Skip to main content
. 2018 Nov 22;7(12):466. doi: 10.3390/jcm7120466

Figure 2.

Figure 2

Schematic illustration of light propagation through the neuronal tissue. On the left side of the illustration, possible photon paths for different wavelengths are depicted (red colors represent wavelengths of λ > 800 nm (mainly absorbed by oxyHb—see Photon 1), whereas yellow colors represent wavelengths of λ < 800 nm (mainly absorbed by deoxyHb—see Photon 2). Path 3 represents a photon that undergoes some scattering events before being recorded by a detector. Path 4 represents a ballistic photon. Path 5 represents a photon that, after some scattering events, is not recorded by a detector (lost due to forward scattering). Path 6 represents a photon that is lost due to backward scattering. In the right part of the illustration, the formulas to calculate concentration changes in chromophores are shown (based on continuous-wave NIRS). The symbols have the following meanings: A: light attenuation, or ΔΑ(λ): changes in light attenuation at a certain wavelength (λ); ΙΙn: intensity of emitted light; ΙOut: intensity of recorded light; ε(λ): the extinction coefficient of the chromophore at a certain wavelength (λ); Δc: changes in chromophore concentration; d: separation (distance) between source and detector; DPF(λ): differential path length factor (DPF) for a certain wavelength (λ); g(λ): scattering at a certain wavelength (λ), where g is cancelled out since it is assumed to be negligible when only light attenuation (as in continuous-wave NIRS) is considered [45,54,58].