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Abstract

Background—Intracranial aneurysms at the posterior communicating artery (PCOM) are known 

to have high rupture rates compared to other locations. We developed and internally validated a 

statistical model discriminating between ruptured and unruptured PCOM aneurysms based on 

hemodynamic and geometric parameters, angio-architectures, and patient age with the objective of 

its future use for aneurysm risk assessment.

Methods—A total of 289 PCOM aneurysms in 272 patients modeled with image-based 

computational fluid dynamics (CFD) were used to construct statistical models using logistic group 

lasso regression. These models were evaluated with respect to discrimination power and goodness 

of fit using ten-fold nested cross-validation and a split-sample approach to mimic external 

validation.

Results—The final model retained maximum and minimum wall shear stress (WSS), mean 

parent artery WSS, maximum and minimum oscillatory shear index, shear concentration index, 

and aneurysm peak flow velocity; along with aneurysm height and width, bulge location, non-

sphericity index, mean Gaussian curvature, angio-architecture type, and patient age. The 

corresponding area under the curve (AUC) was 0.8359. When omitting data from each of the three 
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largest contributing hospitals in turn, and applying the corresponding model on the left-out data, 

the AUCs were 0.7507, 0.7081 and 0.5842, respectively.

Conclusions—Statistical models based on a combination of patient age, angio-architecture, 

hemodynamics and geometric characteristics can discriminate between ruptured and unruptured 

PCOM aneurysms with an AUC of 84%. It is important to include data from different hospitals to 

create models of aneurysm rupture that are valid across hospital populations.
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Introduction

The posterior communicating artery (PCOM) is a common site for aneurysm development. 

Aneurysms at this location account for approximately 25% of all intracranial aneurysms 

[14]. They have a larger rupture risk than aneurysms at other locations [23] such as the 

middle cerebral artery (MCA) or other segments of the internal carotid artery (ICA) [7, 33]. 

As such, clinicians often need to decide whether or not to treat PCOM aneurysms, but 

reliable aneurysm-specific parameters to guide and support these decisions are lacking.

Previously published prediction models for aneurysm rupture include the PHASES score 

[15] and a score developed in Japanese cohorts [30]. Furthermore, a multivariate logistic 

regression model for discrimination between ruptured and unruptured aneurysms based on 

hemodynamic and morphological parameters has been presented [35]. The three models 

were developed from data of aneurysms at different locations. Furthermore, both the 

PHASES and the Japanese score do not include hemodynamic and morphological 

information (besides aneurysm size). The multivariate model is based on a comparatively 

small sample size and has not been validated so far.

In a previous study, we found that hostile hemodynamic conditions characterized by strong 

and concentrated inflow jets, concentrated regions of elevated wall shear stress (WSS), 

oscillatory WSS, and complex unstable flow patterns were associated with rupture of PCOM 

aneurysms; and that such conditions were more commonly found in bifurcation-type angio-

architectures [8]. In the current paper we extend that prior work by creating and evaluating 

models that discriminate between PCOM aneurysm rupture status based on numerous 

demographic, anatomical, geometrical and hemodynamic features. Once validated in the 

future with prospective longitudinal data, these models could potentially be used to improve 

current risk assessment of PCOM aneurysms.

Methods

Patient and Image Data

All aneurysms at the posterior communicating artery (PCOM) from our database of image-

based cerebral aneurysm models, included in a previous publication [8], were analyzed. Our 

database includes patient and image data of patients who underwent cerebral angiography. 
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The cohort’s characteristics are summarized in Tab. 1. There were 300 patients from 6 

different hospitals harboring 322 PCOM aneurysms with known rupture status. After 

exclusion of fusiform aneurysms, infundibula, and one further case because it was the only 

case in one of our angio-architecture groups (see Statistical Modeling sub-section), the 

sample size was reduced to 289 aneurysms in 272 patients. The overall prevalence of 

ruptured aneurysms for the 289 aneurysms was 49% (142 ruptured and 147 unruptured). Of 

the 272 patients, 17 had two PCOM aneurysms (2 ipsilateral, 15 bilateral, see Fig. 1 in the 

Online Suppl. Material for the ipsilateral cases). The majority of aneurysms in our database 

came from three contributing hospitals: 1) Mayo Clinic (mayo), 2) Mt. Sinai Medical Center 

(sinai), 3) Inova Fairfax Hospital (inova). At these three hospitals, there were 40 PCOM 

aneurysms out of a total of 256 aneurysms from all locations (16%, mayo), 77 out of 417 

(18%, sinai), and 198 out of 1298 (15%, inova). The prevalence of rupture status at the time 

of presentation of PCOM aneurysms for these hospitals were 41% (mayo), 51% (sinai), and 

52% (inova). Unfortunately, patient gender and age information were not available for the 

mayo cases.

Hemodynamic Modeling

Patient-specific computational fluid dynamics (CFD) models were constructed from 3D 

angiographic images [5]. The trunk of the ICA down to the cavernous segment was included 

in order to appropriately describe the inflow into the aneurysm. Arteries were cut 

perpendicularly to their axes for subsequent inlet and outlet definition. The vessels were 

modeled by unstructured grids with a maximum element size of 0.2 mm.

For the CFD simulations, pulsatile flow conditions derived from phase-contrast MR 

measurements in healthy subjects [13] were scaled with a power-law of the inlet vessel area 

[6] and applied as inflow boundary conditions at the proximal ICA using the Womersley 

solution [29]. Outflow boundary conditions were set as pressure and flow outlets, consistent 

with Murray’s law. Blood was modeled as a Newtonian fluid with a density of 1.0 g/cm3 and 

a viscosity of 0.04 poise. Vessel walls were approximated as rigid. The 3D incompressible 

Navier-Stokes equations were numerically solved with an in-house finite element solver 

[24]. Two cardiac cycles with a heart rate of 60 beats per minute were computed with 100 

time steps per cardiac cycle. For the hemodynamic characterization, results from the second 

cycle were used.

Post-Processing

In a post-processing step, hemodynamic and morphological variables previously used to 

compare hemodynamic conditions in ruptured and unruptured PCOM aneurysms were 

automatically calculated from the computed flow field and the 3D geometrical model of the 

aneurysm [4, 20, 25, 26]. A total of 22 hemodynamic and 25 geometrical parameters were 

computed (see Tab. 2 and 3 in the Online Suppl. Material as well as Fig. 1 for an illustration 

of selected shape parameters).

Statistical Modeling

Prediction models were fitted to the data using logistic group lasso regression [22]. This 

approach of regularized regression results in models where, depending on the magnitude of a 
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tuning parameter, certain regression coefficients are set to exactly zero. Hence, only 

variables with a non-zero coefficient are retained in the final model. Since the penalty term 

of the lasso regression penalizes more complex models (models including more variables), 

lasso regression can also be used for model fitting in situations where the sample size is 

comparably small relative to the number of variables [3]. Ten-fold cross-validation was used 

to select the aforementioned tuning parameter. In this step, the data were split in training and 

validation sets for each of the ten folds, and the optimization parameter achieving on average 

the highest area under the curve (AUC) of the receiver operating characteristic (ROC) curve 

in the validation set was selected for the final model. All 22 hemodynamic and 25 

morphological parameters as well as patient age were used for model fitting. Additionally, 

patient gender and previously defined angio-architecture classes [8] were included as 

categorical variables and coded by dummy variables with a sum-to-zero constraint (see Tab. 

1 in the Online Suppl. Material and Fig. 2 for an illustration of the types of angio-

architectures). The columns of the feature matrix of the continuous parameters were 

centered and standardized to unit-norm. The sub-feature matrix for the dummy variables for 

the angio-architectures was standardized using a singular value decomposition [27].

As only one aneurysm belonged to angio-architecture type 8, this case was excluded for 

model fitting. Since gender and age were missing from the mayo data, the sample size was 

reduced to 245 aneurysms for training a “complete model” including all variables. For this 

reason, a second model was created omitting these two variables but using the entire sample 

of 289 aneurysms.

Statistical Model Evaluation

The model’s performance was evaluated as previously described [10]. Briefly, its 

discrimination for rupture status at presentation and goodness of fit were assessed. Each 

model’s discrimination was measured by the AUC of the ROC curve. An “optimal 

threshold” for classification was selected as the probability corresponding to the point on the 

ROC curve with the smallest distance to (0,1). Based on this threshold the model’s accuracy 

was evaluated. The goodness of fit was visually estimated by means of calibration plots [28]. 

As part of the visualization, observed outcomes were regressed on the predicted probability 

using the loess algorithm with a span parameter of 0.75 [1].

First, the model was internally validated by 160 repetitions of ten-fold nested cross-

validation [31]. For each repetition, the process of model fitting was performed in part of the 

data (training set) and evaluated on the left-out data (validation set). Based on the evaluation 

of the fitted models in each of the cross-validation samples, the optimism in the AUC was 

estimated and subtracted from the AUC for the final model [28]. Moreover, it was noted for 

how many of the cross-validation samples each of the variables was retained in the fitted 

models. The relative frequency of retention in the cross-validation models can be seen as an 

indicator for the importance of a variable.

Secondly, for the model excluding patient information, a split-sample approach was used to 

mimic external validation. Aneurysms of patients from one of the three hospitals with the 

largest numbers of data were excluded for model fitting and subsequently used for model 

evaluation.
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All statistical analysis was performed with scripts written in the R language.

Results

Complete Model

The results from the evaluation and validation of the fitted models are summarized in Tab. 2.

The best discrimination was achieved for the complete model (model 1) including patient 

information (gender and age) in addition to hemodynamic, morphological parameters, as 

well as angio-architecture (AUC=0.8359, after correction for optimism AUC=0.7547). 

Based on the ROC, the “optimal threshold” for classification of an aneurysm as ruptured or 

unruptured was 0.46. For this threshold, the sensitivity was 0.84, the specificity 0.73, 

positive predictive value (PPV) 0.77, negative predictive value (NPV) 0.81, and the 

misclassification error 0.21. If all aneurysms having a predicted probability greater than the 

“default threshold” of 0.5 are classified as ruptured, the specificity increases to 0.76, but the 

TPR is reduced to 0.78 and the misclassification error increases to 0.23. The PPV remains 

the same and the NPV decreases to 0.76. Both thresholds are indicated in Fig. 3. The 

calibration plot for this model (Fig. 3, right) shows a reasonable fit to the data, although the 

fitted line deviates slightly from the 45° straight line corresponding to perfect goodness of 

fit.

The final model retained the following variables (variables having non-zero coefficients): 

maximum and minimum wall shear stress (WSS), shear concentration index (SCI), 

maximum and mean oscillatory shear index (OSI), WSS in the parent vessel (WSSves), peak 

velocity (Vmax), aneurysm height, width, bulge location (BL), non-sphericity index (NSI) 

and the mean aneurysm surface curvature (MLN). The coefficients for these variables are 

listed Tab. 4 in the Online Suppl. Material. The relative frequencies of variable retention in 

the cross-validation samples are presented in Fig. 4. The minimum frequency of all variables 

having non-zero coefficients in the final model was higher than the maximum frequency of 

all variables with coefficients of zero (0.44 vs. 0.29, indicated by the black horizontal line in 

Figure 4). Among the variables retained in the model, OSImax and NSI had the highest 

frequency of selection during nested cross-validation (in 100% of the models).

Model Excluding Gender and Age

The model excluding gender and age (model 2) achieved an AUC of 0.7920 (Tab. 2). For the 

“optimal threshold” of 0.47, the TPR, FPR and misclassification error were 0.76, 0.30, and 

0.27, respectively. The coefficients for this model are listed in Supplementary Tab. 4, and the 

calibration plot in Supplementary Fig. 2 (top left). In contrast to model 1 that includes 

gender and age for model fitting, the aneurysm neck size (Nsize), the POD entropy 

describing temporal flow stability (podent), and the volume-to-ostium ratio (VOR) had non-

zero coefficients, whereas WSSmax, OSImean, and aneurysm height were not retained in 

model 2.
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Effects of Patient Population

To evaluate the effects of different hospital populations, three models excluding gender and 

age (model 2a, 2b and 2c) were fitted by omitting data from each of the three hospitals in 

turn (see Tab. 2). The sample sizes for each of these models were 250, 217 and 118, 

respectively. The coefficients for these models are listed in Tab. 4 in the Online Suppl. 

Material. Variables that were included in all fitted models (including model 1 and 2) were 

OSImax and NSI.

The model built after omitting the mayo data (model 2a) had an AUC of 0.7679 but when 

applied to the mayo data that had been left out, the AUC was only 0.5842 indicating reduced 

discrimination on this external population. In contrast, the models omitting sinai (model 2b) 

and inova (model 2c) data had AUCs of 0.7928 and 0.7933, respectively; when applying 

these models to the left out data, the AUCs were 0.7081 and 0.7507, respectively.

The calibration plots for these models when evaluated in the left-out data are presented in 

Supplementary Fig. 2. These plots indicate a suboptimal fit of model 2a, while reasonably 

good fits for models 2b and 2c.

Discussion

The results of this study suggest that statistical models based on a combination of patient 

information, angio-architecture, hemodynamics and geometric characteristics can 

discriminate between ruptured and unruptured PCOM aneurysms with an AUC of 84%.

Effects of Patient’s Age and Gender

In our study, younger age associated with higher rupture risk, consistent with previous 

studies of PCOM aneurysms [37]. The general association of age and rupture is not clear in 

the literature. Older age is assigned higher risk in the PHASES score [15], and was 

associated with higher risk of aneurysm growth in a recent study [2]. However, other studies 

suggested higher risk for younger patients in anterior communicating aneurysms [21], 

middle cerebral artery aneurysms [32], and in general [18].

It is known that females have a higher incidence of aneurysms both in general and 

particularly in those located at the PCOM [16]. The association between gender and risk of 

aneurysm rupture, however, is not clear in the literature [18, 34]. Our results indicate that 

considering gender does not improve the discrimination of ruptured and unruptured PCOM 

aneurysms. Hence, other than gender-related mechanisms seem to be important for 

aneurysm rupture at this location.

Effects of Angio-Architectures

Angio-architectures types 1–3 and 5 (true PCOM aneurysms and aneurysms involving the 

PCOM origin or bifurcation) associated with higher rupture risk, while types 4,6 and 7 

(resembling sidewall aneurysms) associated with lower probability of rupture. The 

frequency of inclusion of angio-architectures in the nested cross validation samples was 

0.76, indicating that angio-architectures are important for discrimination. To verify this 
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finding, a model was fitted excluding angio-architectures. This model resulted in a reduction 

of the AUC to 0.8263.

Effects of Geometry

Holding all other variables fixed, a higher probability of being ruptured was associated with 

larger bulge location and more elongated shape (less spherical), in agreement with previous 

studies [11, 19]. In our sample, a higher rupture risk was also associated with smaller 

aneurysm height and width, in contrast to previous studies suggesting increased rupture risk 

with increasing PCOM aneurysm size [12, 17]. However, in a previously performed 

univariate analysis in our data, ruptured PCOM aneurysms were significantly larger 

compared to unruptured aneurysms, which is consistent with the literature and current 

clinical knowledge. This finding demonstrates a difficulty when interpreting the association 

of a variable with rupture in a multivariate model since the corresponding regression 

coefficient quantifies the change of risk when all other variables are kept constant. In 

contrast to the model constructed from aneurysms at several locations by Xiang et al. [35], 

size ratio was not retained in our final model.

Effects of Hemodynamics

The probability of rupture increased with the mean WSS in the parent vessel and with higher 

aneurysm peak velocity and maximum WSS and OSI, as well as with lower minimum WSS 

and mean OSI, suggesting that focalized elevations of WSS and OSI surrounded by lower 

values may constitute hostile hemodynamic environments that predispose aneurysms to 

rupture. Lower normalized WSS (WSSnorm) associated with rupture in two previous studies 

of PCOM aneurysms [12, 36] and in one study including several locations [35]. However, as 

a result of the modeling fitting process, WSSnorm was not retained in our final model. In the 

model of Xiang et al. [35], higher mean OSI was associated with higher rupture probability, 

but in our model, mean OSI was included only in 50% of the nested cross-validation 

samples and with a negative association. In contrast, maximum OSI was retained in all 

models with a positive association, suggesting that this is an important parameter. In one 

previous multivariate model of PCOM aneurysms based on hemodynamics and morphology 

[19], the rupture probability increased with the area under low shear (LSA) and inflow 

angle; while another study found significant differences in LSA between ruptured and 

unruptured PCOM aneurysms [36]. In our study, inflow angle was not considered, and LSA 

was not retained in the final model.

Fig. 5 illustrates the above discussed finings with four cases. The two unruptured aneurysms 

at the left have low predicted rupture probabilities (4.7% and 10.8%, respectively, based on 

Model 1). Both of them have an angio-architecture of the lower-risk type 6, a more regular 

shape, which is also indicated by a low NSI, and are exposed to lower and more regular flow 

conditions characterized particularly by a lower maximum OSI (see Tab. 3). In contrast, the 

two ruptured aneurysms at the right have predicted probabilities of 86.4% and 97.7%, 

respectively. They have a type 2 angio-architecture, which is associated with a higher rupture 

risk. Moreover, they are more complex in shape and exposed to higher flow conditions.
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Model Evaluation

Before applying a prediction model in clinical practice, internal and external validation of 

the model are essential. In this study, models were internally validated using nested cross-

validation and a split-sample approach to mimic external validation. The results from the 

cross-validation suggested that the retention of variables for the fitted models is reasonably 

stable with respect to small changes in the data.

The results of the split-sample approach showed that the discrimination power of the models 

was reduced when applied to the left-out data, especially for the mayo data. This suggests 

that differences in the hospital populations may affect the performance of the models when 

applied to a different population, and that in particular, the mayo population may be different 

from the inova and sinai populations. In fact, the overall rupture prevalence (including all 

locations) of our inova and sinai datasets is 31% which is significantly different (p=0.002, 

Chi-squared test) from 21% for the mayo dataset. When restricted to PCOM aneurysms, the 

rupture prevalence were 52% for inova, 51% for sinai, and 41% for mayo. However, these 

differences were not statistically significant, most likely due to the small sample size of the 

mayo PCOM dataset. These differences may reflect the different admission and referral 

practice patterns at different hospitals. These findings indicate that it is important to include 

data from different hospitals to create generic statistical models of aneurysm rupture that are 

valid across populations.

Compared to a previously developed model by Xiang et al. [35] as well as univariate models 

only using aneurysm size or NSI, the model’s discrimination was remarkably higher (see 

Fig. 6). This result indicates that applying the model could have additional value over using 

only aneurysm size, NSI for quantifying shape complexity, or the model reported in [35] 

when deciding on treatment of an unruptured aneurysm.

Furthermore, when applying a recently developed model for aneurysms at various locations 

[10] to the PCOM cohort here, the AUC was with 0.79 lower than the AUC of the final 

Model 1. This finding suggests that having a location-specific model including information 

that is specific to this location, like angio-architectures, could potentially improve rupture 

risk assessment compared to a more general model.

In this regard, this study aimed at developing a statistical model for discriminating rupture 

status in PCOM aneurysms. Aneurysms of the anterior communicating artery (ACOM) have 

a comparable prevalence and risk of rupture [15], indicating a potential for a similar study in 

those aneurysms. This study focused on PCOM aneurysms motivated by our previous 

findings [8]. Furthermore, the different types of angio-architectures are more clearly defined 

for these aneurysms. Future work could include the development of a statistical model for 

ACOM aneurysms as well.

Clinical Considerations

The presented “probability models” were developed and validated using cross-sectional data. 

They thus discriminate between ruptured and non-ruptured aneurysms at the time of 

presentation to the hospital. In contrast, for the training of a predictive model, longitudinal 

data would be necessary. Nowadays, these data are, however, difficult to obtain and always 

Detmer et al. Page 8

Acta Neurochir (Wien). Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inherently biased since high-risk aneurysms get treated so that follow-up data of these cases 

are not available. Therefore, based on the implicit assumption that rupture-prone aneurysms 

resemble aneurysms that have already ruptured, the presented model can be used as a 

“surrogate” for a predictive model. Aneurysms classified as “unruptured” or “low-risk” with 

our model should be observed during follow up to identify possible changes that could 

increase the predicted rupture risk. To assess the performance of our model in terms of 

rupture prediction, its validation in prospective longitudinal data is planned in the future.

Besides a thorough external evaluation of the presented model, it is important to provide 

clinicians with means for applying the model in a clinical setting. Therefore, a web-based 

tool that allows clinicians the application of the model to new cases will be developed. In 

addition to providing clinicians purely with the predicted rupture probabilities for a new 

case, this interface will include visualizations of the specified input parameters for 

facilitating their interpretation and to illustrate the computed results. After a prior evaluation 

with clinicians, such a tool could eventually enable the application of the presented model in 

a clinical setting.

To enable other groups the validation of the proposed model, the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [9] was 

followed for this publication.

Besides addressing the “standard CFD assumptions”, the current study could be enhanced in 

several ways. Patient characteristics other than age and gender (e.g. hypertension, smoking, 

family history, etc.) were not studied due to lack of data for some cases. No validation with 

the split-sample approach was possible for the complete model due to lack of patient 

information (age) in the mayo data.

This study is based on data of aneurysms that were assessed by 3D cerebral angiography. 

Consequently, aneurysms that were only imaged by means of MR angiography or CT 

angiography as well as undiagnosed aneurysms and aneurysms with fatal ruptures are 

inherently excluded from our dataset, resulting in a selection bias.

Future multi-center studies with larger and more comprehensive samples from multiple 

hospitals and populations should be conducted to evaluate and further improve the predictive 

models, which in turn should be tested on longitudinal datasets.

Conclusions

Statistical models of PCOM aneurysm rupture based on aneurysm hemodynamics, 

morphology, angio-architecture and patient age, can discriminate between ruptured and 

unruptured PCOM aneurysms with an AUC of 84%. It is important to include data from 

different hospitals to create such models of aneurysm rupture that are valid across different 

hospital populations. Future work will include the external validation of the developed 

models.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of selected shape parameters (NSI-non-sphericity index, BL-bulge location, 

MLN-mean surface curvature, Awidth-aneurysm width, Aheight-aneurysm height). Top 

panel: Aneurysms with low values of respective variable. Bottom panel: Aneurysms with 

high values of respective variable. For the definition of all shape parameters see the Online 

Suppl. Material and the references therein
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Fig. 2. 
Illustration of defined angio-architectures. Type1=True PCOM, Type2=At ICA-PCOM 

bifurcation, Type3=PCOM from fundus, Type4=PCOM proximal/detached, Type5=PCOM 

proximal/attached, Type6=No PCOM visible in 3DRA, Type7=PCOM distal/detached, 

Type8=PCOM distal/attached
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Fig. 3. 
ROC curve (left) and calibration plot (right) for model 1 (complete model). The circle and 

triangle on the ROC curve indicate the value corresponding to a classification threshold of 

0.46 and 0.5, respectively. The circles at the top and the bottom of the calibration plot show 

the observed data. Observed outcome grouped by deciles is depicted as triangles and 

represented by the loess smoother with the dashed line. For a perfectly calibrated fit, all 

triangles and the loess smoother would lie on the 45°-line
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Fig. 4. 
Relative frequency of inclusion of variables in samples from nested cross-validation for 

variables retained in the final model (top) and variables that dropped out in the process of 

model fitting (bottom). The definitions of the variables can be found in Tab. 2 and 3 in the 

Online Suppl. Material
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Fig. 5. 
Illustration of cases with low (a–b) and high (c–d) predicted probabilities of being ruptured 

based on Model 1. Top panel: WSS distribution at half of the cardiac cycle. Bottom panel: 

Blood flow velocities at half of the cardiac cycle. The predicted probabilities and selected 

aneurysm characteristics are shown in Tab. 3
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Fig. 6. 
Comparison of ROC curves for the presented model, a model reported by Xiang et al. [35] 

and univariate models for aneurysm size and NSI
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Tab. 1

Cohort Characteristics.

Whole cohort (cases with known rupture status and location; fusiform 
aneurysms excluded)

Number of patients 1265

Number of aneurysms (ruptured/
unruptured)

1931 (558/1373)

Patient age (mean ± sd) (of 1065 
patients with known age)

56.21 (13.82)

Patients with multiple aneurysms 358

Gender ratio (of 1076 patients with 
known gender)

810 F, 266 M

Number of patients with SAH 558

Distribution by location ACA: 65 (3.37%)

ACOM: 278 (14.40%)

BA: 136 (7.04%)

ICA: 741 (38.37%)

MCA: 354 (18.33%)

PCOM: 312 (16.16%)

VA: 45 (2.33%)

Cohort used for this study Number of patients 272

Number of PCOM aneurysms 
(ruptured/unruptured)

289 (142/147)

Patient age (mean ± sd) (of 232 patients 
with known age)

59.09 ± 14.26

Patients with multiple PCOM 
aneurysms

17

Gender ratio (of 234 patients with 
known gender)

193 F, 41 M

Number of patients with SAH 161

ACA=Anterior cerebral artery, ACOM=anterior communicating artery, BA=basilar artery, ICA=internal carotid artery, MCA=middle cerebral 
artery, PCOM=posterior communicating artery, VA=vertebral artery
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