Skip to main content
. 2018 Dec 1;18(12):4222. doi: 10.3390/s18124222
Algorithm 1 The implementation of the PEKF-VB algorithm
  • 1:

    Initialization (k=0): state estimation x0 and associated error covariance P0, the number of iterations.

  • 2:
    Compute the predicted state xk|k1 and the associated error covariance Pk|k1
    xk|k1=fkxk1|k1,Pk|k1=FkPk1|k1FkT+Qk1,
    where Fk=fkxx|x=xk1|k1.
  • 3:
    Compute the filtering grain Kk
    Sk=HkPk|k1HkT+Rk,Kk=Pk|k1HkTSk1,
    where Hk=hkxx|x=xk|k1.
  • 4:
    Update the state estimation xk|k and the associated error covariance Pk|k
    xk|k*=xk|k1Kkzkhk(xk|k1),Pk|k*=Pk|k1KkHkPk|k1.
  • 5:

    Let xk|k1=xk|k*, Pk|k1=Pk|k*, and i=1.

  • 6:

    while not converge do

  • 7:

     Compute parameters αki+1 and γki+1 by Equations (18) and (19).

  • 8:

     Compute iterated state estimation xk|ki+1 and its error covariance Pk|ki+1 by Equations (26) and (27).

  • 9:

     Let i=i+1.

  • 10:

    end while

  • 11:

    Let k=k+1, go back to Step 2.