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Abstract
Cancers acquire resistance to systemic treatment with platinum‐based chemotherapy 
(eg, cisplatin [CDDP]) as a result of a dynamic intratumoral heterogeneity (ITH) and 
clonal repopulation. However, little is known about the influence of chemotherapy on 
ITH at the single‐cell level. Here, mapping the transcriptome of cancers treated with 
CDDP by scRNA‐seq, we uncovered a novel gene, COX7B, associated with platinum‐
resistance, and surrogate marker, CD63. Knockdown of COX7B in cancer cells de-
creased the sensitivity of CDDP whereas overexpression recovered the sensitivity of 
CDDP. Low COX7B levels correlated with higher mortality rates in patients with vari-
ous types of cancer and were significantly associated with poor response to chemo-
therapy in urinary bladder cancer. Tumor samples from patients, who underwent 
CDDP therapy, showed decreased COX7B protein levels after the treatment. Analyzing 
scRNA‐seq data from platinum‐naïve cancer cells demonstrated a low‐COX7B sub-
clone that could be sorted out from bulk cancer cells by assaying CD63. This low‐
COX7B subclone behaved as cells with acquired platinum‐resistance when challenged 
to CDDP. Our results offer a new transcriptome landscape of platinum‐resistance that 
provides valuable insights into chemosensitivity and drug resistance in cancers, and 
we identify a novel platinum resistance gene, COX7B, and a surrogate marker, CD63.
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1 |  INTRODUCTION

Cancers are assemblies of heterogeneous cell populations 
of various sizes, different genetic compositions, and distinct 
phenotypic characteristics.1-9 This so‐called intratumoral het-
erogeneity (ITH) is central for the natural selection that drives 
carcinogenesis and tumor development.1,3,6,9-12 Recent tech-
nical advances in genome sequencing have been elucidated 
in a model of Darwinian selection, in which cancer cells de-
velop with repeating oncogenic mutations, resulting in cellu-
lar clonal expansion and extensive ITH.3,13,14 Clinically, the 
relationship between ITH and the efficacy of cancer therapy 
is evident.7,11,14-16 For example, the linker histone H1.0 has 
been shown to exhibit high inter‐ and intratumor heteroge-
neity in numerous cancer types, with H1.0 levels correlating 
with tumor differentiation status, patient survival, and, at the 
single‐cell level, cancer stem cell markers.7 In patients with 
prostate cancer, analysis of circulating cell‐free DNA could 
identify multiclonal heterogeneity of BRCA2 reversion muta-
tions that was associated with resistance to PARP inhibitors 
(Olaparib, US brand name Lynparza).17 Platinum‐based cis-
platin (CDDP, US brand names Platinol, Platinol‐AQ) is one 
of the most effective chemotherapy agents for many types of 
cancers. However, CDDP treatment often causes phenotypic 
alterations to the original tumor.18-20 We hypothesize that 
CDDP induces a rather drastic change in the ITH at a single‐
cell level, eventually leading to the development of acquired 
resistance to CDDP.21 Until recently, little has been known 
about ITH states before and after platinum treatment. Such 
knowledge could be essential to understanding the mecha-
nisms leading to platinum‐resistance.22,23

To examine ITH states before and after platinum treat-
ment, we applied the latest technology of single‐cell 
RNA‐seq (scRNA‐seq). The scRNA‐seq system has been de-
veloped to investigate cellular heterogeneity, uncovering new 
cell types and sub‐populations.24-28 In malignancy, this high‐
end technology enables us to scrutinize ITH in bulk cancer 
cells.2,5,6,8,9,29 Studying urinary bladder cancers at the single‐
cell level, we first revealed a dynamic shift in the heteroge-
neity of cancers following treatment with CDDP. Second, we 
identified a novel gene, COX7B, associated with platinum‐
resistance. Third, we demonstrated a low COX7B subclone, 
behaving as cancer cells with acquired platinum‐resistance in 
platinum‐naïve cancer. Forth, we reveal a surrogate marker, 
CD63 that can distinguish low COX7B subclones. These re-
sults offer further platinum‐resistance knowledge that can be 
used for future clinic diagnosis.

2 |  METHODS

2.1 | Single‐cell preparation, isolation, and 
cDNA synthesis
The cultured cells were suspended in a trypsin solution and 
centrifuged at 150 g for 5 minutes. The cell suspension was 
then filtered twice through a 20‐μm strainer and maintained 
on ice. Prior to single‐cell isolation, the cells were photo-
graphed for viability and cell size measurement using the 
EVE Automated Cell Counter (NanoEnTek Inc., Seoul, 
South Korea). Viability was measured using trypan blue 
exclusion, which confirmed >90% cell viability. The mean 
values of the measured cell sizes are indicated in Figure 



   | 6195TANAKA eT Al.

S1A. Next, single cells were isolated at 4°C and processed 
on a Fluidigm C1 platform.24,30 Briefly, the floated cells 
were captured on a medium microfluidic C1 chip (designed 
for 10‐17 μm cells) and seeded in the wells of a 96‐well 
plate containing C1 Suspension Reagent. The capturing ef-
ficiency was evaluated using a Nikon TE2000E automated 
microscope, and a bright‐field image of every capturing po-
sition was obtained at 20× magnification using μManager 
software (https://www.micro-manager.org). Finally, each 
capture site was manually inspected for quality control and 
only capture sites containing single, healthy cells were fur-
ther processed. Following image acquisition, RT and PCR 
mix was added for cDNA synthesis.24,30 The harvested 
cDNA quality was measured using an Agilent BioAnalyzer.

2.2 | Single‐cell RNA sequencing, data 
processing, and analysis
The STRT Seq libraries were sequenced using HiSeq 2000, 
and the raw sequences were preprocessed using STRTprep31 
(commit d7efcde of https://github.com/shka/STRTprep). 
Briefly, the raw reads were filtered based on the quality and 
redundancy, and the filtered reads were aligned to the human 
genome hg19, the human ribosomal DNA repetitive unit 
(GenBank: U13369.1), the Escherichia coli ynbA (GenBank: 
EF011072 as a negative control), and the ERCC spike‐in 
RNAs by TopHat2.32 Reads within the 5′‐UTR or up to 
500 bp upstream of the protein‐coding genes were counted, 
and the counts were divided by the total counts on the spike‐
in RNAs for normalization. The distribution of the spike‐in 
read counts, estimated total transcript counts, and the 5′‐end 
capture rates were evaluated, and outlier cells on the distri-
butions were excluded from further analysis. Significances 
of fluctuating (adjusted P value < 0.05) and differentially 
expressed (q value < 0.05) genes between cell groups were 
selected using SAMstrt33 with Benjamini‐Hochberg proce-
dure, as described elsewhere.31 In brief, the technical varia-
tion was modeled based on a variation of the spike‐in RNA 
levels among the cells, and the significance of fluctuation in 
each gene was estimated by comparison between the actual 
variation of the gene and the expected variation based on the 
spike‐in. The “DE score” column in Tables S2‐S5 represents 
the statistical values depicting the degrees of differential 
expression between the represented scRNA‐seq libraries. A 
positive DE score represents higher mRNA levels in the lat-
ter library. A Gene Ontology term enrichment test was per-
formed using the GOrilla web tool34; the ranked gene lists 
contained all detected genes, ordered based on the DE score.

2.3 | Cell lines and culture conditions
Urinary urothelial cancer cell line 5637 was obtained 
from the American Type Culture Collection (ATCC) 

and was certified mycoplasma‐free. 5637PR cells were 
established in our laboratory as an acquired platinum‐re-
sistant sub‐line of 5637.21,35 Briefly, 5637 cells were pas-
saged 1‐2 times per week in medium containing CDDP 
over a 6‐month period, with a gradual increase in CDDP 
concentration up to 3 μmol/L. Parental 5637 cells were 
also continuously cultured and passaged during the study 
period. The doubling time of 5637PR cells was slightly 
increased compared with parental 5637 cells, as previ-
ously described.35 All cells were routinely maintained in 
RPMI‐1640 (Invitrogen) supplemented with 10% fetal bo-
vine serum at 37°C in a humidified 5% CO2 atmosphere, 
and current examinations were performed 3 months after 
ending CDDP exposure. CDDP was generously supplied 
by the Nippon Kayaku Co. (Tokyo, Japan) or purchased 
from Sigma‐Aldrich.

2.4 | Statistical analysis
For the human studies, the samples were randomly col-
lected with regards to the systemic chemotherapy used 
during 2004‐2011. Human tissue studies were deciphered 
with numbers to avoid investigator bias during image and 
data analysis, and all demonstrated at Keio University 
School of Medicine, Tokyo, Japan. All the experiments 
using human samples were ethically approved (approval # 
20130095, 20130101, Keio University School of Medicine, 
Tokyo, Japan). No statistical method was used to predeter-
mine sample group sizes. The values are presented as the 
mean ± SEM, median, and interquartile range for continu-
ous variables, and the frequency with percentage for cate-
gorical variables. Variables between groups were compared 
using the two‐tailed Student’s t test, the chi‐square test, the 
paired t test, and the Mann‐Whitney U test, as appropriate. 
Survival curves were estimated using the Kaplan‐Meier 
method. The indicated genes with mRNA levels of <25th 
percentile were considered as low. The P values and haz-
ard ratios displayed on the survival plots are from the re-
sult of proportional hazards analysis using the log‐rank test. 
Univariate and multivariate Cox regression models with 
stepwise selection were used to evaluate variables for over-
all mortality. Spearman’s and Pearson’s coefficients were 
used to identify and evaluate the strength of the relationship 
between the two sets of data. To assess the ability of CD63 
to distinguish cancers with low‐COX7B, we performed a 
receiver operating characteristic (ROC) curve analysis. An 
area under the curve (AUC) value of 1.0 represents perfect 
discrimination, and a value of 0.5 represents no discrimina-
tion. Differences among groups were regarded as signifi-
cant when P < 0.05. All analyses were performed using the 
SPSS version 22.0 (IBM‐SPSS Inc, Tokyo, Japan) statisti-
cal software package and JMP version 13.0 (SAS Institute 
Inc, Cary, NC, USA).

https://www.micro-manager.org
https://github.com/shka/STRTprep
info:ddbj-embl-genbank/U13369.1
info:ddbj-embl-genbank/EF011072
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2.5 | Small interfering RNA, gene 
overexpression and transfection, cell 
viability assay, web‐based dataset analysis, 
Immunohistochemical analysis of clinical 
specimens, fluorescence‐activated cell sorting 
(FACS)
These materials and procedures are described in the Appendix 
S1.

3 |  RESULTS
First, we designed a workflow to detect transcriptome dif-
ferences between urinary bladder cancer cells that were re-
sponsive (5637) or resistant (5637PR) to platinum treatment, 
applying Fluidigm C1 scRNA‐seq (Figure 1A). The 5637PR 
subpopulation were derived from 5637 cells and had acquired 
platinum‐resistance.21,35 By treating these cells with either 

CDDP or vehicle before sequencing36 we designed a model 
with four cell libraries: 5637 (n = 62), stressed 5637 (n = 63), 
5637PR (n = 65), and stressed 5637PR (n = 59), which were 
prepared by single‐cell tagged reverse transcription (STRT).24 
Interestingly, analyzing the STRT data demonstrated a sig-
nificant difference between the RNA mapped/spike‐in reads 
among the four libraries (Figure S1B, Table S1).

In total, 1463 protein‐coding genes fluctuated (P < 0.05; 
among totally 8208 genes), and distinct ITH profiles were 
observed at the transcriptome level between the individual 
libraries (Figure 1B, Figure S1C),33 creating three major cell 
clusters (Figure S2). To achieve a scRNA‐seq fingerprint 
of platinum‐resistance, we next examined differentially ex-
pressed (DE; q < 0.05) genes among the total 1463 genes 
identified. A total of 1132 DE genes for 5637 vs 5637PR 
(Table S2), 334 DE genes for 5637PR vs stressed 5637PR 
(Table S3), and 91 DE genes for 5637 vs stressed 5637 (Table 
S4) were identified. Marked differences in Gene Ontology 

F I G U R E  1  Dynamic shift of 
intra‐tumor heterogeneity in cancer cells 
assessed by scRNA‐seq. A, Workflow for 
studying platinum resistance in human 
urinary bladder cancer cells by scRNA‐seq. 
B, Principal component analysis (PC1 vs 
PC2, PC1 vs PC3, PC2 vs PC3) of the 1463 
fluctuated genes in all 249 single cells (62 
[5637], 63 [stressed 5637], 65 [5637PR], 
and 59 [stressed 5637PR]) prepared by 
single‐cell tagged reverse transcription



   | 6197TANAKA eT Al.

term enrichment tests were observed between parental and 
established lines, demonstrating that 5637PR cells were more 
proliferative after CDDP, in contrast to 5637 cells (Figures 
S3 and S4).

Analyzing the DE genes with a Venn diagram revealed 
the overlapping genes between the three combinations 
(Figure 2A). We focused on the 219 DE genes that were 
changed during stages of 5637 vs 5637PR and 5637PR vs 
stressed 5637PR, since the DE genes for 5637 vs stressed 
5637 did not associate with developed platinum‐resis-
tance (Figure 2A). Among these 219 genes, the patterns 
of changes in gene expression varied (Table S5); however, 
12 genes (5.5%; COX7B, MT1E, LGALS1, KRT17, EIF3E, 
TMA7, ARL6IP1, HES1, UQCR10, MORF4L1, CDKN3, 
and PSMD10) were consistently down‐regulated in plat-
inum‐resistant cells (Figure 2B, Figure S5). Remarkably, 
none of the 219 genes were consistently up‐regulated. 
The 12 consistently down‐regulated genes were further 
studied, under the assumption that they were crucial for 
platinum‐resistance.

Then, we transfected siRNAs against the 12 candidate 
platinum‐resistance genes to platinum‐naïve parent 5637 
cells and examined their sensitivity to CDDP by assessing 
cell viability (Figure 2C). The results revealed that among 
the 12 genes knocked down, eight genes (COX7B, MT1E, 
LGALS1, KRT17, EIF3E, TMA7, ARL6IP1, and HES1) sig-
nificantly decreased the sensitivity to CDDP compared to 
mock‐transfected cells. Additionally, there was a difference 
in the impact on platinum‐resistance for four genes (COX7B, 
MT1E, LGALS1, and KRT17) having significantly higher 
platinum‐resistance (Figure 2C). To investigate whether we 
could rescue the sensitivity of CDDP, we overexpressed the 
high platinum‐resistance genes COX7B and MT1E in plati-
num‐resistant cells. Overexpressing these two genes signifi-
cantly increased the sensitivity to CDDP in 5637PR cells 
(Figure 2D,E).

Then, we sought out to assess the clinical relevance of 
these gene alterations and determine whether they could 
stratify patients with cancer. A Kaplan‐Meier analysis of 
the TCGA provisional dataset for bladder cancer revealed 

F I G U R E  2  Identification of platinum‐
resistance genes. A, The Venn diagram 
depicts the overlap between differently 
expressed (DE) genes for 5637 vs 5637PR, 
5637PR vs stressed 5637PR, and 5637 vs 
stressed 5637. B, Scatter plots showing a 
time‐course change in the mRNA levels of 
the 219 DE genes between 5637, 5637PR, 
and stressed 5637PR cells. C, Effect 
of CDDP on the viability of 5637 cells 
transfected with siRNAs against indicated 
genes measured as relative fold change 
in IC50 (the half maximal inhibitory 
concentration). Mock‐transfected cells 
were used as control. *P < 0.05, compared 
with mock‐transfected cells; **P < 0.05, 
compared with platinum‐resistant HES1 
gene knockdown cells. D,E, Effect of 
CDDP on the viability of 5637PR cells 
overexpressing indicated genes measured 
as relative fold change in IC50. OE, over 
expressed. ***P < 0.05, compared with 
control cells. The P value from the two‐
tailed Student's t test. The line within the 
box represents the median. The upper and 
lower quartiles are the bounds of the box, 
and the minimum and maximum values are 
the bars
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a marked difference in mortality for COX7B, showing that 
low COX7B levels significantly predicted poor prognosis 
(P = 0.006; Figure 3A). However, the other high platinum‐
resistance candidate genes MT1E (P = 0.299), LGALS1 
(P = 0.249), and KRT17 (P = 0.257) showed no significant 
impact on patient mortality (Figures S6A‐C). Examination 
of the pathological features of these genes demonstrated that 
low COX7B levels were significantly associated with high 
tumor grade and advanced stage (Figure 3B). Importantly, 
multivariate analysis for predicting the overall mortality dis-
covered that a low COX7B level (P = 0.029) was a risk fac-
tor independent of patient age, tumor stage, and lymph node 
status (Figure 3C). Further, decreased COX7B levels signifi-
cantly predicted patient mortality in the following solid tu-
mors: adrenocortical carcinoma, colorectal adenocarcinoma, 
cervical squamous cell carcinoma and endocervical adeno-
carcinoma, non‐small‐cell lung cancer, and ovarian cancer 
(Figure 3D‐H),37,38 which all are plausible candidates for 
platinum treatment in the clinic. The COX7B gene is mapped 
to chromosome Xq21.1 and encodes a poorly characterized 
structural subunit of Cytochrome C oxidase (COX), the MRC 
complex IV (https://ghr.nlm.nih.gov/gene/).

Our next goal was to determine whether CDDP was af-
fecting the COX7B state in intact human tumors. To answer 
this question, we first analyzed the TCGA dataset for COX7B 
as a biomarker for platinum resistance (Figure 4A). Among 
the 404 patients with bladder cancer plotted in Figure 3A, 
79 (19.6%) were treated with platinum chemotherapy and 
had clinical data indicating their response to the treatment. 
Six patients received the treatment twice, and one patient 
received the treatment three times. Thus, 87 data points were 
included in the analysis. The result revealed that low COX7B 
levels were significantly associated with poor response to 
chemotherapy, assuming disease progression under plati-
num treatment. Then we examined COX7B by immunohis-
tochemistry in a cohort of 16 bladder cancer samples from 
patients who underwent neoadjuvant CDDP‐based chemo-
therapy (NAC) before surgery (Figure 4B, Table S6). As a 
control, we also tested 10 bladder cancer samples from pa-
tients without NAC (non‐NAC group, Figure 4B, Table S6). 

Examination of the surgically treated samples obtained from 
the NAC and non‐NAC groups showed that the protein levels 
of COX7B were significantly lower in the NAC group than 
in the non‐NAC group (P = 0.004; Figure 4C). Analyzes of 
COX7B protein levels in matched pre‐ and posttreatment 
sections showed a significant difference. In the NAC group, 
all patients exhibited decreased COX7B protein levels after 
CDDP compared to before CDDP (P < 0.001, Figure 4D,E). 
The median reduction of COX7B after CDDP was 50.5% 
whereas no such effect was observed in the non‐NAC group 
(Figure 4F). Together, these results demonstrated that the 
COX7B protein level decreases in tumors after treatment 
with CDDP.

The relationship between platinum‐resistance and pheno-
typical alterations in cancer cells after CDDP treatment re-
mains unclear. This central question assumes the existence of 
ITH dynamics that give rise to clonal expansion and repop-
ulation during the CDDP treatment.11,15,22,23 To address this 
question, we focused on the ITH profiles39 obtained in Figure 
1B and stratified the cells according to their levels of COX7B 
(Figure 5A). When analyzing the aggregations resulting from 
platinum‐resistant 5637PR cells, a small fraction of sub-
clones of parental 5637 cells with low‐COX7B were observed 
(Figure 5A). We hypothesized that these subtypes of parental 
5637 cells were cells with acquired platinum‐resistance ob-
tained following CDDP treatment.

To test our hypothesis, we designed a protocol to sort out 
low‐COX7B cells from the other cells using a cell surface 
marker and subsequently examined their platinum sensitiv-
ity (Figure 5B). First, we analyzed the association between 
COX7B and classification determinant (CD) markers in the 
scRNA‐seq dataset (Figure S7A). Among the 22 CD mark-
ers identified, the mRNA levels of four genes significantly 
correlated with that of COX7B, respectively. Second, CD63 
was selected after validating the TCGA dataset (Figure 
S7B,C).40,41 Third, the clinical specimens obtained in Figure 
4B were examined for CD63. This analysis showed that the 
patients in the NAC group had significantly lower CD63 pro-
tein levels (P = 0.010) compared to the corresponding tumor 
samples before the CDDP treatment (Figure S8A,B).

F I G U R E  3  Relationship between high levels of COX7B and outcome of multiple cancer types. A, Violin plot with box and dot plots show 
the heterogeneity of COX7B levels in human urinary bladder cancer tissues, obtained from TCGA provisional samples of 408 human urinary 
bladder cancer patients. Kaplan‐Meier curve shows a significant association between COX7B levels and patient survival. Four samples with 
unknown survivals were excluded from the Kaplan‐Meier analysis. The P value from the log‐rank test. B, Relationships between COX7B levels 
and pathological features of tumor grade and stage, obtained from TCGA provisional samples of 408 human urinary bladder cancer patients. Three 
samples with unknown tumor grade and one sample with unknown tumor stage were excluded. LG, low grade; HG, high grade. The P value from 
the Mann‐Whitney U test. C, Predictive risk factors for overall mortality for urinary bladder cancer patients obtained from TCGA provisional 
samples (n = 408). The multivariate analysis includes the 376 patients (92.2%) that had all required information available. AJCC, American Joint 
Committee on Cancer; HR, hazard ratio; CI, confidence interval. Kaplan‐Meier analyses of indicated datasets for adrenocortical carcinoma (D), 
colorectal adenocarcinoma (E), cervical squamous cell carcinoma and endocervical adenocarcinoma (F), non‐small‐cell lung cancer (G), and serous 
ovarian cancer (H). The P values and HR with 95% CI displayed on the survival plots are from the result of proportional hazards analysis using the 
log‐rank test. Results are obtained using the ProgeneV2 database (http://watson.compbio.iupui.edu/chirayu/proggene).

https://ghr.nlm.nih.gov/gene/
http://watson.compbio.iupui.edu/chirayu/proggene
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Analyzing the CD63 levels for all 249 single cells (Figure 5C) 
revealed similarities in the pattern of COX7B (Figure 5A). To 
evaluate the diagnostic efficacy of CD63, we plotted the results 
in a receiver operating characteristic graph to detect low‐COX7B. 
Strong tests tend toward the upper left corner; weak tests tend to-
ward the dotted diagonal line. The results yielded an area under 

the curve (AUC) value of 0.775 from the scRNA‐seq dataset, 
consistent with the positive correlation between the COX7B and 
CD63 levels (r = 0.590, P < 0.001; Figure 5D). These results 
were further confirmed by a TCGA dataset of 408 bladder can-
cer patients (Figure 5E), producing an AUC value of 0.650 and 
Spearman’s rho of 0.317 (P < 0.001), respectively.

F I G U R E  4  Clinical response and expression profile of high levels of COX7B in urinary bladder cancer patients treated with platinum. A, 
Best responses after platinum chemotherapy in 87 cases from the TCGA cohort of 79 bladder cancer patients plotted in Figure 3A. *P < 0.05, 
#P < 0.10. The P value from the chi‐square test. B, Workflow for obtaining 16 matched clinical urinary bladder cancer sections pre‐ and post‐
neoadjuvant CDDP‐based chemotherapy (NAC). Ten human urinary bladder cancer sections without NAC (non‐NAC) were used as controls. Dx, 
diagnosis. C, Box plots show a significant difference in COX7B protein levels between the NAC (n = 16) and non‐NAC (n = 10) patient groups. 
The P value from the Mann‐Whitney U test. D, Representative images of COX7B in matched urinary bladder cancer sections obtained pre‐ and 
post‐NAC. Scale bars, 100 μm. E,F, Spaghetti plots showing immunolabeling of COX7B in the NAC (n = 16) and non‐NAC (n = 10) patient 
groups. The P value from the paired Student's t test. The line within the box is the median. The upper and lower quartiles are bounds of the box, and 
the minimum and maximum values are the bars

F I G U R E  5  scRNA‐seq identifies innate platinum‐resistant cells in human urinary bladder cancer. A, Principal component analysis (PC1 vs 
PC2) of the COX7B levels listed in Figure 1B (n = 249). The high‐magnification images are of the boxed region with and without pseudo‐coloring. 
B, Workflow for determining a cell surface marker associated with the COX7B level in human urinary bladder cancers. C, Principal component 
analysis (PC1 vs PC2) of the CD63 levels listed in Figure 1B (n = 249). Receiver operating characteristic analysis (upper panels) of CD63 for 
detecting the low COX7B level (<25th percentile) group in all 249 single cells (D) or TCGA provisional for 408 human urinary bladder cancer 
patients (E). AUC values are indicated. Scatter plots in lower panels show COX7B vs CD63 levels in each dataset. r, Spearman's correlation 
coefficient. F, Scatter plots depicting the FACS analysis of COX7B and CD63 from 5637 cells. Fluorescence‐minus 5637 cells (gray) were used as 
control. G, The COX7B protein levels of sorted 5637 cells for CD63 were determined by FACS re‐analysis. H, Histogram (blue) plots depicting the 
FACS analysis of CD63 from 5637 cells. Data are the mean percentages of three independent experiments for sorted 5637 CD63high and CD63low 
cells. Fluorescence‐minus 5637 cells (gray) are used as a control. Right panel shows effect of CDDP on the viability of FACS‐sorted 5637 CD63high 
and CD63low cells measured as relative fold change in IC50 (the half maximal inhibitory concentration). Un‐sorted 5637 cells were used as a 
control. *P < 0.05, compared to sorted 5637 CD63low cells. The P value from the two‐tailed Student's t test. I, Histogram (blue) depicting the FACS 
analysis of CD63 from 5637PR cells. Data are the mean percentages of three independent experiments for sorted 5637PR CD63high and CD63low 
cells. Fluorescence‐minus 5637PR cells (gray) were used as a control. Right panel shows effect of CDDP on the viability of FACS‐sorted 5637PR 
CD63high and CD63low cells measured as relative fold change in IC50. Un‐sorted 5637PR cells were used as a control. **P < 0.05, compared to 
sorted 5637PR CD63low cells
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Using fluorescence‐activated cell sorting (FACS) for 
CD63, we next sought to isolate CD63low and CD63high cells 
from bulk parental 5637 cells to further characterize them. 
The CD63low cells showed weak COX7B protein levels 
(Figure 5F,G). Investigation of the platinum sensitivity of 
CD63low cells revealed a significant increase in platinum‐re-
sistance compared to that of CD63high cells when challeng-
ing them with CDDP (Figure 5H). This result suggests the 
existence of a platinum‐resistant subclone in the population 

of parental platinum‐naïve cells. Further, isolating CD63high 
cells from 5637PR cells (Figure S9) revealed a significant 
decrease in platinum‐resistance compared to that of CD63low 
cells (Figure 5I), yet maintaining the sensitivity to CDDP, 
even in 5637PR cells. In sum, the results from both cell line 
experiments demonstrated that COX7B and CD63 were 
closely related in cancers. Together these genes contribute 
to the landscape of platinum‐resistance in platinum‐naïve 
cancers.



6202 |   TANAKA eT Al.

4 |  DISCUSSION

Intratumoral heterogeneity profiles are closely associated 
with acquired drug resistance, leading the natural selection 
for subclones that will grow and repopulate in cancer cells 
after receiving chemotherapy.11,15,22,23 Platinum‐based chem-
otherapy has been used for a long time treating patients with 
solid tumors, and CDDP is the best‐standard agent over the 
last several decades. Using urinary bladder cancer, this study 
is the first to show the relationship between platinum‐resist-
ance and the transcriptome dynamics in ITH during treatment 
with CDDP. These results revealed the COX7B gene as a 
prognostic biomarker for platinum‐resistance in patients with 
cancer. COX7B has never been linked to platinum‐resistance 
in urinary bladder cancer, but reports exist in ovarian42 and 
breast43 cancer. Knockdown of COX7B decreased the sen-
sitivity of CDDP in platinum‐naïve cancer cells, and over-
expression of COX7B could re‐sensitize the cells to CDDP 
in platinum‐resistant cancers. The exact molecular mecha-
nisms responsible for rendering cells resistant or sensitive to 
chemotherapy are unknown. The COX7B gene is involved 
in the metabolism of the cell which indicate that sensitivity 
or resistance of tumors to neoadjuvant chemotherapy are not 
only dependent on apoptotic pathways and cell cycle regu-
lation, but that other biologic processes also are required.43 
Interestingly, COX7B is involved in the mitochondrial respir-
atory chain, which carries out oxidative phosphorylation.44 
This fact may suggest that a disturbed redox homeostasis is 
involved in the CDDP resistance of cancer cells. Further, we 
identified the existence of subclone with low‐COX7B that 
behaved as cancer cells with acquired platinum‐resistance 
in platinum‐naïve cancers. We speculate that this subclone 
dominated when the cancer developed its acquired platinum‐
resistance. The mechanisms that we here present are novel 
and highlight the potential advantages of single‐cell analysis 
in the monitoring platinum‐resistance underlying in cancers 
treated with CDDP.

Recent developments in the scRNA‐seq have unravel cell‐
to‐cell heterogeneity and hidden subclones in the bulk cell 
population.24-28 Applying this sequence technology to can-
cers has also highlighted the heterogeneous patterns of ITH 
between different patients and also between tumors coming 
from the same patient.2,5,6,8,9 It is evident that tumors are not 
uniform; rather, they are entirely heterogeneous at the sin-
gle‐cell level. This heterogeneity strongly contributes to cell 
repopulation, which is vital when tumors develop chemore-
sistance.23 However, a vital question that remains to answer is 
how to use all this knowledge and translate it to patient ben-
efit. In this study, our assessments were further extended to 
determine an appropriate cell surface and surrogate marker, 
CD63, to distinguish a platinum‐resistant subclone with 
low‐COX7B. We revealed that assaying CD63 could sort out 
this subclone from bulk cancer cells, possibly stimulating the 

development of tailored treatments aiming to determine sub-
clones of cancer cells in the clinic.

scRNA‐seq has also been used to study drug resis-
tance in other cancer types. In lung adenocarcinoma cell 
lines, ribosomal and housekeeping genes reduce their 
relative expression diversity during drug treatment with 
the multi‐tyrosine kinase inhibitor Vandetanib (US trade 
name Caprelsa).45 Interestingly, their result indicates that 
genes that are directly targeted by the drug of interest, in 
this case the EGFR and RET genes, remain constant. In 
metastatic breast cancer cells subjected to the chemother-
apeutic agent Paclitaxel, scRNA‐seq showed that specific 
transcriptional programs were enacted within untreated, 
stressed, and drug‐tolerant cell groups, while generating 
high heterogeneity between single cells within and between 
groups.36 In another study on melanoma cells, the authors 
observed profound transcriptional variability at the single‐
cell level that predicted which cells would ultimately resist 
drug treatment.46 In their study, the reprogramming began 
with a loss of SOX10‐mediated differentiation followed by 
activation of signaling pathways partially mediated by the 
transcription factors JUN and/or AP‐1 and TEAD.

In summary, we have applied the scRNA‐seq system to 
screen urinary bladder cancers and uncovered a dynamic shift 
in ITH before and after developing platinum‐resistance. This 
analysis identified a novel platinum‐resistance gene called 
COX7B. Cell population‐based analyses revealed a specific 
subclone of low‐COX7B cells among platinum‐naïve 5637 
cells that behaved as cancer cells with acquired platinum‐
resistance. We further identified the association between 
COX7B and CD63 and observed that 59% of the 32 cancer 
types in TCGA show a positive correlation with COX7B 
(Figure S7C). Although additional studies are required to 
fully elucidate the functional role of the COX7B gene, these 
scRNA‐seq results could offer a new transcriptome land-
scape of platinum‐resistance that provides valuable insights 
into chemosensitivity and cancer stemness at a single‐cell 
level.6,11,14,15,22,47-49 Such single‐cell analyses will be instru-
mental in the design of new clinical diagnostic strategies.
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