View full-text article in PMC High Throughput. 2018 Nov 19;7(4):35. doi: 10.3390/ht7040035 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 1: The forward-backward finite difference numerical scheme. Step 1: for j=−M,…,0, do: Xj=X0, Yj=Y0, Dj=D0, Vj=V0, Zj=Z0, η1j=0, η2j=0. end for for j=N,…,N+M, do: λ1j=0,λ2j=0,λ3j=0,λ4j=0,λ5j=0,λ6j=0. end for Step 2: for j=0,…,N−1, do: Xj+1=Xj+h[s−μXj−k(1−η1j)VjXj], Yj+1=Yj+h[ke−λτ(1−η1j)Xj−MVj−M−δYj−pYjZj], Dj+1=Dj+h[(1−η2i)aYj−δDj−βDj], Vj+1=Vj+h[βDj−uVj−qVjWj], Wj+1=Wj+h[gVjWj−hWj], Zj+1=Zj+h[cYjZj−bZj], λ1N−j−1=λ1N−j−h[1+λ1N−j(μ+k(1−η1j)Vj+1)] +χ[0,tf−τ](tN−j)λ2N−j+Mk(η1j+M−1)e−λτVj+1], λ2N−j−1=λ2N−j−h[λ2N−j(δ+pZj+1)−λ3N−ja(1−η2j)−λ6N−jcZj+1], λ3N−j−1=λ3N−j−h[λ3N−j(δ+β)−λ4N−jβ], λ4N−j−1=λ4N−j−h[λ1N−jk(1−η1j)Xj+1+λ4N−j(u+qWj+1) +χ[0,tf−τ](tN−j)λ2N−j+Mk(η1j+M−1)e−λτXj+1], λ5N−j−1=λ5N−j−h[1+λ2N−jqVj+1+λ5N−j(h−gVj+1)], λ6N−j−1=λ6N−j−h[1+λ2N−jpYj+1+λ6N−j(b−cYj+1)], R1j+1=(1/A1)(kλ2N−j−1e−λτVj−M+1Xj−M+1−kλ1N−j−1Vj+1Xj+1) R2j+1=(1/A2)λ3N−j−1aYj+1, η1j+1=min(1,max(R1j+1,0)), η2j+1=min(1,max(R2j+1,0)), end for Step 3: for j=1,…,N, write X*(tj)=Xj,Y*(tj)=Yj,D*(tj)=Dj,V*(tj)=Vj,W*(tj)=Wj, Z*(tj)=Zj,η1*(tj)=η1j,η2*(tj)=η2j. end for