
Therapeutic strategies to target acute and long-term sequelae of 
pediatric traumatic brain injury

Jimmy W. Huh1 and Ramesh Raghupathi2

1Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, 
Philadelphia PA and 2Department of Neurobiology and Anatomy, Drexel University College of 
Medicine, Philadelphia PA

Abstract

Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and 

mortality in children. Experimental and clinical studies demonstrate that the developmental age, 

the type of injury (diffuse vs. focal) and sex may play important roles in the response of the 

developing brain to a traumatic injury. Advancements in acute neurosurgical interventions and 

neurocritical care have improved and led to a decrease in mortality rates over the past decades. 

However, survivors are left with life-long behavioral deficits underscoring the need to better define 

the cellular mechanisms underlying these functional changes. A better understanding of these 

mechanisms some of which begin in the acute post-traumatic period may likely lead to targeted 

treatment strategies. Key considerations in designing pre-clinical experiments to test therapeutic 

strategies in pediatric TBI include the use of age-appropriate and pathologically-relevant models, 

functional outcomes that are tested as animals age into adolescence and beyond, sex as a 

biological variable and the recognition that doses and dosing strategies that have been 

demonstrated to be effective in animal models of adult TBI may not be effective in the developing 

brain.

Introduction

Traumatic brain injury (TBI) in infants and children remains one of the leading causes of 

long-term disability and mortality worldwide1–7 and occurs as a result of either accidental or 

inflicted causes (abusive head trauma)8,9. Advancements in pediatric neurosurgical 

interventions and neurocritical care has reduced mortality in cases of severe pediatric TBI10. 

However, survivors face life-long behavioral problems exacerbated by the paucity of 

pharmacological interventions that are aimed at reversing or attenuating specific cellular 

mechanisms in order to limit these behavioral pathologies. Pediatric TBI is a “chronic” 

disease, as long-term intellectual and psychosocial deficits are observed in adult survivors 
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following childhood injury11,12. A number of age-appropriate animal models have been 

developed over the past 2 decades which have validated some of the acute and chronic 

behavioral deficits and the structural and cellular alterations typically observed in patients13. 

These animal models are important for testing hypotheses for the underlying cellular 

mechanisms, cellular alterations and behavioral deficits. In this review, we will briefly 

describe human pathologies and their validation in animal models of pediatric TBI and 

describes some of the attempts to attenuate these pathologies using standard 

pharmacological approaches.

Functional deficits following pediatric TBI

The negative consequences of TBI early in life manifests during childhood and extends 

throughout their life as these individuals have difficulty in developing new cognitive or 

social skills14–16. Age-appropriate behavior and levels of arousal and responsiveness were 

significantly decreased in infants and young children that sustained moderate to severe 

TBI17. Intelligent quotient measures did not improve between 6 months and 24 months post-

injury indicating a lack of improvement and developmental arrest18. Children with brain 

trauma also exhibit deficits in verbal working memory, visuo-spatial memory, and attention 

that may contribute to difficulties in a school setting19–21. Psychosocial problems such as 

depression, anxiety, and sleep disturbances become more apparent as these children become 

older15,16. Brain injury sustained in early childhood led to decreased social competencies, an 

increase in irritability and aggression associated with disinhibited verbalizations, and the 

development of novel depressive and anxiety disorders22–24. Children with severe brain 

injuries had significantly decreased motor scores at the initial testing time which only 

improved in the first 6 months25. Children that sustain severe injuries demonstrate an 

increased incidence of seizures in the early stages following injury which are typically 

observed in those under the age of 1 and/or following abusive head trauma26,27.

Cognitive function in animal models of pediatric TBI have been restricted to simple 

cognitive tasks such as spatial navigation learning and memory in the Morris water maze or 

visual recognition memory in the novel object recognition test, although these deficits were 

evident for weeks to months after the initial injury28–35. It is important that more complex 

cognitive function such as retrograde or anterograde spatial memory, episodic memory and 

working memory be evaluated as neonate animals age into adolescence and adulthood36. 

Contusive brain trauma in the neonate mouse resulted in prolonged hyperactivity, a decrease 

in general anxiety-like behavior, and deficits in social behavior weeks to months after the 

injury30–37. Motor function deficits in animal models of pediatric TBI are typically observed 

in only the first few weeks after injury34. Video-electroencephalograph recordings and 

susceptibility to seizure-inducing agents have been utilized in animal models to demonstrate 

the incidence of seizure activity in the acute and chronic post-traumatic periods following 

pediatric TBI38–40.

Cellular pathology following pediatric TBI

Macroscopic structural pathology following TBI include focal contusions which are related 

to impact forces or diffuse injury which may occur due to rotational forces41. The pliancy 

and relatively thinner skull of the infant results in a decreased ability to absorb energy during 
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the application of an external force leading to a greater deformations than the area of direct 

application and a more diffuse pattern of injury in the developing brain42. Skull fractures 

occur in both accidental and abusive head trauma, with subdural hematomas present more 

frequently in children who sustained abusive TBI and epidural hematomas much more likely 

in children with accidental TBI43,44. Evidence of brain atrophy and ex-vacuo 

ventriculomegaly (enlarged ventricular space) has been reported following accidental or 

abusive TBI43,45,46. Subarachnoid hemorrhage and subdural hematomas have been observed 

in animal models in which impact occurred on the skull surface either via a weight-drop 

method47,48 or using the controlled cortical impact device49,50, or as a result of non-impact, 

rotational-acceleration51,52; in some cases ex-vacuo ventriculomegaly was observed49,50,53.

Microscopic alterations to the traumatically-injured pediatric brain include axonal injury, 

cell death, gliosis and inflammation. Damage to the white matter tracts resulting in traumatic 

axonal injury (TAI) has been identified as the predominant cellular pathology in cases of 

infant TBI. Magnetic resonance imaging has revealed evidence of shearing and impaired 

myelination in the corpus callosum which is associated with slower interhemispheric 

transfer times measured using event-related potentials and indicative of impaired 

function20,54–57. Diffuse tensor imaging has demonstrated reduced fractional anisotropy in 

the corpus callosum, internal capsule, and longitudinal fasciculus, which has been associated 

with cognitive and psychosocial deficits in patients who sustained a TBI in early 

childhood20,54,55,58,59. Post-mortem evaluation using silver staining or beta-amyloid 

precursor protein (β-APP) immunohistochemistry60,61 has detected axonal injury in the 

corpus callosum, internal capsule, midbrain and brainstem62–64. These clinical observations 

have been validated in multiple animal models of impact and non-impact TBI using either 

imaging65 or immunostaining for β-APP and/or neurofilament35,49–52,66–68. A decrease in 

axonal function in the white matter tracts (measured using compound action potential in ex 

vivo preparations) has also been documented65,69, along with observations of atrophy in the 

white matter tracts over time associated with axonal degeneration70,71. Evidence of brain 

atrophy in head-injured children suggests that neuronal cell death may be a component of 

TBI pathology45,72,73. Direct indication of cell death in various pre-clinical pediatric TBI 

models has been facilitated via the use of markers specifically associated with necrosis, 

apoptosis, and excitotoxicity48,49,74,75. Associated with neuronal loss is evidence of glial 

reactivity. Severe TBI in children is associated with an increase in pro-and anti-

inflammatory cytokines such as the interleukins −1β, −6, and −1076,77, chemokines 

interleukin-8 and macrophage inflammatory protein-1α indicating migratory signaling to 

other immune cells77, and significantly higher concentrations of quinolinic acid indicative of 

microglia/macrophage activation78. These are by no means an exhaustive list of cytokines 

and chemokines underscoring a need to extend these observations to other chemokines such 

as chemokine C-C motif ligand (CCL) and CXCL families that have demonstrated roles in 

mediating the cellular immune response. Recent evidence indicates that TBI in neonate and 

juvenile animals is associated with an increase in tissue and serum concentrations of various 

cytokines and chemokines such as tumor necrosis factor-α, IL-1β, IL-6, CXCL1, CCL5 and 

CCL3 to name a few79–81. Head trauma in the immature animal also resulted in microglial 

activation along with infiltration of peripheral immune cells in multiple brain regions such as 
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the cortex, thalamus, hippocampus and subcortical white matter tracts which demonstrate 

evidence of neurodegeneration and axonal injury28,70,71,74,79,82.

Treatment strategies in pediatric TBI focused on specific cellular pathology

Axonal injury—Despite the identification of axonal injury as a predominant cellular 

pathology in pediatric TBI, surprisingly few studies have focused on attenuating axonal 

degeneration. Proposed secondary mechanisms underlying traumatic axonal injury include 

ionic dysregulation, impaired axonal transport, calpain-mediated proteolysis, calcineurin-

mediated dephosphorylation, microtubule degradation, and neurofilament compaction83–89. 

Calpain activation has been documented within injured axons in the immature rat75,90 

although administration of calpain inhibitor III (MDL28,170) at doses of either 30mg/kg or 

60mg/kg over the first 24 hours following TBI in the juvenile rat reduced calpain activation 

but not axonal function deficits (unpublished observations). Calcineurin-mediated 

neurofilament dephosphorylation and compaction has been reported following diffuse brain 

injury in the immature rat67,69 although the calcineurin inhibitor tacrolimus (FK-506) did 

not improve axonal function despite reducing neurofilament dephosphorylation69. These 

observations underscore the possibility that mechanisms of TBI-induced axonal damage and 

degeneration may not occur via similar mechanisms in the immature and adult 

brains89,91–93.

Cell death—High concentrations of glutamate have been reported in the cerebrospinal 

fluid of children that sustained a severe TBI94, suggesting that excitotoxicity leading to 

either apoptotic or necrotic cell death may occur in the pediatric brain95,96 and may be 

identified using activation of caspases and calpains, respectively97. Traumatic injury to the 

9-day-old, 11-day-old or 17-day-old rat demonstrated activation of calpains and caspases in 

multiple brain regions75,98,99. Similarly, decreased expression of the anti-apoptotic protein 

Bcl-2 along with activation of the pro-apoptotic protease caspase-3 suggests that apoptotic 

cascades are activated following trauma to the developing brain and discovered that these 

apoptotic markers were most severe in the youngest animals48. As observed in models of 

adult TBI100,101, glutamate receptor antagonists administered acutely following neonate TBI 

appears to provide neuroprotection102. However, this strategy must be considered with 

caution as NMDA receptor antagonists were observed to increase apoptosis in the 

developing brain following TBI103. Moreover, excitatory neurotransmission is critically 

important for proper development of the immature brain104; in this regard, the co-agonist of 

the N-methyl-D-aspartate receptor (NMDAR), D-cycloserine has been observed to limit 

post-traumatic decreases in NMDAR expression, novel object recognition deficits and 

improve the response of the brain to experience-dependent plasticity105.

Inflammation—Targeting the activation of astrocytes, microglia and infiltrating leukocytes 

and monocytes for therapeutic purposes in models of pediatric TBI has only been a recent 

development106,107, albeit with limited success. Decreasing the expression of the astrocytic 

protein aquaporin-4 via RNA silencing reduced edema and blood-brain barrier disruption in 

the acute post-traumatic period and spatial learning deficits in the months after injury but did 

increase microglial activation107. The protease elastase is released from activated neutrophils 

that enter the brain after trauma but inhibition of this protease in the acute post-traumatic 
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period only served to reduce cell death and had no effect on long-term behavioral 

outcomes108. Similarly, manipulation of infiltrating mast cells after trauma to the neonate 

mouse using a degranulation inhibitor or with genetic approaches had little to no effect on 

cell death, axonal injury or microglial activation109. Short-term minocycline administration 

in the first week following trauma to the neonate rodent reduced microglial proliferation and 

activation but was accompanied by increased neurodegeneration and no attenuation of 

spatial learning and memory deficits70,71,79. These observations are suggestive of a 

differential age-at-injury inflammatory response because similar strategies in the adult TBI 

models have demonstrated marked efficacy in increasing neuroprotection, reducing 

microglial activation and attenuating locomotor and spatial learning and memory 

deficits110–116. Because microglia in the developing brain are important for sculpting of 

neuronal circuits, synapse and axonal remodeling, and pruning of unwanted or excess cells 

and clearance of unwanted cellular debris117–120, a better approach may be targeting the pro-

inflammatory cytokines that may mediate secondary damage after trauma. In this regard, the 

interleukin-1 receptor antagonist (anakinra) has been reported to reduce post-traumatic 

seizure susceptibility in a mouse model of pediatric TBI38.

Treatment strategies in pediatric TBI focused on multiple cellularpathologies

Pediatric TBI, as in the case of adult TBI, exhibits complex pathologic alterations indicative 

of multiple mechanisms13. Whereas strategies targeting a single mechanism may yet be 

viable, a second approach is using either a combination of pharmacologic agents, or a single 

pleiotropic agent/intervention that targets multiple mechanisms. The former strategy has had 

limited success in models of pediatric TBI and is reviewed by Margulies et al121. Here we 

describe a few examples of the latter approach based on their successes in models of adult 

TBI.

Progesterone—The steroid hormone progesterone (PROG) has multiple mechanisms of 

neuroprotection from reducing edema, inflammation, oxidative damage to apoptosis and 

excitotoxic cell death122. It has been extensively used in models of adult TBI but failed in 

phase III clinical trials in moderate-severe adult TBI123–126. Despite this setback, PROG has 

been tested in a few different models of pediatric TBI albeit with limited success. In male 

but not female immature rats, PROG reversed mitochondrial dysfunction and improved anti-

oxidant reserves127. Similarly, PROG treatment following contusive trauma in 4-week old 

mice improved motor function in male mice while worsening performance in female mice 

and did not reduce neurodegeneration in either sex128. When 4-week-old male and female 

rats were subjected to bilateral frontal lobe contusive trauma, PROG attenuated spatial 

learning and locomotor deficits in both sexes, along with a reduction in lesion volume129,130. 

It must be noted that few, if any, of these studies have evaluated the mechanistic basis of the 

actions of PROG but do highlight the importance of the differential efficacy of interventions 

on the basis of sex.

Erythropoietin—The pleiotropic cytokine, erythropoietin (EPO) is currently in use as a 

neuroprotective agent in preterm infants at risk for central nervous system injury131,132. 

EPO, like PROG, has multiple mechanisms of action including limiting apoptosis and 

promoting neural tissue repair133. EPO, particularly at high doses administered over an 
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extended period of time after injury, has been effective in reducing post-traumatic pathology 

and behavioral deficits in multiple animal models of adult TBI134. In either 12- or 17-day-

old rat pups, EPO was administered over the first week post-injury and was observed to 

reverse motor deficits, cortex and white matter damage, attenuate hippocampal apoptosis 

and improve recognition memory80,135. A recent study reported that the improvement in 

recognition memory was maintained into adulthood136. However, neither the specific 

mechanism of action of EPO in the injured neonate brain nor the dependence of efficacy on 

sex are currently known.

Future directions for treating pediatric TBI

The importance of evaluating multiple outcome measures (cognitive, motor, psychosocial) 

during the chronic phase of injury following a therapeutic intervention cannot be overstated, 

as most pediatric TBI patients survive but are left with profound morbidity in adulthood. 

Preclinical pediatric TBI studies have successfully modeled acute (days to weeks) cellular 

pathologies observed in the human condition and have associated these changes with simple 

behavioral tasks of learning and memory. The investigation of long-term (weeks to months) 

pathologic and functional outcomes and evaluation of psychosocial behaviors have only 

recently been implemented and need additional evaluation. Intervention strategies aimed at 

specific cellular pathologies such as axonal injury, cell death or inflammation that have 

worked in adult TBI models are not always effective in attenuating functional deficits in the 

immature animal and therefore must be carefully examined in future studies. These data 

underscore the need for further studies to have a much better understanding of age-

dependent mechanistic responses to trauma. In addition, mechanisms of brain damage 

sustained after trauma at the different maturational stages in development (infant, toddler, 

adolescent) need to be evaluated with a view to developing age-specific treatment strategies. 

For example, the decrease in glucose utilization that occurs over time after pediatric TBI137 

allows ketone bodies to be administered as an alternative substrate although this approach 

was effective in reducing lesion size and behavioral deficits in a narrow range of ages (post-

natal days 35–45)138,139. Future research aimed at attenuating deleterious processes using 

pharmacological means may also be augmented by using strategies to enhance reparative 

(plasticity) responses, not only during the acute post-traumatic period, but also at the 

subacute or chronic post-traumatic period. In this regard, environmental enrichment or 

transcranial magnetic stimulation offer promising leads to improve recovery of the immature 

brain from a traumatic injury140,141. It is becoming increasingly apparent that the gender 

affects outcome following pediatric TBI142,143 and the efficacy of the intervention paradigm 

in the acute post-traumatic period to limit pathology in preclinical studies127,128,144. In 

addition to the preliminary studies with progesterone127,128, vasopressor studies have 

demonstrated that phenylephrine (Phe) resulted in a greater reduction in metabolic crisis 

than with norepinephrine in female brain-injured piglets145, whereas Phe exacerbated 

cerebrovascular dysregulation in male brain-injured piglets144. Further studies on the role of 

sex and gender at different stages of maturation and the role of circulating sex hormones 

especially during the adolescent stages of TBI may dictate effective therapeutic strategies. 

Finally, as the field continues to develop mechanism-specific pharmacologic strategies, care 

must be given to exploring the potential for age-dependent differences in pharmacodynamics 
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(target engagement) and pharmacokinetics (drug metabolism). Despite these challenges, it is 

encouraging to see the growth in preclinical pediatric TBI research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Pediatric TBI is a leading cause of morbidity in children below the age of 14.

As brain-injured children age into adulthood, they exhibit multiple cognitive and 

behavioral deficits.

The cellular pathology of brain injury in children includes axonal injury, 

neurodegeneration and inflammation.

Pleiotropic agents may be better suited to treat pediatric TBI.

Factors such as age, sex and pharmacokinetics need to be considered.

Long-term behavioral measures need to be incorporated into the study design.
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