
EINVis: A Visualization Tool for Analyzing and Exploring Genetic 
Interactions in Large-Scale Association Studies

Yubao Wu1, Xiaofeng Zhu2, Jian Chen3, and Xiang Zhang1,*

1Department of Electrical Engineering and Computer Science, Case Western Reserve University, 
Cleveland, Ohio 2Department of Epidemiology and Biostatistics, Case Western Reserve 
University, Cleveland, Ohio 3Department of Computer Science and Electrical Engineering, 
University of Maryland, Baltimore County, Baltimore, Maryland

Abstract

Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently 

drawn extensive research interests as many complex traits are likely caused by the joint effect of 

multiple genetic factors. The large number of possible interactions poses both statistical and 

computational challenges. A variety of approaches have been developed to address the analytical 

challenges in epistatic interaction detection. These methods usually output the identified genetic 

interactions and store them in flat file formats. It is highly desirable to develop an effective 

visualization tool to further investigate the detected interactions and unravel hidden interaction 

patterns. We have developed EINVis, a novel visualization tool that is specifically designed to 

analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a 

network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the 

hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and 

chromosomes, and the network structure formed by these interactions. Using EINVis, the user can 

distinguish marginal effects from interactions, track interactions involving more than two markers, 

visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. 

EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic 

interactions. It is publicly available with detailed documentation and online tutorial on the web at 

http://filer.case.edu/yxw407/einvis/.
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Introduction

Epistasis (gene-gene interaction) detection is receiving an increasing amount of research 

attention in large-scale genetic association studies [Cordell, 2009]. Interactions between 
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genes are fundamentally important to understand the structure and function of genetic 

pathways of complex genetic systems [Moore and Williams, 2009; Phillips, 2008] and have 

been suggested potentially to uncover the “missing heritability” in genetic association 

studies [Manolio et al., 2009]. Detecting epistatic interactions in the genome-wide scale is 

both statistically and computationally challenging. The large number of possible interactions 

between single nucleotide polymorphisms (SNPs) poses a serious multiple testing problem 

and demands intensive computational resources [Steen, 2012]. A variety of methods have 

been developed for epistasis detection. Please refer to Shang et al. [2011], Wang et al. [2011] 

for excellent review and performance study of the existing methods.

The outputs of an epistasis detection method usually include a list of SNP pairs and their test 

statistics or significance levels. There is a lack of effective visualization tool to further 

analyze and explore the discovered interactions. Moreover, most of the current study designs 

for searching epistatic interactions at the genome-wide level have low power because of the 

large number of tests. Therefore, it is interesting to systemically examine many interactions 

with relatively weak statistical evidence. An intuitive approach to explore the discovered 

genetic interactions is to use network built by linking SNPs whose pairwise interactions are 

stronger than a threshold [Hu et al., 2011; McKinney et al., 2009]. Representing epistatic 

interactions visually by networks is an effective way to demonstrate the interplay between 

different SNPs and genes.

Visualization tools, such as Cytoscape [Shannon et al., 2003] and VisANT 3.5 [Hu et al., 

2009], are mainly designed for biomolecular network visualization. MizBee [Meyer et al., 

2009] exerts a separate circular layout and other linked views to visualize syntenic data. 

Circos [Krzywinski et al., 2009] focuses on circular layouts and is created for comparative 

genomics. D3 [Bostock et al., 2011] is a general purpose visualization toolkit. Despite the 

success of these excellent visualization tools, none of them can be directly used for 

exploring the epistatic interaction network (EIN) [Doncheva et al., 2012; Pavlopoulos et al., 

2008; Suderman and Hallett, 2007].

Visualizing genetic interaction network has its unique requirements and properties that can 

be used to enhance the visualization effectiveness. In a genetic interaction network, the 

relationship between SNPs, genes, and chromosomes can be represented using a hierarchical 
tree structure. This hierarchical structure can be utilized to enhance the effectiveness of 

network visualization. Circular layout is a natural choice to visualize the hierarchical 

structure and network structure simultaneously [Holten, 2006]. Moreover, when studying 

gene-gene interactions, it is important to distinguish marginal effects from interactions. For 

example, it is interesting to identify SNPs that have weak marginal effects but interact with 

many other SNPs. Tracking interacting SNPs and visualizing interactions at different levels, 

e.g., SNP-SNP, SNP-gene, and gene-gene interactions, are also important functions that can 

enhance the effectiveness of the visualization tools.

We have developed a visualization tool EINVis (Epistatic Interaction Network Visualization) 

for the exploration and analysis of genetic interactions. Utilizing EINVis, the user can 

directly see the connection pattern among SNPs, genes, and chromosomes. The interaction 

strength between two nodes is encoded by the edge color. The user can also provide single-
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locus test statistics (encoded by the node color), which help to reveal the relationship 

between marginal and interacting effects. EINVis allows users to observe how a set of 

selected nodes interact with other nodes by highlighting the connected nodes and induced 

edges. The user can also expand or collapse nodes, which not only help to focus on the set of 

nodes of interest, but also enable to observe interactions at different levels. EINVis also 

provides summary statistics of the visualized interaction network.

Material and Methods

EINVis Software

EINVis is created for visualization of small or moderate genetic interaction network with 

hundreds of edges or nodes. EINVis is open source and implemented in JavaScript language. 

Canvas 2D and control elements in HTML5 (the fifth revision of the HTML standard) are 

exerted to draw graphics and provide user-friendly interfaces. EINVis runs on all major 

browsers as long as they provide support for HTML5.

EINVis provides three different views: an EIN tree ring view, an EIN matrix view, and a 

linkage disequilibrium (LD) tree ring view. The EIN tree ring view is the main view in 

EINVis. It adopts the circular layout and looks like a tree ring. A wide range of controls and 

mouse interactions are included to let user interact with the visualization results. The EIN 

matrix view is an auxiliary view. It can help the user observe the adjacency matrix of the 

interaction network. The LD tree ring view is another auxiliary view. It can help the user 

observe the LD information among SNPs.

The underlying implementation architecture of EINVis is shown in Figure 1. It includes 

three main modules: layout generation, rendering, and user interaction modules.

After the user inputs the node and edge files, EINVis will generate the layout and other 

rendering parameters. Then, EINVis will begin to render the tree ring views and matrix view. 

EINVis provides a wide range of user interactions, which can help the user to explore the 

visualized results. EINVis also provide SNPs rank summary information. User can link from 

EINVis to NCBI website and look up the interested SNPs or genes.

Layout Generation Module—The layout generation module generates the graph layout 

according to the user input files. All rendering parameters for the tree ring views and matrix 

view are generated by this module. The input files include the EIN node file (SNPs), EIN 

edge file (interactions between SNPs), and LD edge file (LD information between SNPs). In 

the EIN tree ring view, each node is rendered as a ring sector, which includes four 

parameters: inner radius, outer radius, begin angle, and end angle degree. The node color is 

mapped from the single-locus test statistic. The edge layout is generated by B-spline 

interpolation. There is a virtual hierarchical grid [Holten, 2006] built in the inner circle 

region of tree ring view. We find the shortest path between two nodes, which have an edge 

linking them through this virtual grid. The points on this path will be used to calculate the 

edge curve. The edge color is mapped from two-locus test statistic. When there is user 

interaction, this module will update the layouts and rendering parameters, such as node color 
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and bubble positions. After updating, it will call the rendering module to update the 

visualization results.

Rendering Module—The rendering module renders graphics on the canvas elements 

(please refer to the official W3C specification about Canvas element). The canvas element 

provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering 

graphics and other visual images on the fly. The rendering module reads the parameters 

generated by the layout generation module and calls the figure drawing function to render 

the figure on the canvas. When the user interacts with EINVis, the rendering module can 

also update the visualization results. For example, when the user changes the edge color, this 

module will update the edge color (instead of beginning rendering from scratch). The tree 

ring views and matrix view are rendered as bubbles [Bragdon et al., 2010; Li et al., 2011]. 

The extension of static multiple views to a metaphorical interface of bubbles enables a 

flexible layout to support analysis. The user can move the bubbles or change their layers. 

After this module renders the graphics, the user can observe and interact with the 

visualization results.

User Interaction Module—This module enables various user interactions. There are two 

types of interactions provided by EINVis: the mouse and keyboard interaction and the 

control panel interaction. The user can use mouse click and key pressing operations to 

expand nodes, collapse nodes, highlight nodes, and so on. When user points mouse to a SNP 

node or an edge between two SNPs, the corresponding single-locus test statistic, two locus 

test statistic, or LD information will show up. The user can also move the bubbles using 

mouse operations. Through the control panel, the user can change color, font size, and other 

rendering parameters. These interactions are essential for the user to explore the visualized 

results effectively. None of the existing network visualization tools provide such customized 

functions for exploring genetic interaction networks.

Example Hypertension Study Data Set

To illustrate the software, we applied it to the hypertension data of African American 

cohorts from the Candidate Gene Association Resource (CARe) study [Fox et al., 2011; Zhu 

et al., 2011]. We downloaded both phenotype and geno-type data from dbGaP database. We 

analyzed the genotype data genotyped by the 50K cardiovascular gene-centric array 

(ITMAT-Broad-CARe [IBC] array) [Keating et al., 2008], which consists of 47,815 gene 

centric SNPs after quality con-trols (QCs) in approximately 2,500 genes. Analysis was 

restricted to unrelated 5,493 individuals to remove the effect of population structure. The 

phenotype is systolic blood pressure (SBP). A total of 10 mm Hg SBP was added for 

individuals who were taking antihypertensive medication. SBP residual for each individual 

was then obtained by adjusting gender, age, age2, and body mass index. We next applied F-

test to calculate the single- and two-locus test statistics. Note that this step is independent of 

the EINVis tool. Any existing method that is appropriate for the study under consideration 

can be used to generate the single- and two-locus test statistics. We select the top 200 SNP 

pairs with the largest two-locus test statistics and visualize their interactions. Single-locus 

test statistics are normalized to 0∼1 among all the SNPs, while two-locus test statistics are 

normalized to 0∼1 among the top 200 SNP pairs. The information on these SNP pairs is 
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written into node and edge files, which will be used as the input files of EINVis. The LD 

information between the selected SNPs is generated from SNAP website [Johnson et al., 

2008] with distance limit 500 kb. The LD value between two SNPs is the r2 statistic.

Results

In this section, we use the example data set on hypertension study to discuss the functions 

provided by EINVis and show how it can help to visualize and explore the genetic 

interaction network.

EIN Tree Ring View

We summary the key features of EINVis as follows.

Circular Layout—EINVis exerts a circular layout, in particular, a tree ring view [Holten, 

2006], to visualize the hierarchical structure between SNPs, genes, and chromosomes, and 

the interactions between them. One screenshot of EINVis is shown in Figure 2. In this 

figure, each node is rendered as a ring sector. More specifically, the nodes in the inner ring 

represent the SNPs, the nodes in the middle ring represent the genes, and the nodes in the 

outer ring represent the chromosomes. This tree ring structure naturally represents the three-

level hierarchical structure between SNPs, genes, and chromosomes. The mapping 

information between SNPs and genes can be found in public databases such as dbSNP

Distinguishing Marginal Effects From Interactions—The interaction strength 

(represented by the two-locus test statistic) between two SNPs is encoded by the edge color. 

The same color mapping scheme is used to encode node color, i.e., the single-locus test. The 

color of a gene or chromosome node is mapped to the most significant single-locus test 

statistic of its child nodes. Visualizing both single- and two-locus test statistics helps to 

distinguish between marginal effects and interactions. For example, from Figure 3, we can 

see that SNP “rs10160993” on gene “CACNA1C” and SNP “rs4746172” on gene “VCL” 

both have weak single-locus associations, but their two-locus association is very strong. This 

indicates strong interaction effects. In Figure 4, we can observe that a hub SNP “rs1078324” 

on gene “PPARGC1B,” which interacts with many other SNPs, has strong marginal effect. 

Clearly, it is the marginal effect that makes this SNP a hub. EINVis allows distinguishing 

marginal effects from interactions. From the NCBI Genetic Association Database, we find 

that “CACNA1C” has been reported to have strong association with hypertension [Bremer et 

al., 2006; Kamide et al., 2009]. The literature shows that “CACNA1C” polymorphisms are 

associated with the efficacy of calcium channel blockers in the treatment of hypertension.

Edge Bundling and Interaction Tracking—EINVis incorporates edge bundling 

technique [Holten, 2006] to reduce visual clutter when there are a large number of edges. 

This technique models each edge as a B-spline curve and bundle adjacent edges together to 

form a path from one node to another. It also helps to visualize implicit connections between 

parent nodes resulting from the explicit connections between their child nodes. EINVis also 

allows the user to track the interacting nodes. When one node is selected, all its interacting 

nodes and corresponding edges can be highlighted. For example, Figure 4 shows that one 
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SNP “rs1078324” on gene “PPARGC1B” is selected, and all its interacting nodes and 

corresponding edges are highlighted, while unrelated nodes and edges become gray.

Nodes Collapsing and Expanding—The user can collapse or expand nodes using 

EINVis. This allows the user not only to focus on the set of interested nodes, but also to 

observe interactions at different levels, i.e., SNP-SNP, SNP-gene, and gene-gene 

interactions. When a gene node is collapsed, all its child SNPs nodes will disappear. The 

edges originally connecting its child SNP nodes will be connected to the collapsed gene 

node. If some edges are combined into one, we map the color to the most significant two-

locus test statistic among those edges before collapsing. In this way, the number of nodes 

and edges is reduced and the interaction pattern between nodes at different levels can also be 

observed. For example, Figure 5 shows that gene “PPARGC1B” has interactions with many 

other genes and SNPs.

Detecting Proxy SNPs Based on LD—EINVis can help to detect proxy SNPs based on 

LD in the interaction network. LD should be eliminated when user constructs the interaction 

network. However, if not, we can observe some patterns in the EIN tree ring view that 

indicate LD between SNPs. For example, in Figure 2, we can observe that two almost 

parallel edges connecting SNP “rs877567” on gene “CEBPA” with two other SNPs 

“rs9399038” and “rs990500” on gene “VNN1.” We look up the two SNPs “rs9399038” and 

“rs990500” in SNAP [Johnson et al., 2008] and find that they are proxy SNPs based on LD. 

In Figures 3 and 4, we increase the number of edges and find that another SNP “rs990499” 

also has one parallel edge connecting with SNP “rs877567.” From SNAP, we find that the 

three SNPs “rs9399038,” “rs990500,” and “rs990499” are proxy based on LD. This LD 

information can also be observed in LD tree ring view as shown in Figure 7. Gene “VNN1” 

has been reported to be associated with hypertension [Zhu and Cooper, 2007]. Using our 

visualization tool EINVis, we find that this gene has strong interactions with gene “CEBPA” 

but itself has low marginal effect.

Control Panel—The user has great flexibility to control the visualization effects. For 

example, the user can select how many edges to visualize in EINVis. Dynamically changing 

the number of edges to visualize has the advantage to view how the network changes when 

adding or deleting edges. For example, when we increase the number of edges from 80 to 

120, SNP “rs1078324” remains to be a hub SNP as shown in Figures 2 and 4. The user can 

also configure the node and edge color bar separately. There are 12 color bars taken from 

Color-Brewer (http://colorbrewer2.org/) website. These color bars are optimal for human to 

distinguish different colors. In the experiments, we find that some edges with shallow color 

will become invisible under the white background. Thus we add black background check 

box control. When the user checks this box, the tree ring view will render a black 

background, so that the edges in the inner circle region will be easy to observe as the 

contrast increases. Experiments show that the colors from ColorBrewer are much clearer 

than the usual continuous color bar ranging from green to red. EINVis also provides this 

traditional color bar for comparison purpose. The user can also control the font size of the 

node label text. When there are too many SNPs, user can decrease the font size to save space 

to show more SNPs. The user can also choose to hide the node name and focus on the node 
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and edge color patterns. When the user finds an interesting gene or SNP, he can choose to 

show the node name again.

Mouse-Over Function—In the EIN tree ring view, when the user points mouse to a SNP 

node, the corresponding marginal statistic will be shown at the upright corner of the ring 

circle. When the user points mouse to an edge connecting two SNPs, the corresponding two-

locus test statistic will be shown at the same place. Similarly, in the LD tree ring view, when 

the mouse is pointed to an edge, the corresponding LD information will be shown. This 

allows the user to see the exact test value in addition to the mapped color on the node and 

edge.

Link to NCBI Website—EINVis also allows the user to directly connect to the NCBI 

website, so he can get more detailed information of selected SNPs or genes. In the EIN tree 

ring view, the user can click on one node while pressing “L” key to link to NCBI website. In 

the summary statistics webpage, each SNP and gene name has a hyperlink to NCBI.

Summary Statistics

Through the “View Rank” button in the control panel on the EIN tree ring view bubble, the 

user can link to a new page, which shows the rank of SNPs by their degree in the interaction 

network. The significance of a node with certain degree is accessed as follows. Suppose that 

there are nv nodes and ne edges in the network. Assuming each node has the same 

probability to connect to an edge, the probability that a node is connected to an edge is 

Pe = 2
nv

⋅

The number of edges connected to a node follows a binomial distribution binom(ne, Pe). If 

one node has a degree of d, we can test if this node has excessive number of connected edges 

by calculating the P-value as: P = p binom(ne, d, Pe), where “p binom” is the function to 

calculate the P-value using binomial distribution.

Table 1 shows the results by using the hypertension data set. From the table, we can see that 

SNP “rs1078324” on gene “PPARGC1B” has the largest degree of 51 with highly sig-

nificant test P-value. However, its single-locus test value is relatively large. It is likely that 

the marginal effect makes this SNP a hub. The second SNP “rs10851885” on gene “NRG4” 

has a degree of 13, which is also highly significant. We notice that this SNP has a relatively 

low single-locus test statistic. After further examination, we found that two additional genes, 

“NRG1” and “NRG3,” belong to the same gene family that also appears in the top 200 SNP 

pairs. This suggests “NRG” gene family warrants further investigation. We did not find 

“NRG” gene family reported to have association with hypertension. In Table 1, we notice 

that gene “ADRA1A” has been reported many times to be associated with hypertension 

[Kitsios and Zintzaras, 2010; Zhang et al., 2009]. We notice that gene “ADRA1A” only has 

a 0.572 single-locus test statistic. It is possible that the genetic interactions have made this 

gene visible.
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EIN Matrix View

The EIN matrix view visualizes the adjacency matrix of the genetic interaction network. One 

screenshot is shown in Figure 6. Note that the adjacency matrix is symmetric. In the left 

margin, we list all the SNP names in the format of “GeneName.SNPName.” The background 

color of an SNP name is mapped to its single-locus test statistic. The SNP name background 

color bar is the same as the nodes color bar in EIN tree ring view. In the top margin, the 

SNPs names are shown with the same order as that in the left margin. In the matrix, the color 

of each entry represents the interaction strength between two SNPs on the corresponding 

row and column. The gray color means that there is no interaction. When the number of 

SNPs is too large to fit into the screen, the matrix view will visualize part of the matrix and 

provide a panning function to allow the user to move the window and visualize other parts of 

the adjacency matrix.

LD Tree Ring View

The LD tree ring view enables the visualization of the LD information between SNPs. An 

example is shown in Figure 7. The LD tree ring view has exactly the same layout as the EIN 

tree ring view. The only difference is that the edges and their weights are replaced by the LD 

information. The LD tree ring view is an auxiliary view and synchronizes with the EIN tree 

ring view. When the user interacts with the EIN tree ring view, the LD tree ring view will 

also have corresponding responses. When mouse is pointed to an edge between two SNPs 

nodes, its corresponding LD value will be shown at the upright corner of the ring circle. In 

the example shown in Figure 7, three SNPs “rs9399038,” “rs990500,” and “rs990499” on 

gene “VNN1” are in strong LD. This is consistent with the observations discussed before.

Discussion

EINVis provides a visualization framework for exploring genetic interactions. It utilizes the 

tree ring view to simultaneously visualize the hierarchical SNP-gene-chromosome structure 

and the interacting pattern between nodes at different levels. EINVis provides a variety of 

functions for the user to conveniently visualize and explore the genetic interaction network. 

It can significantly facilitate the identification of candidate genes and novel interaction 

patterns embedded in the large amount of possible interactions.
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Figure 1. 
Software architecture of EINVis.
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Figure 2. 
EIN tree ring view screenshot 1. EIN tree ring view with node color mapping from single-

locus test statistic and edge color from two-locus test statistic.
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Figure 3. 
EIN tree ring view screenshot 2. SNP “rs10160993” on gene “CACNA1C” is selected. SNP 

“rs10160993” on gene “CACNA1C” and SNP “rs4746172” on gene “VCL” have strong 

interaction and low marginal effects.
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Figure 4. 
EIN tree ring view screenshot 3. One hub SNP “rs1078324” on gene “PPARGC1B” is 

selected, and related nodes and edges are highlighted with colors.
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Figure 5. 
EIN tree ring view screenshot 4. Some nodes are collapsed. One hub gene “PPARGC1B” is 

selected, and related nodes and edges are highlighted with colors.
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Figure 6. 
EIN matrix view. EIN matrix view with SNP name (in left or top margin) background color 

mapping to single-locus test statistic, and squares (in the matrix region) color mapping to 

two-locus test statistic.
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Figure 7. 
LD tree ring view. LD tree ring view with node color mapping from single-locus test statistic 

and edge color from LD information. Three SNPs “rs9399038,” “rs990500,” and 

“rs990499” on gene “VNN1” are in strong LD.
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