Skip to main content
. 2018 Dec 6;18(12):4308. doi: 10.3390/s18124308

Table 1.

Detection accuracy and speed of all lane detection algorithms on KITTI and Caltech datasets.

Algorithm KITTI Caltech
mAP
(%)
Speed
(ms)
mAP
(%)
Speed
(ms)
Fast RCNN [25] 49.87 2271 53.13 2140
Faster RCNN [26] 58.78 122 61.73 149
Sliding window & CNN [23] 68.98 79,000 71.26 42,000
SSD [28] 75.73 29.3 77.39 25.6
Context & RCNN [45] 79.26 197 81.75 136
Yolo v1 (S × S) [27] 72.21 44.7 73.92 45.2
T-S Yolo v1 (S × 2S) 74.67 45.1 75.69 45.4
Yolo v2 (S × S) [29] 81.64 59.1 82.81 58.5
T-S Yolo v2 (S × 2S) 83.16 59.6 84.07 59.2
Yolo v3 (S × S) [31] 87.42 24.8 88.44 24.3
T-S Yolo v3 (S × 2S) 88.39 25.2 89.32 24.7