Skip to main content
. 2018 Dec 3;18(12):4253. doi: 10.3390/s18124253

Table 1.

Other studies about classification of emotion using physiological signals.

No. Emotions Signals Classifiers Accuracy [%]
1 [8] Arousal, Valence EEG SVM 82.0
2 [9] Amusement, Fear, Sadness, Joy, Anger, Disgust EEG, ECG Bayesian Network 98.1
3 [10] Amusement, Grief, Anger, Fear, Baseline OXY, GSR, ECG RF 74.0
4 [11] Arousal, Valence EMG, RSP SVM 74.0
5 [12] Arousal, Valence EEG LSTM 72.1 for valance
74.1 for arousal
6 [13] Arousal, Valence EEG KNN, RF 69.9 for valance
71.2 for arousal
7 [14] Arousal, Valence EEG, EMG, EOG, GSR, RSP, T, BVP SVM 88.3 for valence
90.6 for arousal
8 [15] Positive, Negative ECG SVM 73.1
9 [16] Arousal, Valence EEG G extreme Learning Machine 91.1
10 [17] Happy, Curious, Angry, Sad, Quiet EEG QDA 47.5