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Abstract

Speciation mechanisms in marine organisms have attracted great interest because of the apparent 

lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the 

Mytilus edulis species complex provide a good model to study mechanisms underlying species 

formation. They hybridise extensively at many localities and both pre- and postzygotic isolating 

mechanisms may be operating. Mussels have external fertilisation and sperm cells should show 

specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in 

investigations of the molecular mechanisms underlying reproductive isolation. We undertook a 

deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome 

analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. 

We provide evidence of extensive expression differences between the two mussel species, and 

general agreement between the transcriptomic and proteomic results in the direction of expression 

differences between species. Differential expression is marked for mitochondrial genes and for 

those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, 

sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes 

might thus be good targets in further genomic analysis of reproductive barriers between these 

closely related species.
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1. Introduction

The study of the mechanisms that lead to the formation of new species is of special interest 

in marine ecosystems due to the lack of obvious barriers to gene flow, and is especially 

relevant in organisms with a prolonged period of larval dispersion [1]. Many marine species 

release gametes into seawater, so fertilization occurs externally. Because of this, research on 

speciation in marine systems has focused on the evolution of gamete recognition systems 

because of their potential as prezygotic reproductive isolation mechanisms [2–4]. The role of 

postzygotic mechanisms has been less studied and is controversial [5] despite their potential 

relevance to maintain the integrity of species [6]. It seems obvious that gametes are key cell 

targets in investigations of the molecular mechanisms underlying reproductive isolation. 

Molecular studies on gametes are however quite scarce and largely restricted to a few model 

organisms. The molecular basis of fertilisation including the sperm-egg recognition system 

is still a poorly understood, yet basic, biological process [7–8]. In marine invertebrates such 

studies have focused on sea urchins, starfish, clams, oysters, abalones, sea snails and worms 

[8–9]. The use of a greater diversity of species has recently been advocated as a good way to 

shed light on diverse questions that remain open in reproductive biology [10], including the 

molecular basis of species-specificity gamete interactions during fertilisation.

Sperm are highly differentiated cells with marked genetic, cellular and functional differences 

from other cell types, reflecting important roles in fertilization, embryonic development, and 

heredity [11]. The sperm cell has also been put forward as an ideal candidate for proteomic 

analyses [12], mainly because it is thought to be transcriptionally inert (but see [13]). So far 

only a few proteomics studies have focussed on sperm cells, mostly in widely studied model 

organisms (see [4, 14]). The ascidian Ciona intestinales [15], the red abalone Haliotis 
rufescens [16], the Pacific oyster Crassostrea gigas [17], the king scallop Pecten maximus 
[18] and the marine mussels Mytilus edulis [19–20] and M. galloprovincialis [21], are the 

only marine organisms, all of them external fertilisers, currently in the sperm cell proteomic 

literature. Furthermore to the best of our knowledge, there are no comparative quantitative 

proteomic studies of sperm of closely related species, with the exception of an analysis of 

different ungulate and rodent species [14, 22]. A comparative research strategy involving 

proteomics should contribute towards elucidating the molecular basis underlying 

reproductive isolation mechanisms and the evolutionary forces involved, as well as to 
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obtaining a better understanding of basic functional aspects of sperm biology at the 

molecular level.

Marine mussels from the Mytilus edulis complex are represented by three closely related 

species (Mytilus edulis, M. galloprovincialis and M. trossulus) that are able to hybridise at 

some rocky shore areas where their distributions overlap [23]. Hence, mussels represent a 

good model to address evolutionary hypotheses and study mechanisms underlying the 

formation of new species. On European coasts, M. edulis has a more northerly and M. 
galloprovincialis a more southerly distribution, while M. trossulus is mainly restricted to the 

Baltic Sea area. There are many localities where hybridisation and variable levels of genome 

introgression occur between the species. Research on Mytilus spp. has also attracted 

attention because of the important mussel aquaculture industry. Marine mussels are external 

fertilisers with a prolonged planktonic larval stage facilitating dispersal over great distances 

[24]. In order to preserve their genome integrity, despite extensive hybridisation, different 

reproductive mechanisms are likely to be operating both at the pre- and postzygotic level, 

though their relative contribution and underlying molecular mechanisms are not yet well 

understood. Cross-species fertilisation in Mytilus might be prevented to some degree by 

molecular incompatibilities resulting from the rapid evolution of reproductive proteins. 

Evidence for positive selection on M7 and M3 sperm lysin protein was provided for 

sympatric and allopatric populations of Mytilus spp. [25–28]. However prezygotic barriers 

might not be strong enough to prevent introgression due to extensive hybrid zones and wide 

variation in the genomic introgression rates observed in natural populations [29]. 

Weaknesses of prezygotic barriers are also suggested by contrasting results from 

interspecific crosses under laboratory conditions between Mytilus spp. [30–36].

The arrival of high-throughput genomics and proteomics techniques is allowing the 

expansion of classical evolutionary studies over large protein datasets [37]. Despite this 

advance, less attention is still paid in evolutionary ecology studies to the proteome as 

compared to the transcriptome or genome, even though the proteome is closer to the 

molecular phenotype, and thus a more direct target for natural selection [38–40]. The choice 

of reproductive tissues or gametes as the main focus of research helps to bridge the gap 

between reproductive phenotypes and underlying molecular mechanisms [37, 41]. A 2-DE 

based proteomic study using a somatic tissue, the foot, from two sympatric Mytilus species 

(M. edulis and M. galloprovincialis) and their hybrids showed differences in the protein 

expression patterns of hybrids when compared with the two parental species, providing 

evidence compatible with Dobzhansky-Muller incompatibilities (DMI) between both 

parental genomes in hybrids [42]. Thus postzygotic isolation factors may also have played a 

role in limiting the degree of introgression among genomes of Mytilus spp. New studies 

using high throughput genomics and proteomics on gametes should provide a significantly 

better understanding of the molecular mechanisms underlying reproductive isolation and 

evolution of Mytilus spp.

A good strategy when working with less well studied organisms to significantly boost the 

number and quality of protein identifications obtained through mass spectrometry analysis is 

to generate a customised protein database, for example through the translation of tissue and 

species-specific transcriptome datasets available in public databases or obtained from in-
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house experiments [37]. An additional resource for mussels is a recently published M. 
galloprovincialis genome [43]. However the availability of protein databases derived from 

transcriptomes provides a useful and complementary tool because of known limitations in 

the prediction and annotation of genes and posttranscriptional variants [44]. Moreover the 

combined use of transcriptomic and proteomic data specifically in non-model organisms has 

been advocated as one of the most useful proteogenomic approaches [45–46], because of its 

high and proven potential for synergy between the two approaches.

In this study we undertook a deep transcriptome sequencing (RNA-seq) of mature male 

gonads obtained from Mytilus edulis and M. galloprovincialis individuals acclimatised for 

several weeks to common laboratory conditions after collection from their native localities. 

The results from this study contribute to, 1) providing a tissue Mytilusspecific protein 

database to enhance protein identifications in follow-up proteomic analyses, and 2) 

providing a preliminary list of candidate gene products with potential involvement in sperm 

biology, fertilisation and reproductive isolation mechanisms in the two Mytilus species. A 

second complementary analysis based on a 2-DE+MS/MS proteomic approach, with the use 

of different customised protein databases, including one derived from our transcriptome 

data, to enhance protein identification, was carried out directly on sperm samples. This was 

to assess whether sperm samples from the same two Mytilus species and populations, that 

were acclimatised to common laboratory conditions for several months, presented proteomic 

differences which would be a consequence of underlying genetic differences between the 

populations and species. The level of concordance of differential expression results between 

transcriptome and proteome data is evaluated, while the functional consequence of the 

observed variation is discussed from an evolutionary perspective in relation to sperm 

biology, and the potential role of the variation in fertilisation and reproductive isolation.

2. Materials and Methods

Extended versions of Material and Methods for RNA-seq and proteomic analysis are 

provided in Ref. [47] and File S1 respectively.

2.1. Transcriptome (RNA-seq) analysis of mature male gonad tissues from two Mytilus 
spp.

2.1.1. Sampling and histological analysis—Mussels from Mytilus edulis and 

Mytilus galloprovincialis species were collected from rocky shores in Swansea (South 

Wales, UK) and Ria de Vigo (North-West Spain) respectively during the end of January of 

2012, transported to aquarium facilities in the marine station at the University of Vigo 

(ECIMAT), and kept there in seawater under the same conditions for at least 2 months. This 

design ensured that all analysed individuals shared the same environmental conditions, and 

that gene expression differences between species were not therefore the results of differences 

in the immediate environment [48]. After 2 months, mussels from each species were 

processed individually. From each mussel, one piece of gonad tissue was immediately snap 

frozen and preserved in liquid nitrogen for further RNA-seq analysis, while a second piece 

of the same tissue was used for a histological test to assess the sex and reproductive stage of 

the mussel. For this purpose gonad tissues were fixed in Davidson´s solution and embedded 
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in paraffin. Paraffin blocks were sectioned at 5μm with a microtome. Tissue sections were 

deparaffinised, stained with Harris´ hematoxylin and eosin, and examined by light 

microscopy for a histological study. Finally, 6 individual samples from each Mytilus species 

corresponding to reproductively mature male individuals were chosen for RNA extraction 

(Figure 1).

2.1.2. RNA extraction, mRNA library and Illumina paired-end sequencing—
RNA extraction was carried out using a protocol based on the Qiagen RNeasy® Mini kit 

(Qiagen, Valencia, CA, USA) with tissue homogenization in QIAshredder columns 

(Qiagen). The quantification of RNA samples was carried out using a NanoDrop 1000 

Spectrophotometer (Thermo scientific, DE, USA), and the RNA quality was assessed in an 

Agilent 2100 bioanalyzer (Agilent Technologies, CA, USA). Total RNA extracts from these 

selected samples were used to make two pools of 6 individuals each, one pool for each of the 

two Mytilus species. 700 ng of RNA per individual sample was used, so each pool contained 

4.2 μg of total RNA. mRNA libraries were generated using the Illumina Truseq Small RNA 

Preparation kit (Illumina, CA, USA) according to Illumina's TruSeq Small RNA Sample 

Preparation Guide v2 (low sample protocol). Agarose gel-based selection was carried out to 

obtain libraries with fragments close to 500 bp in length, and their quality was assessed 

through Bioanalyzer profiles using a high sensitivity DNA chip. Finally, libraries were 

quantified, by using quantitative PCR with specific primers complementary to the library 

adapters and KAPA SYBR FAST Universal qPCR Kit (Kapa Biosystems, MA, USA), and 

diluted to 12 pM before sequencing. Each library, corresponding to each of the two pools, 

was analysed in a full line of the flow cell from an Illumina HiScanSQ instrument (Illumina) 

and using TruSeq SBS v3 chemistry (Illumina) to generate 2 × 100 bases long paired-end 

reads. After sequencing, data were acquired and analysed by using the Genome Analyzer 

Sequencing Control Software (SCS 2.6) and Real Time Analyser (RTA 1.6) software from 

Illumina. A total of 124,102,082 and 111,865,458 raw reads were obtained from the Mytilus 
edulis and Mytilus galloprovincialis pooled samples respectively. Raw data were deposited 

into SRA-NCBI database (BioProject ID: PRJNA451093). The quality control and filtering 

of nucleotide sequences was carried out as explained in Ref. [47], yielding 187,829,361 

confident reads that were used for de novo assembly and generation of a consensus 

transcriptome.

2.1.3. De novo transcriptome assembly and functional annotation—Due to 

absence of a complete Mytilus spp. genome sequence (but see a recently published low-

coverage M. galloprovincialis genome in [43]), it was necessary to follow a de novo 
assembly approach in order to build a consensus transcriptome from mature male gonad 

from both Mytilus spp. Thus, reads from both Mytilus species were assembled to generate a 

set of contigs (herein isotigs). The full set of isotigs should represent the majority of 

transcribed genes in this specific tissue in either one or both Mytilus species. This approach 

allowed the comparison of the expression levels from the different isotigs between samples 

of the two species. De novo transcriptome assembly was carried out by using Velvet 

followed by Oases software [49–50]. Oases uses the preliminary assembly made by Velvet 

to complete the assembling of reads into isotigs. Finally, it clusters the isotigs into small 

groups called loci (synonymous with the term isogroups, also used in the literature), 
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representing the consensus transcriptome of the samples under study. These are not genetic 

loci, but rather a collection of similar sequences (isotigs), which might include different 

splice variants, alleles and partial assemblies of longer transcripts. Hence, it might be said 

that there are different isotigs for each locus (consensus transcript). Nevertheless, many loci 

contain only one isotig, though some others may contain hundreds of isotigs. The generated 

consensus transcriptome was annotated against a non-redundant UniProtKB/SwissProt 

sequence database using the program BlastX [51]. For comparative purposes the annotation 

was repeated against the published genome of another marine bivalve the Pacific oyster 

Crassostrea gigas [52], against all EST sequences available in NCBI from “Mytilus”

[organism], and against two protein databases with sequences retrieved from NCBI either for 

"Mytilus"[Organism] or "Mollusca"[Organism] using a threshold evalue of 1×10−3. 

Functional annotation based on Gene Ontology (GO) terms was performed using the tool 

Blast2GO [53]. An enrichment analysis of GO terms was carried out for those transcripts 

that showed significant differences between samples of the two Mytilus spp. (see below) 

using Fisher's exact test with a FDR=5% (see Ref. [47] for further details on method). This 

might provide some clues about the differences at functional level present in mature male 

gonad tissue of the two Mytilus spp.

2.1.4. Differential expression analyses—In the present study, differential gene 

expression analysis from mature male gonad tissue (pooled samples) between Mytilus edulis 
and M. galloprovincialis was carried using the RNA-seq data at isotig level. In 

circumstances where one biological replicate is available for each treatment group, methods 

based on the Negative Binomial (NB) distribution [54] can be used to make inferences about 

differential expression between the Mytilus species and identify isotigs with higher effect-

size. These changes could be supported in complementary studies, for instance by proteomic 

analysis with an appropriate biological replication (see section 2.2). The pooling approach 

met the requirements to fulfil one of the main objectives of the current study. This is to 

generate a tissue-specific Mytilus protein database from a high coverage reference 

transcriptome of both species in order to increase the success of protein identifications in 

proteomic analysis on sperm cells (see section 2.2). RSEM [55] combined with EBSeq [56] 

software were used to calculate differential expression (p<0.05, FDR=5%). This pipeline is 

appropriate in situations where a reference genome is not available, enabling accurate 

transcript quantification after transcriptomic de novo assembly [55], while controlling the 

false discovery rate (FDR) [57]. Functional annotation and an enrichment analysis for those 

differentially expressed transcripts was carried out as explained in the above section 2.1.3 

and Ref. [47].

2.2. Proteomic analyses of sperm samples from two Mytilus spp.

2.2.1. Sampling of mussels and sperm sample collection—Mussels from 

Mytilus edulis and Mytilus galloprovincialis species were collected from rocky shores in 

Swansea (South Wales, UK) and Ria de Vigo (North-West Spain) respectively at different 

times within the spawning period (end of January and April) in 2012, transported and kept 

under as far as possible the same laboratory conditions for at least 2 months, in order to 

minimize the differences between mussel species due to immediate environmental effects 

(see [48]). After 2 months, mussels were periodically induced to spawn following a thermal 
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shock procedure (see detail in File S1). Sperm samples released into filtered/UV-treated 

seawater in individual bottles were collected, filtered twice (300 μm and 41 μm sieves), and 

centrifuged for 10 min at 24400 g, 10ºC. After discarding the supernatant, the pellet 

containing sperm was resuspended in 150 μl of a 10% glycerol solution, snap frozen in 

liquid nitrogen, and finally preserved at -80ºC until further analysis. In parallel, a drop of 

seawater for each sample containing sperm cells was examined under the microscope in 

order to check that the sperm presented good morphology, high motility and density, 

otherwise the sample was discarded for any further analysis.

2.2.2. Protein extraction and 2-DE electrophoresis—Proteins were extracted from 

sperm samples of the two Mytilus spp. (10 biological replicates for each Mytilus spp. Two 

of them were run twice) in 0.3–0.5 ml of lysis buffer (7M urea, 2M thiourea, 4% CHAPS, 

1% DTT and 1% carrier ampholytes 3–10) aided by sonication on ice (Branson Digital 

Sonifier 250, CT, USA). After centrifugation for 30 min at 21,000g, at 10°C, the supernatant 

was stored at -80ºC until electrophoresis. Protein concentration was measured with the 

Bradford method [58]. Approximately 200 μg of total protein was used for 2-DE. The first 

dimension electrophoresis was carried out with immobilized pH gradient strips (pH 5–

8/17cm, BioRad) in a horizontal electrophoresis apparatus Protean IF System (BioRad) after 

strip equilibration. The second dimension of gel electrophoresis was carried out in 12.5 % 

polyacrylamide gels using an EttanDaltsix electrophoresis system (GE Healthcare, Little 

Chalfont, UK) at 20ºC, 15W/gel, and ~ 6h. Protein spots were visualized using SYPRO-

Ruby (Molecular Probes, OR, USA), following the protocol described in [48]. Stained gels 

were scanned with a Pharox FX Plus molecular imager (BioRad), and 2DE gel images saved 

in TIFF file format. The SameSpots vs.4.1 (Nonlinear Dynamics Ltd, Newcastle upon Tyne, 

UK) software was used for 2-DE gel image and protein spot detection analysis (including 

background subtraction and normalisation) following the same procedure described in [59]. 

Normalised protein spot volumes for each 2-DE gel were saved in csv file format for further 

statistical analyses.

2.2.3. Statistical analyses of 2-DE gels—Normalised spot volumes were 

transformed to a logarithmic scale to fit normality and homoscedasticity assumptions of 

parametric tests [42]. Spearman's correlation coefficient and coefficient of variation (CV) 

calculations were carried out using the whole protein spot dataset from technical replicates, 

aiming to assess the experimental reproducibility. Analysis of variance (one-way ANOVA) 

using the log normalised volume of each protein spot (dependent variable) was carried out to 

test for significant differences in protein expression patterns in sperms cells of the two 

Mytilus spp., where biological replicates were used to provide the error variance in the 

analysis. Different corrections to account for the multiple hypothesis testing problem were 

calculated by using the SGoF+ software v.3.8 [60], thus following the procedure and 

rationale discussed in Ref. [61]. Heat map analysis was used to group protein spots and 

individual samples according to their similarity in expression pattern. The heat map and 

hierarchical clustering analyses were conducted with the R package gplots [62], using 

Euclidean distance and the complete linkage method. Chi-square contingency tests were 

used to compare distributions of ontology terms for the protein spot identification and RNA-

seq results, with significance levels determined by bootstrapping using FORTRAN programs 
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written for this purpose and which allow for test of significance of individual rows in 

contingency tables.

2.2.4. Mass spectrometry analysis and protein identification—The protein spots 

of interest were visualized on a blue-light DarkReader (Clare Chemical Research, CO, 

USA), excised and processed following the protocol described in Ref. [48]. Resulting 

peptides were analyzed in an Orbitrap Elite mass spectrometer coupled to a Proxeon EASY-

nLC 1000 UHPLC system (Thermo Fisher, San Jose CA). Peptide separation was performed 

on RP columns (EASY-Spray column, 50 cm × 75 μm ID, PepMap C18, 2 μm particles, 100 

Å pore size, Thermo Scientific) using a 120 min linear gradient from 5 to 25 % of 

acetonitrile at a flow rate of 300 nL/min. For ionization, the spray voltage used was 1.95 kV, 

the capillary temperature was 260ºC and the Orbitrap set at 120,000 resolution. A positive 

mode from 400 to 1,700 amu (1 μscan), 15 data dependent CID MS/MS scans using an 

isolation window of 2 amu and a normalized collision energy of 35%, with a dynamic 

exclusion for 80s after the fragmentation event, were used for peptide analysis. Singly 

charged ions were excluded from MS/MS analysis. MS/MS spectra were searched using 

PEAKS Studio v.7.0 program (Bioinformatics Solutions Inc., Waterloo, ON, Canada) 

against three customized protein databases. Databases were made from the tissue and 

Mytilusspecific RNA-seq data provided in this study, EST sequences available in NCBI for 

four Mytilus species retrieved using “Mytilus”[organism] as search term, and protein 

sequences deposited in NCBInr for “Mollusca” [organism] (see further detail in File S1). 

Positive protein identifications (FDR <1%) were only accepted when at least two matched 

and one unique peptide sequences were obtained. BlastX analyses against a non-redundant 

(nr) protein sequence database of all organisms were carried out in order to ascertain the 

final protein identities of translated EST and RNA-seq sequences using default parameters 

and a threshold e-value of 1×10−6.

3. Results

3.1. Transcriptome (RNA-seq) analysis of mature male gonad tissues from Mytilus edulis 
and M. galloprovincialis

3.1.1. De novo assembly and Blast analyses of the consensus transcriptome 
from both Mytilus spp.—RNA-seq analyses of the two pooled samples from mature 

male gonad tissues, one from Mytilus edulis and one from M. galloprovincialis, produced 

more of 200 million 100bp paired-end reads. After filtering steps, more than 187 million 

reads remained valid to be used for de novo assembly, hence the generation of a consensus 

transcriptome for both Mytilus spp. (Table 1). De novo assembly produced a total of 97,425 

isotigs, grouped in 49,713 loci (see Files S1-S2 in Ref. [47]). Thus a consensus 

transcriptome for mature male gonads of the two Mytilus species was obtained. This 

provides a reference transcriptome to which individual reads from each pooled sample could 

be mapped in differential expression analysis. Moreover it provides a tissue and Mytilus-

specific database that, once translated to six-reading frames, can be used for protein 

identification in the proteomic studies carried out on sperm samples (see section 3.2.2). The 

mean (median), maximum and N50 length of isotigs is 706 (434), 13,604 and 1,071 

nucleotides, respectively (Table 1). The estimated size calculated for the consensus 
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transcriptome of both Mytilus spp. is 35.1 Mb. The redundancy level found for the 

transcriptome assembly was low (1.5% of loci). Results from Blast analysis against different 

databases (see Materials and Methods, and Figure 4 in Ref. [47]) are summarised in Table 1. 

A total of 13,498 sequences (27.2% of total loci) were successfully identified against a non-

redundant UniProtKB/SwissProt database. This moderate to low similarity with the database 

may be due to potential novel genes (or variants) in these two species, whose full genomes 

had not been sequenced at the time of elaborating this paper. This is supported by the 

following results. When Blast analysis was carried out against the published and annotated 

oyster (C. gigas) genome [52], another marine bivalve mollusc, the number of positive 

identifications rose to 18,279 transcripts (36.8%). The relatively modest increase in 

identifications may be due to the long divergence time between Mytilus and C. gigas even 

though they belong to the same phylum and class. This percentage is in line with the 

identification success (17,529 transcripts, 35.3%) and database coverage (% of sequences 

from NCBI database giving positive match against our transcriptome) obtained from Blast 

analysis against protein sequences from Molluscs retrieved from NCBI (Table 1). Despite 

the low number of protein sequences for Mytilus spp. available in protein databases, the 

Blast analysis showed, as expected, a level of coverage for a protein sequence database 

(Mytilus[organism], NCBInr) of 81.3%. A similar result, a database coverage of 82.7%, was 

obtained after Blast analyses against all EST sequences available in NCBI for 

Mytilus[organism] that were translated to proteins by using the six-reading frames. Although 

the redundancy level of these EST sequences is high, the number of sequences is high so it is 

not surprising to see that a positive match/identification was reached for 31,428 (63.2%) of 

loci from our consensus transcriptome.

3.1.2. Functional annotation of the consensus transcriptome from both 
Mytilus spp.—From functional analysis using Blast2GO, 12,156 loci were successfully 

annotated for GO terms (File S3 in Ref. [47]). The annotation was improved after 

InterProScan analysis, raising the number of successful annotations to 13,283 loci (File S4 

in Ref. [47]). This might be interesting because functional information, e.g. a peptide signal 

sequence from the differential expressed sequences between Mytilus spp., is still reported 

despite the inability to get a confident gene/transcript identity during BlastX analysis. The 

distribution of GO-terms for the full annotated transcriptome at different levels, molecular 

function (MF), biological process (BP) and cellular component (CC) categories, is displayed 

in Figure 2a. It is reassuring to see that “reproduction” term is represented in BP category. 

The dominance of “binding”, a general term related to the non-covalent union or interaction 

of different molecules, in MF is also interesting because when checking MF terms for the 

more specific tree hierarchy level 3 (Figure 5 in Ref. [47]), the highest representation is for 

protein binding, a term related to interactions among proteins or protein complexes. This 

category should include sperm proteins involved in sperm-egg interaction. Finally it is 

interesting to highlight in category CC, in both Figure 2a and Figure 5 in Ref. [47], the high 

representation for terms related to membrane proteins that potentially include those that 

might be involved in the sperm-egg recognition mechanisms.

3.1.3. Differential expression analysis between Mytilus edulis and M. 
galloprovincialis.—A total of 27,233 isotigs (28% of the 97,425 occurring in the 
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transcript assembly) are differentially expressed between pooled samples of the two Mytilus 
spp. at FDR 5%, of which 20,997 (21.6%) are significant at FDR 1%. This corresponds to 

14,737 loci (29.6% of 49,713 loci in the transcript assembly) which are significant (in that 

they have at least one significant isotig) at FDR 5% of which 11,335 (22.8%) are significant 

at FDR 1%. Files S5 and S6 in Ref. [47] contain expression and statistical values from this 

analysis. File S7 in Ref. [47] contains the annotation based on BlastX (see section above 

2.1.3) for all transcripts (loci) where a significant differential expression result was found. A 

total of 4338 (4223 at FDR 1%) differentially expressed loci were successfully annotated 

after Blast2GO including InterProScan 5.0 [63] analysis. The most relevant result of the GO 

term enrichment analysis in relation to this study is an overrepresentation of the BP term 

“reproduction” (Figure 2b). These loci form the main analytical focus in this paper. To 

pursue this, we chose those functional annotated loci (a total of 309 of the 4338 in total that 

are differentially expressed) that code for proteins specifically related to fertilisation and 

sperm biology processes. From these, 61 loci corresponding to 50 different proteins are 

shortlisted based on the prediction that they have signal peptide or transmembrane domains 

by using SignalP 4.1 [64] and TMHMM 2.0 [65] servers, available in CGS Technical 

University of Denmark, respectively, and complemented with results from InterProScan 5.0 

analysis described above (Table 2). These types of domains indicate that protein can be 

either secreted (e.g., present in the sperm acrosomal content) or located in the sperm plasma 

membrane respectively, hence with high potential to play a role in the sperm-egg recognition 

system or gamete fusion [16]. We thus wish to specifically focus on these as good candidates 

for more detailed consideration and perhaps future study. These candidate loci (Table 2) 

code for proteins that are mainly involved in different steps of spermatogenesis (Cdyl2, 

Ggnbp2, Nphp1, Rarb, Irs, Iap2, Tmbim6, eif4g2, CtsB, CtsL, CtsL2, Prdm9, Suv39h2), 

sperm motility (Dnal1, Ropn1, Ift172, Slc26, Slc6a5, Slc9c1), binding of sperm to the egg 

vitelline coat (Cct2, Cct3, Cct4, Cct5, Cct6a, Cct7, Cct8, Psma2, Ubc8, Pc1, Hya, Spag1, 

Thbs1, Zan, vitelline coat lysins M3 and M6), acrosome reaction and sperm capacitation 

(Cdc42, Spa17, CtsB). For each of the above candidate genes (loci), in some cases, isotigs 

within a locus varied in the nature and extent of differential expression between the two 

Mytilus species, see final two columns in Table 2. The expression differences could have 

resulted from simple allele differences between the mussels making up the pools, or more 

complex alternative splicing events producing different protein isoforms in the two species. 

It also might be the result of differential regulation of expression of the same protein isoform 

in the mature male gonad of the two different Mytilus species. It is important to note that 

allele differences can have two main different effects at the molecular phenotype level, either 

changing the mRNA/protein sequence or acting as expression modifiers. The latter effect 

can be associated with changes in non-coding usually cis-regulatory regions, though getting 

direct evidence for this is rather difficult [66].

3.2. Proteomic analysis of sperm cells from Mytilus edulis and M. galloprovincialis

3.2.1. Two-dimensional electrophoresis (2DE) and differential expression 
analyses—After applying the quality filter based on comparisons made for each 2DE gel 

against a pre-defined “gold standard 2D gel”, a tool implemented in SameSpots software, 

two out of ten 2DE gels of sperm samples analysed from the Swansea population (M. edulis) 

were removed from further analysis, while all 2DE gel samples from Vigo population (M. 
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galloprovincialis) successfully passed this pre-defined filter (File S2). The analysis of the 

2DE gel images produced a final dataset of 727 protein spots (File S3). Results from the 

reproducibility experiment, where two sperm samples one from each species were analysed 

twice, permitted the comparison of technical and biological variation. For each of the 727 

spots the CV of spot volume was calculated over 10 biological replicates for M. 
galloprovincialis and over 8 biological replicates for M. edulis. The technical variation was 

measured for each species from the sample of two technical replicates for each species. The 

spot-specific CV values averaged over both spots and species are 41.2 ± 0.29 (SE) and 19.0 

± 0.34 for biological and technical variation respectively. Because of the small number of 

technical replicates, nonparametric tests were further used to gauge the significance of this 

difference. Thus of the 727 spots, 638 and 611 had higher CV for biological than technical 

replication in M. galloprovincialis and M. edulis respectively. χ2 tests against a 1:1 

expectation were made where the null hypothesis is that higher CV is equally likely for 

biological and technical replicates. The expected frequencies in each category are thus 

363.5:363.5. The χ2 value is highly significant in each species, even a ratio of 408:319 

would be significant at p<0.001. Even if spot volume values are not independent for some 

pairs or groups of spots, this test is highly suggestive of significantly greater CV for 

biological than technical replicates. In a further test the Spearman correlation was computed 

over spots between technical replicates within each species. The values are 0.953 and 0.927 

for M. galloprovincialis and M. edulis respectively. The corresponding correlation values 

between biological replicates vary between 0.767 and 0.895 for M. galloprovincialis and 

0.780 and 0.896 for M. edulis. Both tests confirm that spot volumes are much more different 

between biological than technical replicates providing clear evidence of biological signal 

within each species.

One-way ANOVA (“Species”; fixed factor) for each spot resulted in 17.6% of the protein 

spots showing significant differences (a priori p<0.05) in their expression levels between 

mussel populations from the two Mytilus species. After applying several correction methods 

to control for the type I error using a procedure we have advocated previously [61] (see File 

S3), most of these spots remained significant, especially when more powerful correction 

methods were used (e.g., 125 and 123 spots after applying the SGoF+ and SFisher correction 

respectively). Reassuringly, the q-values indicate a low expected false positive rate for the 

128 significant spots (q=0.208), while fixing a q-value at 5% level provides 45 significant 

spots (Figure 3 and File S3). A heat map including the expression data for the 45 significant 

spots (q<0.05) shows samples for each population in one of two different clusters without 

any exceptional individuals (Figure 4). The same pattern is observed when the 128 a priori 
significant spots (p<0.05) are used (File S4). A Volcano plot (Figure 5) shows important 

size-effects in either Mytilus spp. directions. For example, there are significant differences 

(p<0.05) in expression associated with higher than 1.5 and 2.0 fold differences in 57 and 26 

spots respectively comparing M. galloprovincialis with M. edulis, with higher expression in 

M. galloprovincialis, while 32 and 14 spots follow the same pattern but with opposite fold 

change direction with higher expression in M. edulis.

3.2.2. Protein identification by mass spectrometry (MS)—From a total of 45 

candidate protein spots (q<0.05; see Figure 3), all except one were successfully identified 
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after the analysis of mass spectrometry data against different customised databases used in 

this study (Table 3 and File S5). Spots 1101 and 1508 were annotated against protein 

sequences generated from our RNA-seq dataset, though blast analysis of these RNA 

sequences against the NCBI protein database did not provide any significant match. It is 

important to note that in three analysed spots two different proteins were identified with very 

high confidence, PSMs and scores. These are spot 2164 (Uqcrc2 and Tekt1), spot 705 

(Atp5a and Dld) and spot 988 (Acadm and Psmc6). An explanation for this result is that the 

“protein-pairs” identified for these spots present similar MW and pI, hence 2-DE analysis 

was not able to resolve them and they were sampled together when the spots were excised.

There are several spots showing differences in MW and pI (Figure 3) that were identified as 

the same protein (see Table 3). One possible explanation for this is that these originate by 

different post-transcriptional or post-translational modifications (PTMs). The correct 

interpretation of these candidate “multi-spot” proteins is important from a functional 

viewpoint to prevent misleading conclusions (see Box 2 in [38]). For example, in protein 

isoforms of Aco2 (spots 1205 and 1241) and Idh3g (spots 1085 and 1087) a concordant 

pattern of up-regulation in M. edulis was observed, whereas protein isoforms for Uqcrc2 

(spots 847, 2164a and 2151), Efhc2 (spots 1119, 1134 and 191), es1 (spots 1608, 2039 and 

1602), and Glud (spots 589 and 2062) showed a discordant pattern (see Table 3, Figures 3 

and 4). Phosphorylation is one of the well-known PTMs that usually implies modification in 

the pI of phosphorylated protein but little MW change [67]. An advantage of using 2-DE for 

proteome separation compared to gel-free (shotgun) proteomic approaches is that it provides 

the possibility of assessing the effects of differential post-translational modifications and 

different isoform expression between samples [68–70]. The observation of spots resolved in 

close proximity in the 2-DE gel such as Idh3g (spots 1085 and 1087), Uqcrc (spots 847 and 

2164), Glud (spots 589 and 2062), and Tekt2 (spots 814 and 776) is also compatible with 

differential phosphorylation events in the sperm of the two Mytilus spp., and could be 

verified by further phosphoproteomic analysis [71].

The list of protein identifications from excised spots contained many proteins potentially 

involved in sperm function. There are proteins involved in cell energy production, hence 

potentially affecting sperm motility, such as different members of the electron transport 

chain (ETC) protein complex (Nadufa10, Uqcrc2, Atp5a) or in close relation to ETC (Etfb), 

while Ppa1, Idh3g, Idh3a, Eno and Ak are other identified enzymes that also contribute to 

maintain the energetic cellular resources. An interesting observation is that about half of 

identified proteins are located in mitochondria (Table 3), so playing a role in cellular energy 

homeostasis either through ETC or different metabolic pathways. Proteins that contribute to 

flagellum structure could play a role in sperm motility, like Tekt1, Tekt2, Tekt4, and Cnn1. 

There are also proteins involved in sperm capacitation, for example Aco2, Dld, and Npr1. 

The identifications include also different catalytic and regulatory subunits of the proteasome 

(Psmb2, Psma4, Psmb6, Psmc6, Psmd11, and Psme3). There is a group of identified proteins 

with a less obvious sperm-specific function role (Acadm, Pfd0110w, Ivd, Efhc2, Glud, 

Hsd17b10, Prdx5, Sod2, Plc, and an es1 protein).
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3.3. Proteomic and transcriptomic differential expression results: in good agreement?

Although gene expression studies based on transcriptomic analysis have relied on mRNA 

abundance as a good proxy for corresponding protein abundance, results from a number of 

studies have questioned the validity of this assumption [72]. Substantial posttranscriptional 

and posttranslational modifications are expected and this can also affect the correlation 

between protein and transcript levels for many but not all gene products [73]. In this study 

we have tested the general level of agreement in the direction of the differential expression 

between proteomics (identified protein spots in Table 3) and transcriptomics data (see Files 

S5-S6 in Ref. [47]). The data are summarised in File S6 where for both protein and mRNA-

seq data E and G are used as abbreviations for M. edulis and M. galloprovincialis. 

Worksheet Table S6 of this file lists the protein spots which show differential expression 

between the two species, and for which of the two species the expression is higher. Then in 

addition for each spot the number of mRNA isotigs showing differential expression (E>G 

and G>E) are given in separate columns.

For those protein spots showing higher M. edulis protein expression the total number of 

isotigs over all spots with E>G and G>E are 14 and 26 respectively: with higher M. 
galloprovincialis expression the numbers are 8 and 52. A χ2 heterogeneity test reveals that 

the overall preponderance of isotigs with G>E is significant (pooled χ2 = 31.360 df=1 

p=0.000) and that the ratios 14:26 and 8:52 are different (heterogeneity χ2= 4.507 df=1 

p=0.034) (File S6, worksheet Test). Thus spots which show G>E have a tendency towards an 

excess of isotigs also showing G>E. The data in Table S6 has also been used to directly 

correlate the fold change values for the proteomics data and for the RNA-seq. The data and 

plot is given in File S6 worksheet 2Dplot. There is a positive correlation which though weak 

(Spearman’s Rho = 0.126, p=0.210) is nevertheless consistent with the above χ2 analysis in 

showing some general correspondence between the two types of data. Expectation of a 

positive correlation would depend on assumption of generalised up or down regulation for 

the protein in question. However in general there is not good correspondence between 

proteomics and transcriptomics data with cellular concentrations of proteins not correlating 

highly with the abundance of their RNAs [72–73]. This may be related to a number of 

factors including variation in protein turnover rate, variation in the extent and nature of 

posttrancriptional and posttranslational modification and measurement error.

Given that many isotigs in the overall dataset do not show differential expression, it is of 

interest to know whether a protein spot with E>G (or G>E) has at least one isotig with 

differential expression in the same direction. The number of spots showing such agreement 

can be contrasted with the number of spots for which all isotigs show differential expression 

but in the opposite direction to that shown by the protein spot. The numbers in these two 

categories are 28:4 over all spots (χ2 = 18.000 df=1 p<0.001, for test against 1:1 

expectation, see File S6 worksheet Table S6 for further details) and 20:4 when counting for 

protein identities, that is spots for the same protein are counted once only (χ2= 10.667 df=1 

p=0.001). These significant results provide additional evidence for concordance between the 

two types of expression data. In addition to spots with isotigs showing differential 

expression, 15 protein spots (32% of the total number of spots) do not have any isotigs 

showing differential expression (File S6 worksheet Table S6, total spots with “0” in column 

Romero et al. Page 13

J Proteomics. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



K). It is important to highlight that four of these protein spots were identified as different 

proteasome subunits with higher expression in M. galloprovincialis sperm (File S6 

worksheet Table S6, column D).

For the two categories of proteins with expression E>G and G>E, the distribution of number 

of spots for different ontology terms was determined. This is carried out for two ontology 

classifications, Cellular Location and Molecular Function, which are derived from the 

classifications shown in Figure 2. The resulting distributions with further analysis are given 

in File S6 worksheet Test. The ontology terms having greatest frequency overall are 

Mitochondrion (43%) and Cytoplasm (20%) for Cellular Location, and Motility (29%), 

Capacitation (12%) and Acrosome reaction (12%) for Molecular Function. The results of χ2 
contingency tests in which the ontology distributions are compared between E>G and G>E 

indicate a significant effect overall for both Cellular Location (p=0.002) and Molecular 

Function (p=0.027). Individual ontology terms which contribute most to the overall effect 

are Mitochondrion (p=0.000, higher number of spots for E>G), Cytoplasm (p=0.020, higher 

for G>E), Proteolysis (p=0.083, higher for G>E), and Tricarboxylic acid cycle (p=0.005, 

higher for E>G). So while there is a correspondence overall for Cellular Location between 

the highest frequency terms and those differing in frequency most markedly between 

species, this is not observed for Molecular Function.

3.4. Customised tissue and species-specific protein databases enhance protein 
identifications

While identifying peptides from MS data together with the corresponding proteins in model 

organisms is quite straightforward, the situation becomes more challenging when working 

with non-model organisms because the availability of genomic and protein sequences in the 

latter is scarce. However there are different alternatives to overcome this limitation (see [37, 

45–46]). For example, the generation of customised protein databases obtained from tissue 

and species-specific transcriptome datasets (RNA-seq) or from expression sequence tags 

(ESTs) deposited and available through NCBI. Also de novo interpretation of MS/MS 

spectra can provide complementary results when combined with the use of customised 

protein databases, specifically in providing information about unknown mutations and 

PTMs, this latter being also valid for model organisms.

In order to assess whether the use of customised protein sequence databases has improved 

the quality and quantity of protein identifications in the current study on two Mytilus spp., 

we compared the number of peptide spectrum matches (PSMs), total (TP) and unique 

peptides (UP) obtained in the identification of 44 protein spots from sperm samples (see 

section 3.2.2) using 3 different customised databases (see section 2.2.4). Graph displayed in 

Figure 6, made from data available in File S5, shows that using a protein database made 

from our consensus tissue and species-specific transcriptome data provide on average across 

44 spots better results in terms of a significantly higher number of PSMs (Kruskal-Wallis 

test; H=25.27, df=2, p<0.0001), TP (H=24.29, df=2, p<0.0001) and UP (H=34.48, df=2, 

p<0.0001) when compared with the other two protein databases. When these results are 

inspected in a pair-wise comparison basis, after applying Dunn post-hoc test for multiple 

comparisons, it is worth noting that the customised Mytilus-ESTs-based protein database 

Romero et al. Page 14

J Proteomics. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also presented good results for PSMs and TP, but with a significantly lower number of UP, 

when compared with the RNAseq-based protein database (see Figure 6). It is also clear that 

the results of these two customised Mytilus specific protein databases are significantly better 

than those obtained after using a NCBI[Mollusca]-based protein database, except the 

pairwise comparison between Mytilus-ESTs-based and NCBI[Mollusca]-based protein 

databases for UP (see Figure 6). The lower number for UP can be explained by high 

redundancy found in EST databases. The confirmation that EST sequences from Mytilus 
spp. are generally shorter than protein sequences derived from our RNA-seq project can be 

easily reached from inspection of matched protein sequences from each database used in the 

protein spot identifications (see File S5). File S5 also provides useful information about 

potential PTMs and mutations, ascertained with the PEAKS program through de novo 
interpretation of MS/MS spectra, present in the sequences of proteins to which the different 

spots were identified.

4. Discussion

4.1 Transcriptomic differences in mature male gonad between two Mytilus spp. shed light 
on proteins with potential involvement in reproductive isolation

Results from transcriptomic experiments using next-generation sequencing technology 

(RNA-seq) with a focus on different biological questions have been reported for M. edulis 
(e.g. [74], in a study of gene regulation during early development) and M. galloprovincialis 
(e.g. [75], to compare transcript expression profiles in four different tissues). However there 

has not been any attempt to deep sequence the mature male gonad transcriptome and 

compare transcriptomic data in these two Mytilus species. The current RNA-seq analysis 

provides evidence of high variation in the mature male gonad transcriptome, with 22.8% of 

analysed loci differing (at FDR 1%) between M. galloprovincialis and M. edulis samples. In 

a high number of instances the differential expression was detected at isotig level within 

each consensus transcript (locus), with contrasting results among different isotigs within 

loci, both in terms of effect-size and direction of the expression level between the two 

Mytilus spp. (see Table 2). The RNA transcripts showing different expression in Table 2 are 

both derived from sperm and have sperm associated GO terms with their protein names. We 

would thus expect many of these transcripts to be expressed as proteins for specific 

functioning in this tissue. However in general it cannot be assumed that all isotigs showing 

differential expression are translated into proteins [76], and it may be that a single transcript 

is dominant in terms of protein expression [77]. The statistical correspondence in the 

direction of expression between species for isotigs and protein spots (χ2 heterogeneity test 

in File S6, Table S6) give further evidence that some of the isotigs are translated into protein 

even if it is not possible to pinpoint exactly which isotigs are translated and which are not.

Samples from both species shared a common laboratory environment for at least two 

months. This design often referred to as a common garden experiment (e.g. [78]), aims to 

demonstrate that observed phenotypic differences are mainly attributable to speciesspecific 

(genetic) rather than sampling-site environmental differences, and is becoming important for 

studying adaption in genomic studies [79]). Although acclimation to the same laboratory 

conditions should help to minimise the effects of local environmental differences between 
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the original sampling sites, some of these environmental effects may be retained 

permanently even after acclimation for several weeks [80]. When the aim is to compare 

allopatric population of different species, genetic and local environmental differences may 

always be confounded, but the long period of acclimation used in the current study (at least 

2 months) should have maximised genetically based, as compared with environmentally 

based, transcriptome differences between the species. Variation between gonadal 

development stages in transcript abundance have been reported in M. galloprovincialis [81]. 

However in the present study mussels at the same stage of development, according to 

histological tests, were used in the two species.

From the list of genes which show significant expression differences between M. edulis and 

M. galloprovincialis at the mRNA level, there are several that produce proteins with 

functional roles in sperm biology and fertilization (Table 2). Most of these proteins are thus 

good candidates for evolutionary study due to their potential role in reproductive isolation 

mechanisms and ultimately in the formation of new species, and are discussed below.

4.1.1 T-complex protein 1 (TCP-1) and ubiquitin-proteasome system (UPS) 
might be involved in intraspecific gamete preference and reproductive 
isolation in Mytilus spp.—One of the most important results is the concerted differential 

expression between the two Mytilus spp. for seven out of eight subunits of the T-complex 

protein 1 (TCP-1). A chaperonin-containing T-complex protein 1 was found in the 

periacrosomal region of human and mouse sperm heads with an involvement in mediating 

sperm-ZP interaction [82–83]. Evidence was found to support the view that TCP-1 and the 

ubiquitinproteasome system (UPS) might by concerted action be involved in gamete 

interaction [82–83]. Hence TCP-1 and UPS are good targets for further investigation in 

relation to involvement in prezygotic reproductive mechanisms that could be operating 

between Mytilus spp. It is possible that differences in the expression level or in the sequence 

of TCP-1 and UPS related proteins can lead to a preference for intraspecific rather than 

interspecific fertilisations in Mytilus spp. UPS is involved in the process where protein 

substrates are labelled with different ubiquitins to be later recognised by the 26S proteasome 

complex machinery for protein substrate degradation playing important roles during sperm 

capacitation, the acrosome reaction and sperm-egg interactions (reviewed in [84]). Two 

candidate differentially expressed transcripts found in our study (Table 2) relate to the 

ubiquitin-proteasome system (UPS). These are the ubiquitinconjugating enzyme (UBC) E2–

24 kDa (Ubc8) and the proteasome subunit alpha type-2 (Psma2). Testis-specific isoforms of 

the first protein were found in the ascidian Ciona intestinalis and rat spermatozoa and a 

mutant mouse for this enzyme showed alterations in sperm as well as a reduced sperm 

number and motility [84]. Inactivation of an ubiquitin-conjugating enzyme in Drosophila 
causes male infertility due to abnormal levels of spermatogenesis [85]. It was demonstrated 

in ascidians, sea urchins and mammals that ubiquitin-conjugating enzymes regulate the 

penetration of spermatozoa into the vitelline coat (VC) of the egg and degrade the 

ubiquitinated sperm receptors on the VC (zona pellucida-ZP, in mammals) of eggs during 

fertilisation, contributing to the avoidance of polyspermy, with some roles also during sperm 

capacitation and regulation of acrosomal exocytosis (reviewed in [84, 86]. In relation to the 

second protein (Psma2), sperm proteasomes are released extracellularly as part of the 
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acrosomal content during fertilisation. Together with an intracellular UPS inside the 

fertilised egg, it seems that animal fertilisation is also dependant of an extracellular UPS 

driven by the acrosomal exocytosis of different enzymes/proteins, and this mechanism seems 

to be quite evolutionarily conserved in the animal kingdom with small differences in 

ascidians compared with sea urchins and mammals. Its functional importance in fertilisation 

has been empirically confirmed, suggesting that UPS proteins are a good target for 

controlling fertilisation, and hence reproduction, in different organisms [84]. Proteasome 

subunit alpha was also identified among those proteins with higher expression in Mytilus 
edulis sperm [20].

4.1.2 Other candidate sperm-specific gene products linked to acrosome 
reaction, sperm-egg interaction and rapid evolution—The presence of a beta-n-

acetylhexosaminidase (Bre-4) among the candidate proteins is interesting because glycosidic 

enzymes were observed in the sperm acrosome content and found to be necessary for 

penetration of the ZP during fertilisation in some mammals, as well as acting as important 

sperm receptors for the extracellular matrix of the oocyte in ascidians [87–88]. The sperm 

surface protein SP17 (Spa17) is of interest because it might be involved in spermatogenesis, 

sperm capacitation, the acrosomal reaction and sperm-egg interactions during fertilisation 

[89]. Evidence of high Spa17 protein expression was obtained in Mytilus edulis sperm [20], 

and in the current study one isoform shows differential expression. Sperm proteins with 

testis-specific expression have been found to evolve more rapidly on average than proteins 

expressed in testis alone and in non-reproductive tissues. This is probably due to functional 

constraints associated with housekeeping tasks of this latter-type of protein (see [90]). The 

relative contribution of neutral and naturally selected genetic variation has been a long 

debated and investigated issue during the last 50 years in evolutionary biology [91]. In this 

context, SP17 was found to evolve rapidly by positive selection in several mammalian 

species [92]. Similarly zonadhesin protein (Zan) was found to evolve rapidly in primate 

species [93]. It is a large sperm-specific protein localised in the sperm head within the 

acrosomal matrix with multiple domains involved in the speciesspecific recognition of ZP in 

eggs during fertilisation in mammals (reviewed in [94]). The acrosome content is quite 

variable between mammals and marine invertebrates. In sea urchins and abalones, bindin 

and lysin sperm acrosomal proteins are rapidly evolving species-specific proteins that 

recognise the vitelline coat of the egg (corresponding to ZP in mammals) during 

fertilisation, while evolution of zonadhesin is also driven by positive selection and involved 

in the same function in mammals, despite these three proteins being evolutionarily unrelated 

(reviewed in [2, 94]). The protein structure of zonadhesin is quite conserved despite high 

aminoacid divergence across different species. A precursor form of zonadhesin protein is 

produced during spermatogenesis and quickly processed to produce 3 polypeptides of 300, 

105 and 45 kDa respectively in pig spermatozoa [94]. We provide evidence of four different 

Zan loci and a total of seven isotigs with differential expression between the Mytilus spp., so 

making this gene a target of interest in further studies of reproductive isolation in Mytilus 
species. Evidence has been actually reported for positive selection acting on the M7 lysin 

gene in some sympatric and allopatric Mytilus populations [25–27, but see 28] and the M3 

lysin gene [95]. M3 and M7, together with the less studied M6 lysin, are non-orthologous 

highly abundant acrosomal proteins responsible for dissolving the egg vitelline envelope 

Romero et al. Page 17

J Proteomics. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during fertilisation [96], so are thought to play an important role in the gamete recognition 

process. Interestingly in our study we found evidence of differential expression for a total of 

eight different isotigs of M3 and M6 lysins, but no differential expression of M7 lysin.

4.1.3 Prdm9 and Suv39h2 gene products are promising targets to study 
postzygotic reproductive isolation mechanisms and sex differences in Mytilus 
spp.—Finally two other candidate gene products displayed in Table 2, Prdm9 and Suv39h2, 

can be highlighted. When two populations that have evolved allopatrically come into 

secondary contact, gamete compatibility may still occur and hybrid individuals produced as 

observed for Mytilus spp. However hybrids can be sterile or have reduced fitness due to 

epistatic interactions of alleles from the two diverged genomes. This phenomenon known as 

Dobzhansky-Muller incompatibility (DMI) can lead to the formation of new species. Only a 

very few genes responsible for such low hybrid fitness have been discovered so far (see 

[97]). Prdm9, which shows differential expression for one isotig, is also known as Meisetz, 

is a histone H3 methyltransferase, and is expressed in mouse testis and ovaries [98]. This 

gene activates other essential genes for meiosis by means of specific-histone methylation. 

Sterile hybrid male mice had small testes, spermatogenic arrest and lacked sperm, the same 

phenotype as observed in null-Prdm9 mutant mice [98]. The cause of sterility seems to be 

DMI generated by epistatic interaction between Prdm9 and other genes located on 

chromosome × (see [97]). In view of the discoveries in the mouse, we suggest that Prdm9 

deserves further attention in evolutionary studies on Mytilus spp where reproductive 

isolation is incomplete. On the other hand, Suv39h2, differentially expressed here in two 

isotigs, is another histone H3 methyltransferase, and was found to be specifically expressed 

in mouse adult testes but not ovaries [99] and specifically accumulates with chromatin of the 

sex chromosomes silencing their expression during early meiosis. Possibly this protein could 

be useful for the development of a sex specific marker in Mytilus. This is currently lacking 

in Mytilus spp for which there is currently no evidence of sex chromosome dimorphism. For 

example, Suv39h2 as a target protein in immunofluorescence analysis for detecting 

differences between males and females.

4.2. Sperm proteome differences between Mytilus edulis and M. galloprovincialis

In line with the RNA-seq results, proteomic analysis on sperm samples from individuals 

from M. edulis and M. galloprovincialis provide evidence of high proteome differences 

between the species, occurring in 17.6% of protein spots analysed (q=0.208). All mussels 

were kept under common laboratory conditions for at least 2 months and thus had a long 

period to acclimate prior to the collection of sperm for proteomics analysis. Following the 

reasoning given above in the discussion of the transcriptome results, proteome differences 

between the species can therefore be attributed entirely or in large part to genetic differences 

between the species. A reassuring result is that from a similar proteomic experiment on 

sperm samples of individual mussels from a hybrid population at Croyde (UK) with 

sympatric M. edulis and M. galloprovincialis, species-specific proteomic patterns were also 

observed [100], strengthening the evidence that speciesspecific proteomic differences 

between mussels raised under similar conditions are genetically based. Although differential 

expression may be associated with the processes of protein synthesis, post-translational 

modification, and protein degradation, all may result in variation in protein abundance and 
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have functional implications [101]. From the list of 44 protein spots (q=0.05) with 

differential expression and identified by MS, there are a number of proteins with key 

functional roles in sperm biology and fertilization (Table 3) that make them good targets 

(hereafter candidates) for potential involvement in reproductive isolation mechanisms. A 

feature of the results shown in Table 3 is that different spots for the same protein may differ 

in the species in which they show higher expression. Some proteins given in Table 3 which 

are of particular interest are highlighted and discussed below.

4.2.1 Mitochondrial proteins linked to energy production and antioxidant 
enzymes are up-regulated in M. edulis—Alterations in ETC-related proteins, and 

hence in cellular energetic production, have been linked to lack of sperm motility and, hence 

fertility, in some mammals [102–103], so any observed differences between the two Mytilus 
species could be the result of their following different adaptive strategies relating to sperm 

motility. From the list of identified proteins showing differential expression (Table 3), 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 (Ndufa10), Cytochrome 

b-c1 complex subunit 2 (Uqcrc2), and ATP synthase subunit alpha (Atp5a) are nuclear 

encoded and from the different complexes of the respiratory electron transport chain (ETC) 

in mitochondria. Remarkably, the list of protein identifications (Table 3) reveals that nearly 

half of the identified proteins develop their functions and are located in mitochondria. A 

similar result was observed for highly expressed proteins in the sperm of Mytilus edulis 
[20]. Proteins from these ETC-associated complexes might be implicated in postzygotic 

isolating mechanisms due to coevolution of nuclear and mitochondrial genomes to ensure 

appropriate functional interactions between the nuclear and mitochondrial coded protein 

subunits of these complexes [104–105]. Marine mussels of Mytilus spp. as well as other 

bivalves present an unusual mtDNA inheritance mechanism (termed doublyuniparental 

inheritance, DUI) in which distinct mtDNA genomes are passed through the male and 

female lines of descent and which is coupled to sex determination in these species [106–

109] with opportunity for selection to act directly on mtDNA coded sperm proteins. 

Negative epistatic interactions between nuclear and mitochondrial genomes in hybrids could 

contribute to the maintenance of species integrity, consistent with observations of DUI 

disruption in crosses between these two Mytilus species [110].

Other identified differentially expressed mitochondrial proteins relate to energy metabolism. 

These include isocitrate dehydrogenase (Idh3a and Idh3g), aconitate hydratase (Aco2) and 

dihydrolipoyl dehydrogenase (Dld). Idh3 was identified as having the highest expression 

levels in a previous proteomics study of Mytilus edulis sperm [20]. Low expression levels of 

Aco2 were reported in human sperm with reduced motility [111], and higher levels during 

mice sperm capacitation [112]. Deficiency of Dld mature protein was associated with low 

sperm motility in humans [113], while enzymes of this complex were also related to sperm 

capacitation and the acrosome reaction in the hamster and humans [114–115]. The higher 

expression of such proteins in might result in higher ATP production and a fitness advantage 

under certain ecological and environmental conditions (see section 4.3). However production 

of ATP through oxidative phosphorylation (OXPHOS) may produce high reactive oxygen 

species (ROS) in sperm leading to mitochondrial mutations [116] and evolution of a trade-

off between higher OXPHOS and higher activity of antioxidant enzymes to neutralise high 

Romero et al. Page 19

J Proteomics. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROS production. Related to this is the observation in the present study that the differentially 

expressed antioxidant enzymes peroxiredoxin-5 (PRDX5) and manganese superoxide 

dismutase (SOD2) were associated with abnormal sperm and infertility in several mammals 

[117–118]. SOD activity may have detrimental effects on human sperm motility [119], and 

PRDX5 might play a role in sperm-egg interaction through the induction of signalling events 

by means of redox reactions after ZP binding [120].

4.2.2 Up-regulation of rapid energy supply and alternative production 
pathways in M. galloprovincialis—It is of interest that different species, for different 

cellular types, could have evolved different strategies and molecular pathways for energy 

production [121] driven by different ecological or environmental pressures. For example, 

glutamate dehydrogenase (Glud) converts glutamate to α-ketoglutarate potentially 

enhancing the activity of the TCA cycle in which α-ketoglutarate is an intermediate. Two 

spots closely located in the 2-DE map, were identified as Glud. These could be isoforms 

resulting from different posttranscriptional and posttranslational modifications (e.g. 
phosphorylation) implying functional changes [122] in sperm of both Mytilus spp.

ATP production through the glycolytic pathway in the sperm is compartmentalised in the 

principal piece of the flagellum, and this ATP source may be important in the sperm motility 

process known as hyperactivation [123]. The glycolytic enzyme enolase (Eno) was also 

differentially expressed. Disruption of expression of this enzyme sperm causes sperm 

structural defects and male infertility in the mouse [124]. In general glycolytic ATP is 

produced faster but less efficiently than ATP from aerobic pathways. Thus a trade-off 

between speed and amount of ATP production in sperm cells might also be of functional 

significance in sperm.

Phosphagen kinases are involved in intracellular energy transport and temporal buffering of 

ATP levels, specifically in flagellated cells, and hence probably play a role in sustained 

sperm motility [125]. The enzyme also influences sperm tail length and flagellar bending 

[126–127] and sperm-specific isoforms have been reported in various invertebrates [20, 

125]. One of these enzymes, arginine kinase (Ak) was differentially expressed here in two 

spots. Phosphagen molecules also regulate intracellular inorganic phosphate levels [128] and 

play an important role in sperm motility, capacitation, the acrosome reaction and sperm-egg 

fusion [129]. Inorganic pyrophosphate (PPi) is degraded by pyrophosphatase 1 (Ppa1) for 

which one differentially expressed spot was identified. PPi enhances sperm proteasome 

activity, of key importance for the spermegg interaction during fertilization [129]. 

Interestingly several differentially expressed spots related to the proteasome complex have 

been identified in the present study (see section 4.2.3).

4.2.3 Up-regulation of sperm proteasome activity in M. galloprovincialis: 
contrasting transcriptomic and proteomic results—Six protein spots were 

identified as different structural (alpha), catalytic (beta) and regulatory subunits of the 

proteasome complex (Psma4, Psmb2, Psmb6, Psme3, Psmc6 and Psmd11). The important 

role of the ubiquitin-proteasome system (UPS) during fertilization, including sperm 

capacitation, acrosome reaction and sperm-ZP binding, has been considered in section 4.1. It 

is notable that all these had higher expression in M. galloprovincialis (Table 3 and File S6) 
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suggesting that this species could have evolved specific regulatory mechanisms that increase 

the abundance of these proteins in sperm cells. Interestingly several proteasome subunit 

alpha components were also identified in M. edulis eggs and linked to the molecular 

mechanism underlying doublyuniparental inheritance (DUI, see section 4.2.1) of mtDNA in 

Mytilus spp. [59, 130]. Sperm mitochondria are labelled through ubiquitination during 

spermatogenesis [131] and thus marked for elimination by the proteasome complex in the 

fertilised oocyte. Three of the differentially expressed transcripts (Table 2) are two 

prohibitins (Phb and Phb2) and sequestosome-1 (Sqstm1). Prohibitins play a role in mtDNA 

inheritance [132], and are targets for ubiquitination in sperm mitochondria [133] while 

Sqstm1 has been linked to sperm mitophagy in mammals [134]. Thus there may be a link 

between the observed species-specific expression differences of these proteins in this study 

and disruption in DUI reported in inter-specific crosses [110], and of relevance to 

Dobzhansky-Muller incompatibilities (DMI) in hybrids between these species.

4.2.4 Higher expression of tektins suggests high motility sperm in M. 
galloprovincialis—Another interesting functional group of proteins showing differential 

expression are tektins. Six spots were identified as three different tektin proteins (Tekt1, 

Tekt2 and Tekt4) (Table 3). Of these, five had higher expression in M. galloprovincialis. 

Tektins are cytoskeletal proteins of the sperm flagellum and involved in sperm motility and 

flagellar bending. Differences in expression between normal and low motility sperm in 

humans were reported for Tekt1 and Tekt2, and Tekt4 was found to be essential for proper 

coordinated beating of the flagellum and for fertility [135–139]. Tektin expression occurs in 

the sperm acrosomal region perhaps indicating some specific role during fertilisation (see 

[135]) and has been implicated in flagellar bending and motility patterns [135, 140].

4.2.5 Other identified proteins with sperm-specific functional links—Three 

different spots with differential expression were identified as the protein EF-hand domain-

containing family member C2-like (Efhc2). Sperm proteins with EF-hand domains play a 

key role in activation of the oocyte during fertilisation in mammals [141], and can also be 

involved in the acrosome reaction in invertebrates [9] and motility regulation of sperm [142–

143]. Three protein spots identified as ES1 also showed differential expression. There is 

little functional information on this protein though it has been related to differential sperm 

motility in humans [111]. Other proteins showing differential expression are 3-hydroxyacyl-

CoA dehydrogenase type-2 (Hsd17b10), potentially involved in the regulation of steroid 

hormones in reproduction and reported in several molluscs [144], and atrial natriuretic 

peptide receptor (Npr1) which acts on capacitation, chemotaxis and chemokinesis [145–146] 

and thus might potentially play a role in species-specific sperm-egg recognition in Mytilus 
spp. driven by chemotaxis signals released from eggs.

4.3. Rapid evolution and sperm function trade-offs may explain species-specific 
proteome differences

4.3.1 Selective pressures and adaptation in sperm—In external fertilisers such as 

mussels, sperm are expected to be under a variety of selective pressures relating to the 

different biological strategies for fertilisation and the ecological and environmental 

challenges they experience. Mussel settlements are patchy along rocky shores, and 

Romero et al. Page 21

J Proteomics. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population density may vary considerably on a geographic or seasonal basis. Even though 

there may be synchronous spawning of eggs and sperm, the impact of varying gamete 

density and the role of sperm limitation is unclear [147–148]. If sperm density is too low 

then the probability of successful fertilisation may be low: on the other hand if sperm 

density is too high polyspermy may occur also resulting in incomplete fertilisation [149]. 

With sexual conflict, competition between sperm to achieve successful fertilisation may be 

accompanied by selection for eggs that block fertilization to prevent polyspermy. This can 

lead to rapid co-evolution of proteins in eggs and sperm in the context of sexual conflict. 

The rapid evolution of sperm proteins has been observed in many animal groups from 

mammals to different marine invertebrates such as sea urchins, abalones, turban snails, 

oysters, sea stars and mussels [9, 150–151]. In a comparison of sperm proteins between M. 
galloprovincialis and M. edulis the highest non-synonymous to synonymous substitutions 

rates were observed for proteins involved in fertilisation [21]. Sperm limitation should exert 

strong selection for adaptations increasing the chance of successful fertilisation in marine 

organisms with external fertilisation [152–153]. These include spawning synchrony, high 

levels of sperm production, chemotaxis over short distances, and sperm longevity. There is 

evidence that sperm energetics, for example higher ATP production may enhance sperm 

performance through an increase in swimming speed [154] and increase the chance of 

fertilization. But given finite energy resources to allocate to sperm properties and function, 

trade-offs between sperm traits are expected. For example trade-offs between sperm velocity 

and longevity occur both within and between species [154–155]. However there are 

numerous complicating factors such as the ability of sperm to maintain flagellar beats with 

low ATP and high inorganic phosphate levels, or the use of alternative pathways for energy 

production [121, 156] despite oxidative phosphorylation and glycolysis in the sperm 

midpiece being the major source of ATP production [123].

4.3.2 Sperm proteins upregulated in M. edulis and M. galloprovincialis—In the 

present study many proteins connected with sperm function which are upregulated in M. 
edulis or M. galloprovincialis (Table 3) have been identified and their properties discussed 

above (see section 4.2). As contrasting scenarios, selective pressures in the native 

environments of the two species could be somewhat similar or quite different. In the former 

scenario suppose that selection favoured upregulation of proteins improving motility to 

enhance fertilisation success. This could be achieved by upregulating different genes of the 

same protein in the two species. For example proteins from different Tektin-2 spots are 

upregulated in M. edulis and M. galloprovincialis (Table 3). This differential effect could be 

achieved by selection or drift increasing the frequency of different locus specific expression 

modifiers in the two species. Alternatively different proteins potentially affecting motility 

could be differentially upregulated in the two species. For example, isocitrate dehydrogenase 

is upregulated in M. edulis and arginine kinase is upregulated in M. galloprovincialis (Table 

3). In the latter scenario where selection pressures differ between species, proteins for quite 

different traits may obviously be upregulated in the two species.

A summary of the proteins of Table 3 matched with sperm functional traits is given in File 

S7. Column I marks the particular 4.2 sub-sections in which proteins were flagged as having 

predominantly higher expression in M. edulis (4.2.1) or M. galloprovincialis (4.2.2, 4.2.3, 
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4.2.4). Column G assigns functional trait terms to the proteins and the count and % 

frequency distributions for these terms are given in Figure 7. These distributions give at least 

an approximate guide to which sperm traits are upregulated in the two species. In both 

species proteins relating to motility are important in this regard. After this, proteins relating 

to ATP reserves and perhaps ROS production are important in M. edulis whereas proteins 

relating to the acrosome reaction, capacitation, and spermegg interaction might be 

highlighted in M. galloprovincialis. On this basis it is possible to hypothesise that motility is 

important in both species but particularly M. edulis, whereas in M. galloprovincialis proteins 

relating to sperm maturation and the fertilization process should be highlighted.

The potential biological consequences of these sperm traits are elaborated in File S7 in 

column H. A notable feature is that upregulation of many proteins in Table 3 can be 

hypothesised to result in a functional advantage for sperm. In this circumstance red font is 

used in columns G and H. For example in M. edulis, aconitate hydratase has higher 

expression than in M. galloprovincialis and this higher expression could be interpreted as a 

functional benefit in terms of faster swimming speed or endurance as well as improved 

maturation of sperm. By contrast the higher expression of es1 protein in M. edulis affecting 

the sperm trait motility might be hypothesised to reduce motility, a functional disadvantage, 

on the basis that lower motility was observed in human sperm with higher levels of this 

protein. This is represented by green text font in File S7 columns G and H. Where it is more 

difficult to arrive at a functional benefit or disadvantage, black font is used. The counts of 

the number of spots in which the sperm trait terms can be flagged with red, green or black 

font are also given in the final two columns of Figure 7. There is a clear preponderance of 

protein spots in which higher expression can be hypothesised to be a functional benefit in 

terms of sperm performance in the species in which this higher expression occurs, the 

functional benefits being largely in sperm motility and related traits and the fertilization 

process.

In both species, the higher expression of proteins associated with various aspects of sperm 

function are consistent with positive natural selection towards improved function and fitness 

of sperm. Closely related hybridising species such as M. edulis and M. galloprovincialis 
might be expected to show few or many differences in expression as a result of selection 

pressures arising from ecological forces. The wide range of differentially expressed proteins 

observed in the current study is consistent with evidence from the mouse where a diverse set 

of 81 different protein genes, including 23 sperm membrane proteins all gave evidence of 

positive selection [157], and where proteins involved in sperm-egg interactions in particular 

show accelerated evolution [151]. Such a large number of genes involved in sperm function 

could underline that there may be a high selection intensity acting on sperm. This may also 

provide multiple opportunities for disrupting sperm function. For example it has been 

reported that in sea urchins as few as 10 amino acid changes in the protein bindin are needed 

for complete gamete incompatibility [158], so limited changes occurring at different loci 

might have similar effects.

4.3.3 Differential expression: implications for hybridization of M. edulis and 
M. galloprovincialis—The observation of protein expression differences for many 

different genes connected with sperm function has implications for models of hybridization 
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and introgression between the species. An earlier proteomic study of a hybrid zone between 

M. edulis and M. galloprovincialis using somatic tissue found evidence of high gene 

expression variation amongst hybrids consistent with segregation at expression modifier loci 

as introgression proceeds [42]. Such segregation of modifiers at many sperm function related 

genes differing in protein expression between the species could result lowered expression or 

general disruption of expression of these genes depending on dominance relationships at and 

epistatic interaction between the modifier loci. This could contribute to lowered fertility of 

hybrids or lowered fitness of larvae as has been observed experimentally between different 

Mytilus spp. [33, 35]. It might also contribute to the observed disruption of doubly 

uniparental inheritance (DUI) in crosses between these two species [159] or other pair of 

Mytilus spp. [160–162].

4.3.4 Possible influences of environmental variation on sperm function—M. 
edulis evolved in the North Atlantic whereas M. galloprovincialis evolved in the 

Mediterranean [101, 162–163]. The most prominent environmental factors that might have 

exerted selective influences in the past are first temperature and then salinity which are both 

higher in the Mediterranean. These environmental differences persist in the contrast between 

Vigo and Swansea today, with seawater temperature about 4°C higher at Vigo during the 

spawning season. There is evidence that changes in seawater temperature may affect sperm 

function. Thus in M. galloprovincialis higher temperature is associated with lower 

fertilization rates on average [164] and sperm motility and linearity of swimming patterns 

are affected by temperature and its interaction with pH [165]. This may have fitness 

consequences as swimming speed has also been associated with higher fertilisation rates 

[166]. In some circumstances, for example when chemoattractants are not present, non-

linear swimming patterns may be advantageous to maximise the chance of fertilisation [147, 

167–168]. Other environmental factors may be important for successful fertilisation for 

example viscosity which is a function of temperature and salinity [169]. Factors such as 

seawater specific gravity and turbulence may also be important in determining the chance of 

successful fertilisation [170–171].

4.3.5 Selective pressures and interpretation of present results—The historical 

and current environmental factors affecting M. edulis and M. galloprovincialis could have 

generated different selective forces to cause divergence in sperm phenotype. This could 

include modification of functional trade-offs between traits such as swimming speed and 

endurance [172]. Differential selection modifying sperm phenotype are expected to cause 

differences in gene expression which could be reflected in the observed differences in 

protein expression as observed in the present study (Table 3, Figure 7 and File S7). Higher 

temperature and salinity in the evolution of M. galloprovincialis might relate to another 

factor, oxygen solubility which is lower at higher temperature and salinity. Stress from 

reduced oxygen could impact negatively on ATP production impacting on energy dependent 

biological processes such as motility, swimming speed and endurance in M. 
galloprovincialis from Vigo. In the present study however it appears that motility related 

proteins are relatively upregulated in M. edulis whereas proteins involved in sperm 

maturation and fertilisation are upregulated in M. galloprovincialis (Figure 7 and File S7).
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4.3.6 Future studies integrating proteomics and experimental work on sperm
—Clearly relating proteomics data and biochemical interpretations to environmental factors 

and to variation between species in sperm functional traits is a complex task for the future. 

Measuring intra and interspecific variation in sperm functional traits is in itself not an easy 

task [154]. Currently we are not aware of any direct comparative study of some sperm 

functional traits, like speed, longevity and movement pattern, between M. edulis and M. 
galloprovincialis. An experimental design in which sperm from M. edulis and M. 
galloprovincialis are spawned and their performance in motility and endurance as well as 

fertilisation success assessed, at a range of temperature and salinity conditions would be 

informative. This could be combined with further proteomics studies applied to sperm from 

individual mussels from these experiments. The sperm phenotype is highly plastic and 

evidence already exists for genotype-by-environmental interaction effects on sperm function 

[172]. An experimental design such as the one described above should allow detecting main 

effects and interactions involving species differences, reflecting genetic adaptation, 

contemporary environmental variation and underlying gene expression data. Such 

approaches could be further extended to the study of hybrid populations of the two species.

5. Concluding remarks

In order to achieve fertilization a sperm must come into contact with an egg and interact 

with it appropriately. Proteins mediate the interactions between sperm and egg at each step 

of the fertilisation process, and there is growing evidence that multiple protein complexes 

might be involved in concert during gamete interaction [82–83]. Species differences in these 

proteins are proposed as one of the key factors that lead to speciesspecific fertilisation and 

reproductive isolation. When prezygotic barriers fail, interspecies hybrids can occur. When 

this happens, postzygotic barriers play an important role in preservation of species integrity. 

We provide evidence of extensive variation in the mature male gonad transcriptome and 

sperm proteome in two mussel species, M. edulis and M. galloprovincialis. From the 

transcriptome analysis, we provide a preliminary list of proteins with sperm-specific 

functions. These functions are related to sperm-egg interaction, the acrosome reaction, 

spermatogenesis and motility. From the proteome analysis, we provide evidence of an 

overrepresentation of mitochondrial proteins among those candidate protein spots identified 

by MS, as well as contrasting differential expression in isoforms of many proteins. The use 

of customised speciesspecific protein databases significantly enhance both the quantity and 

quality of protein identifications, with the use of RNA-seq derived protein databases 

showing superior results to other customised databases analysed in this study. Our results 

provide evidence of agreement between the transcriptomic and proteomic results in the 

direction of expression differences between species. Our results highlight that some 

candidate sperm proteins, specifically those relating to sperm motility, ATP reserves, and 

ROS production in M. edulis and proteins relating to sperm motility, the acrosome reaction, 

capacitation and sperm-egg interaction in M. galloprovincialis might be good targets in 

further genomic analysis of reproductive barriers between closely related species.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mytilus spp. are valuable in reproductive isolation and speciation studies.

• Gametes are key cell targets in investigations of speciation mechanisms.

• Mytilus spp. show proteome and transcriptome differences in male gonads 

and sperm.

• Identified proteins are involved in sperm motility and sperm-egg interactions.

• Joint proteomic and RNA-seq analysis provide candidate proteins for 

evolution studies.
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Significance

Model systems for the study of fertilization include marine invertebrates with external 

fertilisation, such as abalones, sea urchins and mussels, because of the ease with which 

large quantities of gametes released into seawater can be collected after induced 

spawning. Unlike abalones and sea urchins, hybridisation has been reported between 

mussels of different Mytilus spp., which thus makes them very appealing for the study of 

reproductive isolation at both pre- and post-zygotic levels. There is a lack of empirical 

proteomic studies on sperm samples comparing different Mytilus species, which could 

help to advance this study. A comparative analysis of sperm proteomes across different 

taxa may provide important insights into the fundamental molecular processes and 

mechanisms involved in reproductive isolation. It might also contribute to a better 

understanding of sperm function and of the adaptive evolution of sperm proteins in 

different taxa. There is now growing evidence from genomics studies that multiple 

protein complexes and many individual proteins might have important functions in sperm 

biology and the fertilisation process. From an applied perspective, the identification of 

sperm-specific proteins could also contribute to the improved understanding of fertility 

problems and as targets for fertility control.
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Figure 1: 
Histological tests of mature male gonads of the six Mytilus edulis (a-f) and six M. 
galloprovincialis (g-l) mussels selected to make each pool for RNA-seq analysis. There are 

two different zoom views (see 500 and 50 μm scale respectively, above and below) shown 

for each histology test and individual mussel. Ac: male gonadal follicles with spermatozoa 

(sp), where heads (hd) and flagella (fl) can be seen and differentiated. Adipogranular (ag) 

and vesicular connective tissue (cv) cells can be found between the spermatic acini.
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Figure 2: 
a) Distribution of Level 2 GO terms of loci annotated in three ontological categories: 

biological process (BP), molecular function (MF) and cellular component (CC). Note that 

only those GO terms with annotations in at least 100 and 10 loci, for BP and MF 

respectively are shown. b) Enrichment analysis results for GO terms in differentially 

expressed loci between mature male gonads of the two Mytilus spp. according to Fisher's 

exact test (FDR<0.05). DE: differentially expressed, ND: not differentially expressed set of 

loci defined after RSEM analysis. Length of bars represents the percentage of loci annotated 

for each term in the DE (blue bars) and ND (red bars) sets. A blue longer than red bar 

indicates that that GO term is overrepresented in the differentially expressed loci. GO terms 

are grouped by their ontological category (BP, MF, CC), and within category, GO terms are 

displayed sorted by increasing p-values.
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Figure 3: 
2DE gels showing sperm proteome from a representative Mytilus galloprovincialis and M. 
edulis mussel respectively. 45 spots that showed significant differences between the two 

Mytilus populations and species (q≤0.05) and were identified (all except one) by MS (see 

Table 3) are numbered and encircled.
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Figure 4: 
Hierarchical clustering and heat map made using log normalised expression data for the 45 

protein spots of sperm samples that showed significant differences in expression level 

(q≤0.05) between the two Mytilus species and populations (SW: Swansea, VG: Vigo) and 

were identified (all except one) by MS (see Figure 3). Each column and row contains 

information for an individual mussel and protein spot respectively. The numbers on the right 

are the protein spot numbers to each of which isattached an abbreviation that corresponds to 

gene name that code for the identified protein (see Table 3). Note that for two identified 

protein spots (1101 and 1508) there are no gene name abbreviations available. Cells are 

coloured according to z-scores, showing up-regulation (red) or down-regulation (green) of 

protein spot volumes in the individual mussels compared with average expression values 

calculated from all mussel samples.
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Figure 5: 
Volcano plot made with the 727 sperm protein spots analysed by 2DE. Log2 of the ratio of 

average expression values between Swansea and Vigo populations (FC) plotted against log10 

of p-values derived from the one-way ANOVA analysis. Note that positive and negative 

Log2 (FC) values mean higher expression on average in samples from Vigo (M. 
galloprovincialis) and Swansea (M. edulis), respectively. Grey (FC>1.5) and black (up to 1.5 

FC) represent non-significant protein spots (p>0.05), while colour represents protein spots 

significant after one-way ANOVA (p≤0.05); blue, <1.5 FC; red, between 1.5 and 2.0 FC; 

green, >2.0 FC.
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Figure 6: 
Comparative results of protein spot identifications by MS using different customised protein 

databases (see Materials and Methods). Bars represent the total number of peptide spectrum 

matches (PSMs), total peptides (TP) and unique peptides (UP), expressed as percentage, 

obtained against each of the three protein databases made from: 1) RNA-seq data from the 

current study (RNA), 2) EST sequences available in NCBI from Mytilus[organism] (EST), 

and 3) protein sequences available in NCBI for Mollusca[organism] (NCBI). *: p<0.001, ns: 

not significant, for Kruskal-Wallis and post-hoc pairwise tests (after Dunn correction to 

account for multiple comparisons) between the different protein databases either for the total 

number of PSMs, TP or UP.
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Figure 7: 
Summary of counts and percentages of sperm trait and functional terms for proteins having 

higher expression in M. edulis and M. galloprovincialis. The data is derived from Table 3 

and from File S7, worksheet Table S7 where it is further elaborated (see captions of Tables 

S6-S7). Columns 2–5 give the counts and % values of sperm trait terms assigned to proteins 

having higher expression in M. edulis and M. galloprovincialis. Red and green fill indicate 

higher and lower % values in each row. Columns 6 and 7 indicate the number of occurrences 

of terms according to a tentative hypothesis on perceived benefit of higher expression to the 

species at the head of the columns (in red font) or perceived disadvantage (green font). 

Black font indicates that a conclusion in relation to benefit or disadvantage could not easily 

be made.
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Table 1:

Summary results from RNA-seq data and annotation through Blast analysis against different databases: 1) all 

protein sequences available in SwissProt (UniProtKB/SwissProt), 2) the Pacific oyster Crassostrea gigas 
genome (Oyster_Genome), 3) all EST sequences available in NCBI from “Mytilus”, 4) protein sequences 

retrieved from NCBI for "Mytilus" (NCBI_MytProt), and 5) protein sequences retrieved from NCBI for 

"Mollusca" (NCBI_MolluscaProt). See further details in materials and methods.

Number of reads (raw / filtered) 235,967,540 / 187,829,361

Number of Isotigs 97,425

Number of Loci 49,713

Maximum sequence length (bp) 13,604

Mean / Median sequence length (bp) 706 / 434

N50 length (bp) 1,071

Number of Loci identified following:

    BlastX (UniProtKB/SwissProt) 13,498 (27.1% of total loci)*

    tBlastX (Oyster_Genome) 18,279 (36.8%)

    tBlastX (NCBI_MytESTs) 31,428 (63.2%); database coverage [56,253 of total 67,990 MytEST sequences (82.7%)]

    BlastX (NCBI_MytProt) 2,234 (4.5%); database coverage [5,153 of total 6338 MytProt sequences (81.3%)]

    BlastX (NCBI_MolluscaProt) 17,529 (35.3%); database coverage [70,317 of total 190,951 MolluscaProt sequences (36.8%)]

*
13,283 loci were functionally annotated using Blast2GO, including InterProScan.
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