
Dissecting the Genetics of Osteoporosis using Systems 
Approaches

Basel M. Al-Barghouthi1 and Charles R. Farber2

1Center for Public Health Genomics, Department of Biochemistry and Molecular Genetics, 
University of Virginia, Charlottesville, VA 22908, USA

2Center for Public Health Genomics, Departments of Public Health Sciences and Biochemistry 
and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA

Abstract

Osteoporosis is a condition characterized by low bone mineral density and an increased risk of 

fracture. Traits contributing to osteoporotic fracture are highly heritable, indicating that a 

comprehensive understanding of bone requires a thorough understanding of the genetic basis of 

bone traits. Towards this goal, genome-wide association studies (GWASs) have identified over 500 

loci associated with bone traits. However, few of the responsible genes have been identified, and 

little is known of how these genes work together to influence systems-level bone function. In this 

review, we describe how systems genetics approaches can be used to fill these knowledge gaps.

Keywords

Systems genetics; osteoporosis; genome-wide association study (GWAS); co-expression networks; 
bone mineral density (BMD); Bayesian networks

The Skeleton as a Dynamic System

The human skeleton is a dynamic, adaptive, and complex system impacting a wide array of 

physiological processes. It provides support and protection, enables locomotion, maintains 

hematopoiesis, serves as a reservoir for calcium and phosphorus, and has important 

endocrine functions [1–3]. Diseases of bone, however, inhibit the ability of the skeleton to 

carry out these functions. The most common disease of bone is osteoporosis (see Glossary), 

a condition of low bone mineral density (BMD) and an increased risk of fracture [4]. 

Osteoporosis affects over 12 million individuals in the U.S. and over 200 million worldwide 

[5]. Osteoporotic fractures are a serious clinical outcome associated with increased 

morbidity and mortality, particularly in the elderly. In fact, of the ~300,000 people in the 

U.S. over the age of 50 that suffer a hip fracture annually, 1 in 5 will die in the subsequent 
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12 months, and half of the survivors will not return to their prior independent living status 

[6]. Alarmingly, the incidence of fractures is expected to rise by 50% over the next decade, 

as the number of individuals over the age of 50 increases [7].

One of the hallmarks of quantitative traits related to osteoporosis (BMD, bone size, etc.) is 

their high heritability (h2=0.5 to 0.8) [8]. As a result, the development of a comprehensive 

understanding of bone biology necessitates a thorough understanding of the genetic factors 

underlying variation in bone traits. This not only includes defining the individual variants 

and genes contributing to osteoporosis, but also how they interact to impact molecular 

networks and systems-level function. Here, we discuss how systems genetics approaches are 

being used to accomplish these goals (Figure 1, Key Figure).

Current State of Osteoporosis Genetics

The genetic analysis of osteoporosis began in the early 1990s with candidate gene studies 

describing associations between polymorphisms in bone-relevant genes (e.g. vitamin D 

receptor and type I collagen) and BMD [9]. This was followed by a plethora of additional 

candidate gene investigations and linkage scans in families [10]. In retrospect, little 

information was gained from either approach [11,12]. In 2007, the tide began to turn with 

the first of many genome-wide association studies (GWASs) of BMD[13]. In a BMD 

GWAS, the genotypes of millions of single nucleotide polymorphisms (SNPs) across the 

genome are tested for an association with BMD in thousands, now often hundreds of 

thousands, of individuals [14]. To date, over 20 primary GWAS and GWAS meta-analyses 

have identified hundreds of associations for BMD [15–18]. The largest GWAS to date 

analyzed estimated BMD at the heel in 426,824 individuals and identified 1,103 independent 

genome-wide significant associations in 518 loci (Table 1) [19]. BMD has been the primary 

target of GWASs, mainly because of its strong association with fracture, high heritability, 

and relative ease of assessment in very large cohorts [20]. However, other traits such as bone 

size, bone geometry, and serum bone remodeling markers have been interrogated by GWAS 

[21–24]. Together, these studies have reinforced the importance of known genes and 

pathways (RANK-RANKL, WNT signaling, etc.) in human bone biology. More importantly, 

GWAS has provided a “treasure trove” of loci containing only novel genes with the potential 

to revolutionize our understanding of the genetics, and more importantly, the biology of 

bone.

A limitation of current GWASs is that they have yet to fully uncover the genetic 
architecture of BMD [25]. In the heel eBMD study referenced above, the 518 independent 

associations explained only 20% of the phenotypic variance in eBMD [17]. These data 

suggest that BMD is highly polygenic, or even omnigenic (Box 1), and that much of the 

genetic basis of BMD remains to be discovered. GWASs are ideally suited to identify 

associations with common variants (minor allele frequencies (MAF) > 1%). Therefore, it is 

possible that rare variants (MAF < 1%) may explain part of the “missing heritability” [26]. 

In support of this hypothesis, recent whole genome-sequencing projects have identified rare 

variants with large effects on BMD [17,27–29]. It will likely require much larger GWASs 

and rare variant studies to fully dissect the genetic architecture of BMD and other bone 

traits.
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By any standard, GWASs have been wildly successful at identifying new loci; however, to 

date this information has done little to increase our understanding of bone biology or 

disease. Of the hundreds of loci impacting BMD and other bone traits, the genes responsible 

for nearly all of the associations are unknown. There are many reasons for this knowledge 

gap, including the fact that most associations are due to non-coding variation, the lack of 

bone-specific “-omic” resources, and the inherent difficulties in experimentally establishing 

causality between variants, genes, and traits.

Using Systems Genetics to Inform Bone GWAS

One approach that has the potential to increase our understanding of bone genetics is the 

emerging field of systems genetics [30,31]. Systems genetics integrates the principles of 

systems biology with genetics to determine how genetic variation affects molecular 

phenotypes and cellular networks [30]. In the context of GWAS, systems genetics 

approaches have proven extremely useful for connecting associated variants with molecular 

functions (e.g. transcription). The “layering” of different “-omics” datasets (transcriptomics, 

metabolomics, proteomics, etc.) onto a set of GWAS loci is the most direct way to begin to 

identify the molecular consequences of disease-associated variants (Figure 2). Most 

importantly, it also serves to connect disease-associated variants to the genes they regulate.

One of the most widely used systems genetics approaches for informing GWAS is the 

identification of expression quantitative trait loci (eQTL) [32]. Just like a clinical trait, 

GWAS can be used to identify associations for the expression of a gene [33]. These analyses 

identify sets of genetics variants, or eQTL, that influence transcript levels of any gene 

expressed in a given cell-type or tissue. There are two types of eQTL, local and distant [34]. 

Local eQTL influence the transcript levels of genes in close proximity; whereas distant 

eQTL influence gene expression over a long genomic distance. The identification of eQTL 

is a logical follow-up to a GWAS, given that the vast majority of GWAS loci are due to non-

coding variants that presumably have a role in gene regulation. A typical analysis consists of 

identifying local eQTL for genes located within a GWAS locus and then determining if the 

two signals are due to the same sets of variants (referred to as colocalizing eQTL) [35,36].

One of the major considerations for eQTL studies (and for that matter the generation of any 

other -omics dataset) is the cell-type or tissue used for the generation of gene expression 

profiles. Recently, the Genotype-Tissue Expression (GTEx) project demonstrated that many 

eQTL are tissue specific, thus ideally the transcriptomics data would be from a disease 

relevant source [37]. In the context of bone GWAS, this would be either bone tissue or bone 

cells, i.e. osteoblasts and osteoclasts [37,38]. However, to date only three relatively small 

studies have generated bone relevant eQTL data. One such study generated microarray 

profiles on trans-iliacal bone biopsies from 84 postmenopausal women [39]. These data 

were used to identify colocalizing eQTL for a GWAS of vertebral volumetric BMD [21]. 

Microarray profiles of undifferentiated osteoblasts from 95 individuals have also been used 

to identify eQTL and inform several bone GWASs [16,17,40]. More recently, eQTL were 

identified in cultured primary osteoclasts using RNA-seq profiles in 158 individuals. These 

data were used to identify colocalizing osteoclast eQTL for genes in eight loci [41]. 

Integrating transcriptomics data from non-disease relevant sources has also been shown to 
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provide insight given the expectation that some eQTL will be active across many different 

tissues [37]. For example, peripheral blood eQTL were recently used to identify ASB16 

Antisense RNA 1( ASB16-AS1) and Synapsin II (SYN2) as potentially causal BMD GWAS 

genes [42]. Furthermore, GTEx expression data from thyroid tissue was used in a recent 

study to link the expression of Microtubule Affinity Regulating Kinase 3 (MARK3) to 

BMD-associated variants on Chr. 14q32.32 [43].

Another systems genetics approach that has proven useful for informing GWAS is the 

integration of epigenetics data [44]. As mentioned above, the vast majority of BMD GWAS 

loci implicate only non-coding variation that presumably impacts gene regulation. Thus, it is 

likely that most causal GWAS variants reside in regulatory elements, such as promoters and 

enhancers, which can be identified as regions of open chromatin marked by histone 

modifications, including H3K4me1, H3K4me2, H3K4me3, and H3K27ac. In support of this 

hypothesis, studies have demonstrated an enrichment for GWAS variants overlapping 

enhancers in disease-relevant tissues [45–48].

Epigenetic data has recently been used to inform BMD GWAS [49]. Using publicly 

available data, an eQTL in blood cells was identified for Long Intergenic Non-Protein 

Coding RNA 339 (LINC00339) that colocalized with a BMD GWAS association on Chr. 

1p36.12. It was then found, using chromosome conformation capture (HI-C) data, that one 

of the eQTL SNPs (rs6426749) was located in a genomic region interacting with the 

promoter of LINC00339. Using epigenetics data from the ENCODE project, this SNP was 

found to overlap and influence the activity of an enhancer element in osteoblasts by altering 

a binding site for Transcription Factor AP-2 Alpha (TFAP2A) [50]. Furthermore, alteration 

of LINC00339 expression influenced the transcript levels of a nearby gene, Cell Division 

Control Protein 42 Homolog (CDC42), which plays a key role in bone modeling and 

remodeling [51]. Using a similar approach, another recent study determined that the BMD 

GWAS SNP rs9533090 affects the expression of Receptor Activator of Nuclear factor 

Kappa-Β Ligand (RANKL), which plays a central role in osteoclastogenesis, by disrupting a 

Nuclear Factor 1 C-type (NFIC) binding site and enhancer activity [52,53]. These studies 

demonstrate the power of systems genetics approaches that combine multiple data types to 

unravel the molecular consequences of BMD-associated variants.

There are limitations to using eQTL data to inform GWAS. As described above, the most 

powerful sets of eQTL data (e.g. GTEx) are from non-bone tissue. While such data have 

been informative for identifying colocalizing eQTL, it is likely that well powered eQTL 

studies in bone tissue and bone cells will provide more insight. It has also become evident 

that tissue and cell-type specificity is a critical factor when trying to dissect how GWAS loci 

influence BMD. As a result, not only do we need efforts focused on generating data in bone 

tissue and bone cells, but also specific bone cell populations at different stages of their 

lifecycle exposed to varying stimuli. It should also be noted that differences in the genetic 

backgrounds (with differences in linkage-disequilibrium structure) of GWASs and eQTL 

studies impact the interpretability of results. This can be solved by efforts to generate both 

types of data from racially diverse populations.
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Network-based Approaches

As described above, systems genetics approaches are critical for identifying individual genes 

contributing to BMD. However, gene discovery is just the beginning. The next step is to 

understand how variants, genes and their products work together to enable proper bone 

function. GWASs for BMD have identified many genetic loci implicating disparate 

biological processes and mechanisms, suggesting a complex web of networks operating 

within and between various bone cell-types. Identifying these interactions is important as 

they can inform our understanding of “emergent properties” of bone that are not evident 

from the function of individual genes in isolation. This is analogous to identifying a car 

battery and alternator as elements involved in starting an engine. However, it would be 

impossible to understand their true function without knowing that they worked together in a 

car’s electrical system. It is also likely that genetic variation is a major perturbation that 

shapes underlying biological networks. As a result, systems, rather than reductionist, 

approaches to bone genetics are critical to understand the role of genetics in systems-level 

function. Understanding bone molecular networks and how they are influenced by genetic 

variation is also important in the context of discovering and evaluating potential anti-

osteoporotic therapeutic targets [54–56].

Biological networks

Networks are prevalent in all aspects of our lives. The internet, social media, and economic 

markets are all examples of networks that impact us daily. In biology, many types of 

networks exist including protein-protein interaction, transcriptions factor binding, metabolic, 

and gene regulatory networks. Mathematically, a network (or graph) is a set of nodes 
(elements) connected by edges, which represent relationships between nodes [57]. Edges 

can be directed or undirected and either weighted or unweighted. An undirected gene co-

expression network represents the relationships in co-expression between genes without an 

indication of which node is upstream of the other, while a directed network models the 

information flow between nodes (e.g. increased expression of gene A causes increased 

expression of gene B). Weights can represent the strength of evidence for the edge or the 

strength of the relationship between nodes. Methods used to generate and analyze networks 

are indispensable to systems genetics, as they allow for a shift of focus from reductionist 

methods, like GWAS, to more holistic, systems-level approaches. Mostly due to the scarcity 

of bone-relevant data, and the relative paucity of investigators applying such approaches, the 

use of network biology in the bone field has lagged behind others. However, there are 

emerging use cases. For example, by combining BMD GWAS data with functional genomic 

analysis, a PU.1-dependent transcription factor network essential for osteoclast 

differentiation has been identified [58].

Co-expression networks

The most popular types of biological networks used in systems genetics applications are 

based on co-expression. There are many methods for generating co-expression networks and 

one of the most widely used is weighted gene co-expression network analysis (WGCNA) 

[59]. WGCNA organizes transcriptomics data into modules, or clusters, of co-expressed 

genes. It does this by analyzing co-expression (i.e. correlation in expression) across a set of 
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perturbations, such as genetic background in mice or environmental exposures in a human 

population. Modules have been found to have a number of important features, such as 

containing functionally related genes that may be subject to co-regulation by similar factors 

[59,60]. As a result, one can think of co-expression network analysis as a way to organize 

biology in a relatively unbiased way, similar to the way that file folders are used to organize 

documents by topic.

There are two aspects of co-expression networks that make them particularly useful for 

systems genetics studies. First, unlike many other popular biological networks they retain 

tissue or cell-type specific information. While recent advances in proteomic technology have 

facilitated the study of protein-protein interactions in vivo, the vast majority of extant data is 

generated through in vitro methods, which may not accurately reflect physiological 

interactions [61]. Second, unlike other biological networks, co-expression modules can be 

related to phenotypes from the individuals used to generate the transcriptomic profiles. For 

example, a WGCNA network was recently generated from blood cells in individuals with 

BMD measurements [62]. These data were then used to identify a module whose behavior 

(as summarized by its first principal component) was correlated with BMD. Once trait-

correlated modules are identified they can be further analyzed to identify key genes and 

relationships. For example, highly connected “hub” genes have been shown to drive modular 

associations with a trait [63]. A recent study generated a WGCNA network using bone 

transcriptomic data on 96 strains from the Hybrid Mouse Diversity Panel (HMDP) [64,65]. 

An osteoblast-lineage specific module was identified (module 9) and shown to be highly 

correlated with femoral BMD in the same HMDP strains. The study showed that knockdown 

of the top two module 9 hub genes (Melanoma Antigen Family D1 (Maged1) and Par-6 

Family Cell Polarity Regulator Gamma (Pard6g)) altered osteoblast proliferation, 

differentiation and mineralization in vitro and knockout of Maged1 decreased BMD in mice 

[63,65]. The authors mapped the first principal component of module 9 and demonstrated 

that the overall expression levels of module 9 genes were influenced by a local eQTL for 

Secreted Frizzled-related Protein 1 (Sfrp1), a key regulator of osteoblastogenesis [66]. This 

demonstrates how co-expression network analysis in a genetics population can be used to 

understand the systems-level organization of genes. Similarly, another study generated a 

WGCNA network using gene expression data from female transiliac bone biopsies in 

humans. Through the integration of BMD GWAS data, this study identified a gene module 

and several candidate genes (Homer Protein Homolog 1 (HOMER1) and Spectrin Beta, 

Non-Erythrocytic 1 (SPTBN1)), with putatively important roles in bone mass regulation 

[67].

Another use of co-expression networks is to inform GWAS. A number of studies have 

demonstrated that network information is a useful prioritization strategy for predicting 

causal genes for sets of GWAS associations [68]. As an illustration, a recent study mapped 

genes located in 64 BMD GWAS associations onto the HMDP bone network described 

above [43,68]. This led to the identification of two modules that were enriched for genes 

implicated by GWAS. Using information on module genes with known roles in bone, it was 

predicted that novel module genes located in GWAS loci were causal and likely altered 

BMD via a role in osteoblasts. Two of the module genes, Microtubule Affinity Regulating 

Kinase 3 (MARK3) and Spectrin Beta, Non-Erythrocytic 1 (SPTBN1), were experimentally 
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confirmed to influence BMD when perturbed in mice. This study indicates that viewing 

GWAS data through the lens of a disease-relevant co-expression network can begin to 

highlight how key GWAS genes function together to regulate BMD.

Bayesian Networks

Though initially described in the mid 1980’s, Bayesian networks (BNs) have only recently 

begun to gain traction in biological research [69]. BNs are directed, acyclic graph 
representations of conditional dependencies between random variables [57]. The directed, 

acyclic nature of the graphs is informative for reconstructing systems-level relationships 

between genes. For example, in a systems genetics context it is possible to apply a BN 

structure learning algorithm to a WGCNA module, as the dependence of gene expression 

on other genes can be observed in a hierarchical manner, which allows for an elucidation of 

the direction of the flow of molecular information. One scenario is where BN analysis 

methods are applied to trait-relevant WGCNA modules, in order to direct relationships 

between genes and identify key regulatory elements (Figure 3). This strategy was employed 

in a recent study, where an undirected co-expression network was constructed. Directional 

relationships between nodes were then established using Bayesian network analysis. This 

led to the identification of causal network structures relevant to late-onset Alzheimer’s 

disease (LOAD) pathology as well as the identification of TYRO Protein Tyrosine Kinase 

Binding Protein (TYROBP) as a key regulator [70]. In another study, a BN generated from 

co-expression modules was used to reveal regulatory driver genes affecting coronary artery 

disease [71]. To our knowledge, BNs have not yet been applied in a systems genetics context 

in the bone field, and therefore provide an exciting avenue for future research.

A great advantage of BNs is that they allow for the incorporation of prior knowledge, which 

allows for more informative modeling of gene relationships within modules. For example, 

network structure learning can be biased by “whitelisting” high-confidence edges (such as 

well-known gene-gene relationships or protein-protein interactions) a priori, or 

“blacklisting” improbable edges. Disparate data sources can be easily incorporated into BNs 

as well. For example, a BN from a WGCNA module can also include SNP nodes and trait 

nodes, in order to model information transfer from genetic element to gene expression and 

phenotypic outcomes [72].

Network-based approaches are not without limitations. One limitation involves the quality 

and type of the investigated bone phenotype. For example, BMD can be assayed in different 

anatomical locations by several different methods, which can lead to heterogeneity in the 

data that can obfuscate meaningful network relationships, or lead to network connections 

that are artificial and not mechanistically viable. Furthermore, a phenotype such as BMD is 

actually a composite of many different aspects of bone, which can also exacerbate the 

problems of interpretability. Therefore, careful selection of phenotypes should be performed 

a priori. Furthermore, biological networks often encompass multiple cell types, tissues and 

physiological microenvironments. In silico analyses based on data from in vitro sources, 

such as cultured osteoblasts, will not uncover many physiological relationships that exist in 
vivo. This drawback is not unique to network analyses and pervades biological science, but 

should be carefully considered when designing experiments and drawing conclusions. 
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Methodological drawbacks exist as well. A significant drawback of using BNs to model 

biological relationships is in their acyclic nature. In biological processes, structures like 

feedback and feed-forward loops are prevalent. As BNs are acyclic, these network structures 

will be missed. Furthermore, depending on the algorithm used, it can be computationally 

impractical to learn the network structure of large sets of genes. These shortcomings make 

the aforementioned strategy of using BNs to dissect WGCNA modules an attractive one 

[73].

Concluding Remarks and Future Perspectives

In the past decade or so, advances in sequencing technology have completely revolutionized 

biological science. In practically every biological field, a wealth of “-omics” data is being 

generated. However, our understanding of the underpinnings of biological processes and 

diseases is still far from complete. This is evident in the bone field, as many genetic 

associations with BMD have been described, yet we still know few of the responsible genes. 

These limitations reinforce the need for complementary strategies, such as systems genetics, 

to further advance our understanding of bone genetics.

One of the major limitations of genetic studies of bone is the primary focus on BMD. 

Although BMD is the single strongest predictor of osteoporotic fracture, there are many 

individuals with normal BMD that fracture [74,75]. The use of BMD has been necessitated 

by the difficulty, or impossibility, of measuring other aspects of bone fragility in humans. 

For example, biomechanical properties of bone strength, the single most important fracture-

related trait, can only be measured in cadavers. Due to these limitations, a possible 

alternative is to use GWAS and systems genetics in mice and rats as a way of developing a 

more complete understanding of osteoporosis [76–78].

The adaptive nature of bone creates an additional layer of complexity in understanding 

osteoporosis. Studies have demonstrated that recombinant inbred mice with different genetic 

backgrounds build functional bones in different ways. For example, mice with genetically 

slender bones will compensate for this deficiency by increasing cortical thickness and 

mineralization, whereas mice with mineralization defects will increase bone size [79,80]. 

This genetically-based covariation in traits serves as an example of a system adapting to 

perturbations. It also illustrates the importance of understanding not only how genetic 

variation impacts individual traits, but also the relationships between traits. A more 

encompassing approach to systems genetics has the potential to begin to understand how 

genetic variation contributes to these relationships and overall system function.

In the field of systems genetics it is of the utmost importance to develop approaches for the 

effective understanding and utilization of available data (Box 2). As biology is inherently 

complex, it is unreasonable to believe that a single, or few, types of genetic analyses will be 

sufficient to gain a thorough understanding of the genetics of complex bone traits. We argue 

that more realistic models of biological processes can be generated and analyzed by 

synthesizing and incorporating seemingly disparate data sources. While barely scratching 

the surface, the systems genetics approaches described herein provide an avenue for such an 

endeavor. Of course, our understanding of many systems-level principles is still evolving 
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(see Outstanding Questions). With increasingly accessible computational resources and by 

training researchers adept in the computational sciences, the transition to understanding 

bone biology and the impacts of genetic variation from a holistic, systems perspective will 

be within our reach.
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Glossary:

Acyclic graph
A graph that does not contain cycles. A cycle is a set of nodes and edges, where a node can 

be reachable from itself. For example, the graph with nodes A, B and C with edges A -> B, 

B -> C, C -> A contains a cycle

BMD
Bone mineral density is the amount of mineral (hydroxyapatite) per volume of bone. BMD 

is the main diagnostic measure for osteoporosis and is one of the strongest predictors of 

fracture

Edge
An edge is a connection between two nodes in a network

Epigenetics
The study of processes that affect gene expression or function but do not involve changes in 

DNA sequence. These include processes such as histone modifications (acetylation, 

phosphorylation, etc.) and DNA methylation

eQTL
expression quantitative trait loci are genomic regions harboring genetic variation influencing 

RNA levels (via transcription, splicing, stability, etc.)

GWAS
Genome-Wide Association Studies identify genomic regions harboring genetic variation 

influencing a disease or quantitative trait

Genetic architecture
For a given trait it refers to the number, mode of action, effect size and frequency of genetic 

variants that contribute to that trait in the population and their interactions with each other 

and the environment

Heritability
The fraction of variance in a trait that is attributable to genetic variance

Machine learning
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A branch of artificial intelligence concerned with creating algorithms that can analyze data, 

and improve analytical performance, with minimal instruction. For example, machine 

learning algorithms can analyze data to uncover patterns that predict certain outcomes, while 

progressively improving metrics like the selectivity and sensitivity of predictions

Node
Along with edges, nodes are the basic units of a network. In a co-expression networks, nodes 

are genes or transcripts

Osteoblast
Specialized bone-forming cells of mesenchymal origin

Osteoclast
Specialized bone-resorbing cells of hematopoietic origin

Osteoporosis
A metabolic bone disease characterized by decreased bone mass and increased risk of 

fracture

Single Nucleotide Polymorphisms
SNPs are single base pair substitutions. SNPs are the most common type of variation in the 

human genome, occurring on average every 300 bases. SNPs can have many molecular 

consequences such as altering protein structure, gene regulation or splicing

Structure learning
In Bayesian networks, this refers to the process of learning the structure of the directed 

acyclic graph. That is to say, learning the connections and directionality between nodes. Two 

main classes of algorithms are used for structure learning: score-based and constraint-based 

algorithms

Systems genetics
An integrative field that aims to understand how genetic information is transmitted and 

integrated through biological systems and networks
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BOX 1.

Polygenicity of complex traits

Recently, an omnigenic model was proposed to explain the genetic architecture of 

complex traits [81]. This model is essentially a modernization of Fisher’s infinitesimal 

model [82]. The omnigenic model states that any gene expressed in a disease-relevant 

cell type is likely genetically associated with the disease. The authors supported this 

model with data from large-scale GWASs for multiple diseases/traits suggesting that 

hundreds of thousands of variants spread uniformly across the genome have non-zero 

genetic effects. They also provide data suggesting that disease heritability is not 

concentrated in biologically-relevant processes. They postulate that this is due to the fact 

that genes expressed within a cell are members of a highly interconnected network made 

up of “core” (genes participating in a biological process directly influencing a disease) 

and “peripheral” genes (genes connected to core genes to varying extents). In the 

omnigenic model, peripheral genes influence disease indirectly through subtle network 

interactions with core genes.

An opposing viewpoint to the classification of genes as “core” or “peripheral” argues that 

assuming only core genes directly affect disease is underestimating biological complexity 

[83]. Alternatively, it is possible that highly polygenic, complex diseases are affected by 

common variants not through their indirect effects on core genes, but by altering complex 

biological relationships across many genes. Thus, without the distinction between core 

and peripheral genes, the omnigenic model is no different than a polygenic model and it 

is evident that complex disease genes work together in complex networks. Thus, the 

polygenicity of complex disease reinforces the importance of systems genetics 

approaches.
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BOX 2.

Nascent approaches in systems genetics

In order to capitalize on advances in biological knowledge, such as the recent abundance 

of “–omics” datasets, continuous development of analytical approaches that can utilize 

large-scale, varied data is necessary. Machine learning is an example of such approaches, 

and has generated a high level of interest in recent years. Machine learning is a broad 

term that encompasses many widely used algorithms and techniques; for example, 

hierarchical clustering, a main component of WGCNA network construction, and linear 

regression are considered machine learning algorithms. In the bone field, machine 

learning approaches have been utilized to predict bone loss rates, osteoporosis and bone 

fracture risk [84–87]

In the context of systems genetics, machine learning approaches are of high interest due 

to their utility in analyzing large, highly-dimensional data, such as multi-omic data sets 

[88]. Within machine learning, “deep learning” approaches (such as artificial neural 

networks) represent the state-of-the-art, and refer to a class of approaches that “learn” 

patterns in data through structuring algorithms in hierarchical layers. Deep learning 

approaches can be utilized to learn patterns in data for the prediction of traits and for the 

identification of important data features. For example, patterns that classify samples as 

healthy or diseased can be discerned in multi-omic datasets, facilitating the prediction of 

diseased individuals from input data, as well as identifying causal determinants of 

disease, leading to a deeper understanding of the biological networks underlying 

phenotypes [89]. Similarly, machine learning approaches can also be used to learn 

patterns in data that lead to the identification of more accurate phenotypes and 

biomarkers [90]. Deep learning approaches can even be used to predict genetic elements, 

such as enhancers, from genomic data [91]. To our knowledge, such approaches have not 

yet been implemented in in the context of the systems genetics of bone, but have begun to 

be utilized in other biological fields [92–95].

In addition to being limited by their relatively recent genesis, the use of such approaches 

has been limited in the bone field due to the same limitation that affects network 

analyses; the sparsity of large, high-quality data sets encompassing multiple omics 

sources. In order for the bone field to ascend to the forefront of systems genetics, it is 

imperative to generate such data sets from relevant samples.
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Outstanding Questions Box

• To date, the genetic analysis of osteoporosis has focused on connecting 

variants to genes to disease. Equally important will be understanding how 

genetic variation impacts gene networks and how network perturbations lead 

to disease.

• The bone field has generated several large-scale GWAS of BMD, should we 

now focus on the generation of other “omics” data to facilitate systems 

genetics approaches? If so, what data types are lacking, which tissue/cell-

types should be the focus and what are the most pressing questions to 

examine?

• Does a “best” approach or algorithm for network-based analyses exist? What 

are the best practices for validation and interpretation of the methodology and 

results of network analyses?

• How can systems genetics approaches be utilized to understand genetically-

influenced relationships between traits, which ultimately underlie bone 

strength?
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Highlights

• Osteoporosis is a common, complex disease characterized by low bone 

mineral density (BMD). Quantitative bone traits influencing osteoporotic 

fracture, such as BMD, are highly heritable (h2>0.5).

• Genome-wide association studies (GWASs) have identified >300 loci for 

BMD. However, most causal genes, their mechanisms of action, and how they 

interact are unknown.

• Systems genetics approaches can be used to integrate bone GWAS with other 

“-omics” data to identify causal variants and genes.

• Network-based analysis approaches can provide insight into how genetic 

variation impacts molecular networks and how network dysfunction leads to 

osteoporosis.
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Figure 1, Key Figure. Overview of Systems Genetics.
Genetic and environmental factors, as well as their interactions, influence complex bone 

traits, such as bone strength. The influence of these factors is mediated through impacts on 

molecular intermediates (transcriptomes, proteomes, metabolomes, etc.) and can be assayed 

via appropriate “omics” techniques. Biological information is propagated through complex 

molecular networks to affect bones traits and ultimately the risk of fracture.
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Figure 2. Systems genetics approaches for prioritizing GWAS data.
By integrating biological data with data from GWAS, SNPs affecting traits can be prioritized 

for functional follow-up. For example, transcriptomic, biophysical and epigenetic data 

pertaining to lists of GWAS SNPs can be leveraged in order to prioritize the most likely 

causal SNPs (red bar, bottom row). TFBS = transcription factor binding sites, H3K27ac = 

histone H3 lysine 27 acetylation.
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Figure 3. Network analysis can reveal systems-level information.
In a typical network analysis workflow, gene expression profiles (a) (typically RNA-seq) can 

be analyzed from a network perspective. In this example, a co-expression network (b) is 

generated using WGCNA. In a WGCNA network, modules (colored clusters, b) consist of 

gene expression profiles connected by undirected edges, which signify the strength of the 

connection between two genes. A trait-correlated WGCNA module (within red circle, b) can 

be further dissected through Bayesian network analysis (c). Highly-connected hub genes 

(orange node, d) can signify functionally important genes. Bayesian networks differ from 

WGCNA networks in that they contain directed edges, and are acyclic (e). Furthermore, 

diverse biological information, such as SNP and trait data (blue and yellow boxes 

respectively, e) can be incorporated into Bayesian networks as prior information to improve 

network reconstruction. An advantage of Bayesian network analysis is the generation of 

more mechanistic hypotheses.
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Table 1.

Examples of large-scale GWAS and GWAS meta-analyses for BMD illustrates the increase in identified loci as 

a function of sample size.

Study Phenotype Sample size Association count

Morris et al. (2018)[19] Estimated heel BMD 426,824 1103 independent associations (518 loci, 
301 novel)

Kemp et al. (2017)[17] Estimated heel BMD 142,487 307 independent associations (203 loci, 
153 novel)

Estrada et al. (2012) (meta-
analysis) [16]

Lumbar spine and femoral neck 
BMD

83,894 (32,961 
discovery, 50,933 

replication)

64 independent associations (56 loci, 32 
novel)

Rivadeneira et al. (2009) [40] Lumbar spine and femoral neck 
BMD

19,195 20 independent associations (20 loci, 13 
novel)

Note that the most recent discovery of 518 loci encompassed nearly all of the previously discovered loci identified in prior studies.
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