with follow-up tests, infectious conditions, or
late-stage cancer.21

Sample collection

Blood samples were collected within 24 h of injury (see Fig. S1
for distribution of time from injury to blood draw for each patient),
and plasma was prepared according to the TBI Common Data

Elements (CDE) Biospecimens and Biomarkers Working Group
guidelines (see online supplementary material at http://www
.liebertpub.com).22 Samples were centrifuged, aliquoted, and fro-
zen at -80�C for future batch processing. Frozen plasma samples
were sent to Myriad Rules-Based Medicine (Myriad RBM, Austin,
TX) for protein analysis. Proteins were quantified using a multi-
plexed fluorescent immunoassay profile (HumanMAP v2.0). Pro-
tein concentrations for a total of 72 targets were quantified for each
sample. Lower limit of quantification and least detectable dose for
each analyte can be found in Table S1 (see online supplementary
material at http://www.liebertpub.com).

Initial CT scan

A brain CT was performed on all patients within 24 h of ED
presentation. CT data collection and interpretation were performed
in accordance with TBI-CDE Working Group.23 All CT scans were
uploaded to a central database, from which a blinded board-
certified neuroradiologist reviewed the de-identified scans.

Outcome measures

Subjects in TRACK-TBI Pilot underwent outcomes testing us-
ing measures from the TBI CDE core outcomes battery.24 The
Glasgow Outcome Scale-Extended (GOS-E) was used to assess
overall functional disability at 3 and 6 months post-injury.25 The
GOS-E consists of eight categories of outcome: 1(Dead), 2(Vege-
tative State), 3(Lower Severe Disability), 4(Upper Severe Disability),
5(Lower Moderate Disability), 6(Upper Moderate Disability),
7(Lower Good Recovery), and 8(Upper Good Recovery).26 This 8-
point GOS-E was dichotomized in two ways to assess (1) full re-
covery (GOS-E = 8, indicative of a return to pre-injury baseline), or
not (GOS-E < 8), and (2) good recovery (GOS-E < 4) or poor
recovery (GOS-E > 4), in keeping with the practice of previous
TRACK-TBI studies and other clinical trials.15,21,27 Cognitive
domain was assessed after injury using the California Verbal
Learning Test-Second Edition (CVLT-II), a memory and verbal
learning memory task. This test was only given at 6 months. The
task consists of five learning trials, an interference trial, an imme-
diate recall trial, and a delayed (20 min) recall trial. The CVLT-II
trials 1– 5 Standard Score is a sum of the first five learning trials
normed for age and sex, and provides a global index of verbal
learning ability.

Statistical analysis

Statistical analyses were performed using Statistical Package
for Social Sciences version 24 (IBM, Inc. Chicago, IL). Non-
linear principal components analysis (NL-PCA) was used to de-
termine covariance among proteins. To confirm the stability of
the PC loadings, a bootstrapping procedure was employed using
1000 balanced iterations. To provide further cross-validation of
PC loading patterns, the root mean squared difference between
initial and bootstrapped PC loadings was assessed, as well the
Pearson product correlation coefficient, coefficient of congruence,
and Cattell’s salient variable similarity index.27 Individual scores
for each patient on the PCs were then calculated based on the
weight of the loadings for all proteins. For CT and GOS-E
measures, PC scores were compared with outcome measures
using analysis of variance (ANOVA) and receiver operating
characteristic (ROC) curves to determine the predictive validity
of protein biomarker clusters. Linear regression was to test the
first principal component (PC1) score as a predictor of CVLT, as
well as to determine the variance in each outcome measure ex-
plained by PC1 score. Statistical significance level for all ana-
lyses was set to a = 0.05.
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Results

Patient cohort, distribution of injury severity, CT,
and GOS-E measures

Multi-analyte protein analysis was performed on 130 patients

from the TRACK-TBI Pilot study (Fig. 1). Age in this cohort ranged

from 16 to 79 years, with 94 male and 36 female participants. The

majority (104 patients, 88.9%) were classified as having mild TBI

according to an ED admission GCS score of 13–15. Seven patients

(6.0%) were classified as having moderate TBI (GCS 9–12), and 19

patients (16.2%) were classified as having severe TBI (GCS 3–8).

Positive initial CT findings were defined by the presence of any in-

tracranial abnormality in accordance with TBI-CDE guidelines.

Acute intracranial pathology was noted in 44.2% of mild TBI patients,

and 100% of moderate and severe TBI patients. Functional recovery

on the GOS-E was evaluated for 124 patients at 3 months, and for 130

patients at 6 months. At 3 months, 27.7% had made a full recovery to

baseline (GOS-E = 8), and 16.9% showed poor recovery as evidenced

by vegetative state or severe disability (GOS-E £ 4); by 6 months

30.8% patients had made a full recovery, with only 12.3% of patients

showing poor recovery. A further breakdown of injury severity, injury

type, and outcome distribution can be found in Table 1.

Dimension reduction and cross-validation
of proteomic data

NL-PCA was used to partition the variance across patients into

orthogonal components (Fig. 2A). PC1 accounted for 16.2% of the

FIG. 1. Flow chart of patients from the Transforming Research
and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI)
Pilot who were included in the current study. Patients were chosen
based on sufficient volume of plasma available for multi-analyte
assay. Assays were run in two rounds, with one patient from the
first round, and two patients from the second round with insuffi-
cient plasma for detection. Total number of patients in the current
study was 130.

Table 1. Comparision of Patient Demographics

n (%) Mean – SD

Sex Age 42.7 (18.1)
Male 94 (72.3)
Female 36 (27.7) CVLT-II 49.6 (13.8)

Trial 1–5
Standard
Score

Cause of Injury
Vehicle Accident 22 (17.2)
Fall 26 (20.3)
Assault 13 (10.2)
Sport 20 (15.6)
Explosion 8 (6.3)

ED admission GCS
Severe (3–8) 19 (14.6)
Moderate (9–12) 7 (5.4)
Mild (13–15) 104 (80.0)

ED admission head CT
Positive 69 (53.1)
Negative 61 (46.9)

Abbreviated Injury
Scale (Extracranial
Regions)
Abdomen/Pelvis AIS >2 2 (1.6)
Chest/Thorax AIS >2 17 (13.1)
Limbs/Pelvis/

Girdle AIS >2
11 (8.5)

GOS-E 3 months
1 4 (3.1)
2 1 (0.8)
3 7 (5.4)
4 9 (6.9)
5 12 (9.2)
6 20 (15.4)
7 35 (26.9)
8 36 (27.7)

GOS-E 6 months
1 4 (3.1)
2 1 (0.8)
3 7 (5.4)
4 9 (6.9)
5 12 (9.2)
6 20 (15.4)
7 35 (26.9)
8 36 (27.7)

ED, emergency department; GCS, Glasgow Coma Score; CT, computed
tomography; GOS-E, Glasgow Outcome Score – Extended; CVLT-II,
California Verbal Learning Test-Second Edition.
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variance (eigenvalue = 10.4; Fig. 2B). The NL-PCA determined the

unique correlation value between each protein and the variance

explained within this PC. This value (protein ‘‘loading’’) could then

be used for face validation of the PC. The proteins were ranked by

their loading, and loadings were then thresholded at an absolute

value of j0.4j (determined a priori according to the threshold

standard introduced by Stevens28), in order to ‘‘name’’ the PC

based on only those markers that contributed most to the variance.

This step yielded a set of 21 of the 72 analytes, and the known

biological properties and processes that were common across this

cluster were analyzed by domain experts from the TRACK-TBI

team. Based on the known function of most proteins in PC1 and the

inverse loading values between pro-inflammatory markers (e.g.,

C-reactive protein, Interleukin-6 [IL-6], TIMP-1, with high posi-

tive loadings) and anti-inflammatory apolipoproteins and regula-

tory markers with strong negative loadings (Fig. 2C), a consensus

was formed that this PC could be identified as driven in large part

by inflammatory markers.

To cross-validate the loading pattern found across all proteins in

PC1, we used an extensive bootstrapping method to simulate a

much larger population.29 In this process, the data set was re-

sampled 1000 times, with each iteration recalculating the protein

loadings based on a slightly altered subset of the sample population.

Pattern matching analysis was then used to determine the stability

between the original and bootstrapped loadings. This analysis re-

vealed a significant agreement between these loadings (Pearson

product moment correlation coefficient = 0.996, root mean square

difference = 0, Cattell salient variable similarity index), indicating

that the PC loadings were robust and stable (Fig. 3). All subsequent

analyses of predictive value were made using the individual PC1

scores, a normalized composite of all 72 markers weighted by their

respective loadings.

FIG. 2. Non-linear principal components analysis (PCA) of multi-analyte proteomic data from traumatic brain injury (TBI) patient
plasma. (A) PCA matrix of 20 components by 72 proteins from the commercially available multi-analyte array (RBM, HumanMAP v2.0).
Red indicates positive magnitude of loadings, blue indicates negative magnitude. (B) Scree plot showing variance accounted for by each
orthogonal component. The first principal component (PC1) accounted for 16.2% of the variance. (C) After thresholding loadings at an
absolute value of 0.4, the subset of proteins with strong loadings are identified as being predominantly associated with inflammation, with
pro- and anti-inflammatory markers loading in opposite directions. Color image is available online at www.liebertpub.com/neu
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Association between inflammatory biomarker
component and CT findings

To assess the predictive validity of the biomarker ensemble, in-

dividual patient scores on PC1 (weighted by each of the 72 protein

loading values) were first compared with the presence or absence of

intracranial pathology findings on CT (Fig. 4). Patients with negative

CT findings had significantly lower PC1 scores (indicating lower

inflammation) than those with positive CT findings ( p < 0.01;

gp
2 = 0.18; 18.5% of CT variance accounted for by the PC1 score,

Fig. 4A). ROC analysis showed Inflammation PC score to be sig-

nificantly predictive of CT finding (area under the curve [AUC] =
0.77; 95% CI 0.69–0.85; p < 0.01; Fig. 4B).

Association between inflammatory biomarker panel
and outcome measures

Inflammation PC1 score was then compared against the eight point

GOS-E outcome scale at 3 and 6 months post-injury. ANOVA re-

vealed a significant effect of GOS-E on PC1 score at both 3 months

FIG. 3. Internal cross-validation of protein loading pattern. Comparison of initial first principal component (PC1) loadings for each
protein against the mean loading value of 1000 bootstrapping iterations shows a very high degree of similarity, indicative of a robust and
stable loading pattern (*p < 0.05). Color image is available online at www.liebertpub.com/neu
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(Fig. 5A, p < 0.001, gp
2 = 0.23, 19.2% variance in 3 month GOS-E

accounted for by PC1 score), and 6 months (Fig. 5B, p < 0.001,

gp
2 = 0.36, 21.3% of variance in 6 month GOS-E accounted for by

PC1 score), with the lowest mean PC1 scores found in patients with

the greatest recovery (GOS-E >7). GOS-E was further subcategorized

into two dichotomous sets: Full Recovery (GOS-E = 8) or not (Fig. 6),

and Poor Recovery (GOS-E £ 4) or not (Fig. 7). Patients who achieved

full recovery had significantly lower Inflammation PC scores, at ei-

ther 3 months ( p < 0.01, gp
2 = 0.07; Fig. 6A), or 6 months ( p < 0.05,

gp
2 = 0.04; Fig. 6B). Inflammation PC score was also modestly, yet

significantly, predictive of full recovery by 3 months (AUC = 0.69;

95% CI 0.59–0.80; p < 0.05; Fig. 6C) and 6 months (AUC = 0.62; 95%

CI 0.52–0.72; p < 0.05; Fig. 6D).

Conversely, patients with poor recovery had significantly higher

Inflammation PC scores at either 3 months ( p < 0.01, gp
2 = 0.13;

Fig. 7A) or 6 months ( p < 0.01, gp
2 = 0.09; Fig. 7B), and Inflammation

PC score was significantly predictive of poor recovery at 3 months

(AUC = 0.78; 95% CI 0.65–0.92; p < 0.01; Fig. 7C) and 6 months

(AUC = 0.76; 95% CI 0.62–0.91; p < 0.01; Fig. 7D).

To assess the association between the inflammatory panel and

cognitive recovery, Inflammation PC1 score was compared against

scores on the CVLT-II at 6 months using linear regression. In-

flammation PC1 score was shown to be significantly predictive of

CVLT score at 6 months (R = -0.45, p < 0.01, Fig. 8), accounting for

20% of the variance in CVLT.

Discussion

The current analysis from the prospective multi-center TRACK-

TBI Pilot study used multivariate NL-PCA to identify a subset of

proteins from a multi-analyte array, then tested the prognostic va-

lidity of this biomarker profile using individual PC scores. The first

module identified by NL-PCA consisted primarily of inflammation-

related targets. Hypothesis testing of individual patient PC scores

from this inflammation component showed that patients with ad-

mission brain CT positive for acute intracranial pathology, and

incomplete/poor recovery at 3 and 6 months, had a significantly

increased Inflammation PC score. The Inflammation PC score was

significantly sensitive and specific as a predictor for these outcome

measures.

Although these findings highlight the feasibility of identifying

and testing an ensemble of protein biomarkers, these markers were

shown to be moderately sensitive and specific in predicting poor

recovery (GOS-E < 4) at 3 and 6 months (AUC for ROC <0.70),

compared with the performance of brain-specific biomarkers such

as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal

hydrolase L1 (UCHL1), which have recently been approved by the

United States Food and Drug Administration (FDA) for TBI.15

Similarly, although this inflammatory protein ensemble signifi-

cantly predicted positive CT findings, other individual markers

have been shown to be highly robust predictors of CT positive

versus CT negative findings in TBI patients.10,30 A recent TRACK-

TBI Pilot demonstrated that the simultaneous detection of four

candidate biomarkers (GFAP, UCHL1, neurofilament light chain

[NF-L], and total tau) on a multiplex array was able to successfully

distinguish patients with and without CT abnormalities.31 The

current study provides the proof of concept that the predictive ca-

pacity of a broad range of biomarkers can be tested as a composite

FIG. 4. Relationship between computed tomography (CT) find-
ings and Inflammation biomarker component. (A) Patients catego-
rized by either positive or negative CT pathology findings have
significantly different mean Inflammation principal component (PC)
scores, with patients who have positive CT findings exhibiting
higher inflammation scores ( p < 0.01). (B) Receiver operating
characteristic (ROC) analysis shows that Inflammation PC score is
significantly predictive of whether CT finding is positive or negative
(area under the curve [AUC] = 0.770, p < 0.001). Color image is
available online at www.liebertpub.com/neu

FIG. 5. Relationship between inflammation component and
Glasgow Outcome Scale-Extended (GOS-E). A significant main
effect of principal component (PC) score was seen across GOS-E
categories with patients with lower GOS-E (indicative of poor
recovery) showing the highest PC scores ( p < 0.01) at both 3
months (A) and 6 months (B) post-injury ( p < 0.01). These find-
ings indicate that lower acute ensemble biomarker scores may be
predictive of improved future recovery.
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profile, a sophisticated multivariate approach that may help to

model the complexity and heterogeneity of TBI. Further, this en-

semble of biomarkers was sensitive to both acute diagnostic mea-

sures and long-term prognosis, suggesting that this data-driven

approach may help to identify groups of markers that represent both

acute and chronic latent features of TBI.

Data-driven biomarker discovery

The emergence of the ‘‘big-data’’ era in neurotrauma research

has reinforced the need for analytical approaches that will ade-

quately reduce data to manageable and interpretable results.32–34

Likewise, in order for findings to be readily shared and replicated

across research groups, data standardization is necessary. To this

end, the TRACK-TBI Pilot was the first federally funded pro-

spective study to implement the TBI CDE mandated by the Na-

tional Institutes of Health/National Institute of Neurological

Disorders and Stroke (NIH-NINDS).35,36 Given that the data in the

current study were collected over 3 years across multiple level

I trauma centers, the standardization of fluid collection/preparation,

imaging, and outcome measures allowed for data curation to be

streamlined and, potentially, more easily replicable by other trials

in the future.

Although the current study assessed interactions between a rela-

tively small set of pre-curated proteins, a subset of proteins loaded

highly together in PC1 and reflected a clear biological domain (in-

flammation). Although one might make an informed prediction that

inflammation would be a prognostic indicator for TBI, the data-driven

identification of this cluster without any prior stratification of patients

highlights the utility of this type of approach; namely, as an unbiased

method for uncovering promising avenues for further study. We have

recently used another data-driven approach, topological data analysis,

to uncover associations among imaging, outcomes, and high-

dimensional genomic data from the TRACK-TBI Pilot.37 We used

machine learning algorithms to identify specific multivariate pheno-

types, and candidate single nucleotide polymorphism biomarkers that

were uncovered by this data-driven approach were then shown to be

predictive of outcome. Similarly, in the current study, NL-PCA

identified an ensemble of proteins that could then be tested against

other diagnostics and outcome measures. As the PC identifies and

weighs these proteins according to their contribution to the variance in

the data set, they likely reflect biological ‘‘universals’’: multi-analyte

signatures that are important. The fact that they predict both acute and

long-term outcomes is consistent with this concept. By using these

data-driven approaches as pre-screening tools that identify important

domains for future hypothesis testing, we have the capacity to convert

data complexity from an obstacle into an opportunity for discovery.

Acute inflammatory biomarkers of TBI

The ensemble of proteins identified by NL-PCA as accounting

for the most variance was largely associated with the inflammatory

response to TBI. TBI sets in motion a number of complex inflam-

matory cascades, as resident glial cells release cytokines and che-

mokines first in response to the disruptive mechanical force acting

FIG. 6. Relationship between inflammation component and full
recovery at 3 and 6 months after traumatic brain injury (TBI). Patient
scores on the Glasgow Outcome Scale-Extended (GOS-E) were
dichotomized into either full (GOS-E = 8) or incomplete (GOS-E
< 8) recovery. (A) Patients who made a full recovery by 3 months
had significantly lower Inflammation component scores (*p < 0.05).
(B) Patients who made full recovery by 6 months also had signifi-
cantly lower Inflammation component scores (*p < 0.05). (C) Re-
ceiver operating characteristic (ROC) analysis shows Inflammation
principal component (PC) score to be significantly predictive of
whether or not recovery at 3 months is complete (area under the
curve [AUC] = 0.693, p < 0.01). (D) ROC analysis shows In-
flammation PC score to be significantly predictive of whether or not
recovery at 6 months is complete (AUC = 0.620, p < 0.05). Color
image is available online at www.liebertpub.com/neu

FIG. 7. Relationship between inflammation component and poor
recovery at 3 and 6 months after traumatic brain injury (TBI). To
assess poor recovery, patient Glasgow Outcome Scale-Extended
(GOS-E) scores were dichotomized into either poor recovery (GOS-
E < 4) or not (GOS-E > 4). (A) Patients who had poor recovery at 3
months had significantly higher Inflammation component scores
(*p < 0.05). (B) Patients who had poor recovery at 6 months also
had significantly higher Inflammation component scores (*p < 0.05).
(C) Receiver operating characteristic (ROC) analysis shows In-
flammation principal component (PC) score to be significantly
predictive of poor recovery at 3 months (area under the curve
[AUC] = 0.781, p < 0.001). (D) ROC analysis shows Inflammation
PC score to be significantly predictive of poor recovery at 6 months
(AUC = 0.763, p < 0.05). Color image is available online at www
.liebertpub.com/neu
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on central nervous system (CNS) tissue, as a part of the ongoing

immunomodulatory response, and as key mediators of secondary

injury processes. Here we found that a number of pro-inflammatory

cytokines loaded highly together, notably TIMP1, Interleukin-6

(IL-6) and -8, monocyte chemotactic protein 1 (MCP1), and the

classic marker of inflammation, C-reactive protein. Many of these

markers have been previously shown to be associated with TBI.

TIMP1 is a tissue inhibitor of matrix metalloproteinase, and has

been shown to exert independent inflammatory cytokine-like activ-

ity.38 In a recent study of severe TBI patients, higher TIMP1 levels

were found to be an indicator of increased mortality.39 Similarly, the

cytokine IL-6 has been shown to be associated with acute blood–

brain barrier dysfunction in severe TBI patients,40 and more recently,

increased IL-6 was shown to be a robust predictor of poor short-term

prognosis and development of infectious complications after TBI.41

MCP1 (also known as CCL2) is a chemokine produced by astro-

cytes,42 which attracts monocytes and macrophages to the injury site.

Cerebral spinal fluid levels of MCP1 peak within the first 48 h after

TBI admission,43 and in a protein array study of candidate plasma

biomarkers, MCP1 was one of three markers (of 120 targets assayed)

that had the most sensitivity and specificity for TBI.44

Conversely, several proteins that we identified by PCA as

loading in the opposite direction have been shown to have regu-

latory or anti-inflammatory properties, including apolipoproteins

and transferrin. The strongest negative loader, Apo A1, has been

shown to be anti-inflammatory, with relatively high constitutive

levels in healthy controls that are decreased in response to TBI.16

Further, it has been used in conjunction with S100B to improve the

specificity of biomarkers for mild TBI, presumably because it is not

susceptible to change in response to peripheral injuries, as has been

shown with S100B.16,45 Similarly, the regulatory protein transfer-

rin, which plays a role in iron metabolism, is downregulated in

response to CNS injury, and has been shown to be a robust indicator

of poor prognosis in patients with intracranial hemorrhage.46 This

is further supported by the pre-clinical literature, which has shown

that neuroinflammatory changes can predict both acute cell death

and long-term neurocognitive recovery.

Considerations

The goal of the current study was to test the analytical feasibility

of managing multi-analyte data coupled with NL-PCA dimension

reduction as an approach for testing the diagnostic and prognostic

validity of multiplexed proteins in ensemble. Although the bio-

markers assessed in this study were not individually selected based

on their specificity for TBI, one of the goals of this approach was to

use the ensemble of proteins as a ‘‘composite biomarker’’ rather

than assessing the specificity of each biomarker in isolation. The

specific ensemble weighting of these biomarkers does indeed

demonstrate reasonable sensitivity and specificity according to the

data-driven analyses presented here; however, further work is

needed to test their generality and reproducibility across different

patient populations and analytical platforms.

The results are promising from an analytical workflow per-

spective, but we must keep in mind the clinical feasibility of run-

ning multi-analyte biomarker assays, in terms of cost and time. It is

also important to consider that blood was collected for analysis

within 24 h, and that the size of that window may affect the ex-

pression of proteins, as each marker is likely to have a distinct

temporal profile of expression after injury. Future work will test the

bounds of this approach; for example, the question of whether, if

the arrays were reduced to only those candidate proteins that loaded

highly in PC1, how few would be needed to maintain predictive

validity. Also, there is the question of whether the strongest op-

posing biomarkers, as identified here by PCA, TIMP1, and Apo A1,

could be assessed in conjunction as a biomarker pair.

It is also important to note the challenges in accurately and

precisely categorizing TBI severity, especially in defining what is

to be considered a mild TBI. In the current cohort, 44 of the 104

patients with a ‘‘mild’’ rating (GCS = 14–15) also had a positive

head CT, a measure that others may use as selection criterion for

categorizing an injury as non-mild. From that perspective, the

patients in this study may not be seen as representing a typical

mild TBI population, and may be skewed toward a more severe

injury despite their mild categorization based on GCS score. The

fact that 42% of those with ‘‘mild’’ GCS scores also had positive

CT findings is consistent with the ‘‘complicated mild’’ category

that has been proposed since the rise of brain imaging.47 This

discrepancy between CT findings (and other measures) and se-

verity categorization by GCS score is an issue that must be ad-

dressed in the TBI field. For example, although the majority of the

patients in this study had an admission GCS that placed them in

the mild TBI category, it is difficult to generalize findings to the

broader population without better consensus on how best to define

severity. We continue to push for a more reliable and valid multi-

dimensional classification method that would better model the

heterogeneity of TBI25 and, for example, would be based on pa-

thoanatomic features.

Future work with the TRACK-TBI database will enfold bio-

markers into a broader analytical context that may include genomic

data, clinical information (blood pressure, surgical procedures,

critical care data, medical history), pharmacological interventions,

and neurorehabilitative treatment strategies. Prior work to this end,

such as the International Mission for Prognostic and Analysis of

Clinical Trials (IMPACT) has successfully used a multivariable

regression approach to identify robust predictors of TBI, and have

FIG. 8. Relationship between inflammation component and
cognitive recovery at 6 months after traumatic brain injury (TBI).
Linear regression shows inflammation principal component (PC)
score to be significantly predictive of California Verbal Learning
Test-Second Edition (CVLT-II) score (R = -0.45, p < 0.01). Results
indicate that higher acute inflammation PC score predicts lower
cognitive recovery at 6 months post-TBI. Color image is available
online at www.liebertpub.com/neu
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shown that integration of multiple fluid biomarkers with other core

predictors such as age, GCS motor score, and pupil response, im-

proves the power of the prognostic models.48,49 IMPACT has de-

veloped robust prognostic models that are focused on moderate and

severe TBI; however, they are less well established in the mild and

complicated mild populations featured in the present work.50,51

It is not likely that a single biomarker will be able to capture the

breadth of TBI complexity. Likewise, any single domain may not

be adequate to fully capture the complexity of the full-body re-

sponse to TBI. Therefore, we hope that in the future an advanced

multivariate approach such as the one presented in this study could

be used to incorporate multimodal biomarker data as a robust tool

for reducing the high dimensionality of multiple biomarker mea-

sures in order to develop and identify the most sensitive and specific

biomarker profile possible. The TBI CDE effort has spearheaded

improved clinical data collection standards, which will enable in-

tegration of biomarker analyses from multiple sites and trials.

Combined with advances in rapid, multidimensional analyses,

multivariate biomarker panels hold promise for precision medicine

and critical clinical decision making in traumatic brain injury.
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R., Mora, M.L., Lubillo, S., Jiménez, A., Borreguero-León, J.M.,
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H.-D., and Döcke, W.-D. (2002). Early IL-6 plasma concentrations
correlate with severity of brain injury and pneumonia in brain-injured
patients. J. Trauma Acute Care Surg. 52, 339.

43. Glabinski, A.R., Balasingam, V., Tani, M., Kunkel, S.L., Strieter,
R.M., Yong, V.W., and Ransohoff, R.M. (1996). Chemokine mono-

MULTIVARIATE PROTEOMIC PANEL FOR TBI BIOMARKER DISCOVERY 109



cyte chemoattractant protein-1 is expressed by astrocytes after me-
chanical injury to the brain. J. Immunol. 156, 4363–4368.

44. Semple, B.D., Bye, N., Rancan, M., Ziebell, J.M., and Morganti-
Kossmann, M.C. (2009). Role of CCL2 (MCP-1) in traumatic brain
injury (TBI): Evidence from severe TBI patients and CCL2-/- mice.
J. Cereb. Blood Flow Metabol. 30, 769–782.

45. Ho, L., Zhao, W., Dams-O’Connor, K., Tang, C.Y., Gordon, W.,
Peskind, E.R., Yemul, S., Haroutunian, V., and Pasinetti, G.M. (2012).
Elevated plasma MCP-1 concentration following traumatic brain in-
jury as a potential ‘‘predisposition’’ factor associated with an in-
creased risk for subsequent development of Alzheimer’s disease. J.
Alzheimers Dis. 31, 301–313.

46. Anderson, R.E., Hansson, L.-O., Nilsson, O., Dijlai-Merzoug, R., and
Settergren, G. (2001). High serum S100B levels for trauma patients
without head injuries. Neurosurgery 48, 1255–1260.

47. Yang, G., Hu, R., Zhang, C., Qian, C., Luo, Q.-Q., Yung, W.-H., Ke,
Y., Feng, H., and Qian, Z.-M. (2016). A combination of serum iron,
ferritin and transferrin predicts outcome in patients with intracerebral
hemorrhage. Sci. Rep. 6, 167.

48. Williams, D.H., Levin, H.S., and Eisenberg, H.M. (1990). Mild head
injury classification. Neurosurgery 27, 422–428.

49. Murray, G.D., Butcher, I., McHugh, G.S., Lu, J., Mushkudiani, N.A.,
Maas, A.I.R., Marmarou, A., and Steyerberg, E.W. (2007). Multi-
variable prognostic analysis in traumatic brain injury: results from the
IMPACT study. J. Neurotrauma 24, 329–337.

50. Maas, A.I.R., Lingsma, H.F., and IMPACT Study Group. (2008). New
approaches to increase statistical power in TBI trials: insights from the
IMPACT study. Acta Neurochir. Suppl. 101, 119–124.

51. Lingsma, H., Andriessen, T.M.J.C., Haitsema, I., Horn, J., van der
Naalt, J., Franschman, G., Maas, A.I.R., Vos, P.E., and Steyerberg,
E.W. (2013). Prognosis in moderate and severe traumatic brain injury:
external validation of the IMPACT models and the role of extracranial
injuries. J. Trauma Acute Care Surg. 74, 639–646.

52. Roozenbeek, B., Chiu, Y.-L., Lingsma, H.F., Gerber, L.M., Steyer-
berg, E.W., Ghajar, J., and Maas, A.I.R. (2012). Predicting 14-day
mortality after severe traumatic brain injury: application of the IM-
PACT models in the Brain Trauma Foundation TBI-trac� New York
State Database. J. Neurotrauma 29, 1306–1312.

Address correspondence to:

Adam R. Ferguson, PhD

Brain and Spinal Injury Center

University of California, San Francisco

1001 Potrero Avenue, Building 1, Room 101

San Francisco, CA 94110

E-mail: Adam.ferguson@ucsf.edu

110 HUIE ET AL.


